Export of internal Abseil changes

--
e54b9c7bbb0c58475676c268e2e19c69f4bce48a by Jorg Brown <jorg@google.com>:

Tweak ABSL_PREDICT_TRUE slightly, for better code on some platforms and/or
optimization levels.  "false || (x)" is more verbose than "!!(x)", but
ultimately more efficient.

For example, given this code:

void InitIfNecessary() {
  if (ABSL_PREDICT_TRUE(NeedsInit())) {
    SlowInitIfNecessary();
  }
}

Clang with default optimization level will produce:

Before this CL              After this CL
InitIfNecessary:            InitIfNecessary:
  push rbp                    push rbp
  mov  rbp, rsp               mov  rbp, rsp
  call NeedsInit              call NeedsInit
  xor  al, -1
  xor  al, -1
  test al, 1                  test al, 1
  jne  .LBB2_1                jne  .LBB3_1
  jmp  .LBB2_2                jmp  .LBB3_2
.LBB2_1:                    .LBB3_1:
  call SlowInitIfNecessary    call SlowInitIfNecessary
.LBB2_2:                    .LBB3_2:
  pop  rbp                    pop  rbp
  ret                         ret
PiperOrigin-RevId: 276401386

--
0a3c4dfd8342bf2b1b11a87f1c662c883f73cab7 by Abseil Team <absl-team@google.com>:

Fix comment nit: sem_open => sem_init.

The code calls sem_init, not sem_open, to initialize an unnamed semaphore.
(sem_open creates or opens a named semaphore.)

PiperOrigin-RevId: 276344072

--
b36a664e9459057509a90e83d3482e1d3a4c44c7 by Abseil Team <absl-team@google.com>:

Fix typo in flat_hash_map.h: exchaged -> exchanged

PiperOrigin-RevId: 276295792

--
7bbd8d18276eb110c8335743e35fceb662ddf3d6 by Samuel Benzaquen <sbenza@google.com>:

Add assertions to verify use of iterators.

PiperOrigin-RevId: 276283300

--
677398a8ffcb1f59182cffe57a4fe7ff147a0404 by Laramie Leavitt <lar@google.com>:

Migrate distribution_impl.h/cc to generate_real.h/cc.

Combine the methods RandU64To<Float,Double> into a single method:
GenerateRealFromBits().

Remove rejection sampling from absl::uniform_real_distribution.

PiperOrigin-RevId: 276158675

--
c60c9d11d24b0c546329d998e78e15a84b3153f5 by Abseil Team <absl-team@google.com>:

Internal change

PiperOrigin-RevId: 276126962

--
4c840cab6a8d86efa29b397cafaf7520eece68cc by Andy Soffer <asoffer@google.com>:

Update CMakeLists.txt to address https://github.com/abseil/abseil-cpp/issues/365.
This does not cover every platform, but it does at least address the
first-order issue of assuming gcc implies x86.

PiperOrigin-RevId: 276116253

--
98da366e6b5d51afe5d7ac6722126aca23d85ee6 by Abseil Team <absl-team@google.com>:

Internal change

PiperOrigin-RevId: 276097452
GitOrigin-RevId: e54b9c7bbb0c58475676c268e2e19c69f4bce48a
Change-Id: I02d84454bb71ab21ad3d39650acf6cc6e36f58d7
This commit is contained in:
Abseil Team 2019-10-23 19:35:39 -07:00 committed by Derek Mauro
parent 19b021cb3f
commit 078b89b3c0
28 changed files with 739 additions and 370 deletions

View file

@ -557,6 +557,31 @@ cc_test(
],
)
cc_library(
name = "exponential_biased",
srcs = ["internal/exponential_biased.cc"],
hdrs = ["internal/exponential_biased.h"],
linkopts = ABSL_DEFAULT_LINKOPTS,
visibility = [
"//absl:__subpackages__",
],
deps = [":core_headers"],
)
cc_test(
name = "exponential_biased_test",
size = "small",
srcs = ["internal/exponential_biased_test.cc"],
copts = ABSL_TEST_COPTS,
linkopts = ABSL_DEFAULT_LINKOPTS,
visibility = ["//visibility:private"],
deps = [
":exponential_biased",
"//absl/strings",
"@com_google_googletest//:gtest_main",
],
)
cc_library(
name = "scoped_set_env",
testonly = 1,

View file

@ -503,6 +503,32 @@ absl_cc_test(
gtest_main
)
absl_cc_library(
NAME
exponential_biased
SRCS
"internal/exponential_biased.cc"
HDRS
"internal/exponential_biased.h"
COPTS
${ABSL_DEFAULT_COPTS}
DEPS
absl::core_headers
)
absl_cc_test(
NAME
exponential_biased_test
SRCS
"internal/exponential_biased_test.cc"
COPTS
${ABSL_TEST_COPTS}
DEPS
absl::exponential_biased
absl::strings
gmock_main
)
absl_cc_library(
NAME
scoped_set_env

View file

@ -307,7 +307,7 @@
// ABSL_HAVE_SEMAPHORE_H
//
// Checks whether the platform supports the <semaphore.h> header and sem_open(3)
// Checks whether the platform supports the <semaphore.h> header and sem_init(3)
// family of functions as standardized in POSIX.1-2001.
//
// Note: While Apple provides <semaphore.h> for both iOS and macOS, it is

View file

@ -0,0 +1,84 @@
// Copyright 2019 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/base/internal/exponential_biased.h"
#include <stdint.h>
#include <atomic>
#include <cmath>
#include <limits>
#include "absl/base/attributes.h"
#include "absl/base/optimization.h"
namespace absl {
namespace base_internal {
// The algorithm generates a random number between 0 and 1 and applies the
// inverse cumulative distribution function for an exponential. Specifically:
// Let m be the inverse of the sample period, then the probability
// distribution function is m*exp(-mx) so the CDF is
// p = 1 - exp(-mx), so
// q = 1 - p = exp(-mx)
// log_e(q) = -mx
// -log_e(q)/m = x
// log_2(q) * (-log_e(2) * 1/m) = x
// In the code, q is actually in the range 1 to 2**26, hence the -26 below
int64_t ExponentialBiased::Get(int64_t mean) {
if (ABSL_PREDICT_FALSE(!initialized_)) {
Initialize();
}
uint64_t rng = NextRandom(rng_);
rng_ = rng;
// Take the top 26 bits as the random number
// (This plus the 1<<58 sampling bound give a max possible step of
// 5194297183973780480 bytes.)
// The uint32_t cast is to prevent a (hard-to-reproduce) NAN
// under piii debug for some binaries.
double q = static_cast<uint32_t>(rng >> (kPrngNumBits - 26)) + 1.0;
// Put the computed p-value through the CDF of a geometric.
double interval = (std::log2(q) - 26) * (-std::log(2.0) * mean);
// Very large values of interval overflow int64_t. To avoid that, we will cheat
// and clamp any huge values to (int64_t max)/2. This is a potential source of
// bias, but the mean would need to be such a large value that it's not likely
// to come up. For example, with a mean of 1e18, the probability of hitting
// this condition is about 1/1000. For a mean of 1e17, standard calculators
// claim that this event won't happen.
if (interval > static_cast<double>(std::numeric_limits<int64_t>::max() / 2)) {
return std::numeric_limits<int64_t>::max() / 2;
}
return static_cast<int64_t>(interval);
}
void ExponentialBiased::Initialize() {
// We don't get well distributed numbers from `this` so we call NextRandom() a
// bunch to mush the bits around. We use a global_rand to handle the case
// where the same thread (by memory address) gets created and destroyed
// repeatedly.
ABSL_CONST_INIT static std::atomic<uint32_t> global_rand(0);
uint64_t r = reinterpret_cast<uint64_t>(this) +
global_rand.fetch_add(1, std::memory_order_relaxed);
for (int i = 0; i < 20; ++i) {
r = NextRandom(r);
}
rng_ = r;
initialized_ = true;
}
} // namespace base_internal
} // namespace absl

View file

@ -0,0 +1,77 @@
// Copyright 2019 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_BASE_INTERNAL_EXPONENTIAL_BIASED_H_
#define ABSL_BASE_INTERNAL_EXPONENTIAL_BIASED_H_
#include <stdint.h>
namespace absl {
namespace base_internal {
// ExponentialBiased provides a small and fast random number generator for a
// rounded exponential distribution. This generator doesn't requires very little
// state doesn't impose synchronization overhead, which makes it useful in some
// specialized scenarios.
//
// For the generated variable X, X ~ floor(Exponential(1/mean)). The floor
// operation introduces a small amount of bias, but the distribution is useful
// to generate a wait time. That is, if an operation is supposed to happen on
// average to 1/mean events, then the generated variable X will describe how
// many events to skip before performing the operation and computing a new X.
//
// The mathematically precise distribution to use for integer wait times is a
// Geometric distribution, but a Geometric distribution takes slightly more time
// to compute and when the mean is large (say, 100+), the Geometric distribution
// is hard to distinguish from the result of ExponentialBiased.
//
// This class is thread-compatible.
class ExponentialBiased {
public:
// The number of bits set by NextRandom.
static constexpr int kPrngNumBits = 48;
// Generates the floor of an exponentially distributed random variable by
// rounding the value down to the nearest integer. The result will be in the
// range [0, int64_t max / 2].
int64_t Get(int64_t mean);
// Computes a random number in the range [0, 1<<(kPrngNumBits+1) - 1]
//
// This is public to enable testing.
static uint64_t NextRandom(uint64_t rnd);
private:
void Initialize();
uint64_t rng_{0};
bool initialized_{false};
};
// Returns the next prng value.
// pRNG is: aX+b mod c with a = 0x5DEECE66D, b = 0xB, c = 1<<48
// This is the lrand64 generator.
inline uint64_t ExponentialBiased::NextRandom(uint64_t rnd) {
const uint64_t prng_mult = uint64_t{0x5DEECE66D};
const uint64_t prng_add = 0xB;
const uint64_t prng_mod_power = 48;
const uint64_t prng_mod_mask =
~((~static_cast<uint64_t>(0)) << prng_mod_power);
return (prng_mult * rnd + prng_add) & prng_mod_mask;
}
} // namespace base_internal
} // namespace absl
#endif // ABSL_BASE_INTERNAL_EXPONENTIAL_BIASED_H_

View file

@ -0,0 +1,168 @@
// Copyright 2019 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/base/internal/exponential_biased.h"
#include <stddef.h>
#include <cmath>
#include <cstdint>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/strings/str_cat.h"
using ::testing::Ge;
namespace absl {
namespace base_internal {
MATCHER_P2(IsBetween, a, b,
absl::StrCat(std::string(negation ? "isn't" : "is"), " between ", a,
" and ", b)) {
return a <= arg && arg <= b;
}
// Tests of the quality of the random numbers generated
// This uses the Anderson Darling test for uniformity.
// See "Evaluating the Anderson-Darling Distribution" by Marsaglia
// for details.
// Short cut version of ADinf(z), z>0 (from Marsaglia)
// This returns the p-value for Anderson Darling statistic in
// the limit as n-> infinity. For finite n, apply the error fix below.
double AndersonDarlingInf(double z) {
if (z < 2) {
return exp(-1.2337141 / z) / sqrt(z) *
(2.00012 +
(0.247105 -
(0.0649821 - (0.0347962 - (0.011672 - 0.00168691 * z) * z) * z) *
z) *
z);
}
return exp(
-exp(1.0776 -
(2.30695 -
(0.43424 - (0.082433 - (0.008056 - 0.0003146 * z) * z) * z) * z) *
z));
}
// Corrects the approximation error in AndersonDarlingInf for small values of n
// Add this to AndersonDarlingInf to get a better approximation
// (from Marsaglia)
double AndersonDarlingErrFix(int n, double x) {
if (x > 0.8) {
return (-130.2137 +
(745.2337 -
(1705.091 - (1950.646 - (1116.360 - 255.7844 * x) * x) * x) * x) *
x) /
n;
}
double cutoff = 0.01265 + 0.1757 / n;
if (x < cutoff) {
double t = x / cutoff;
t = sqrt(t) * (1 - t) * (49 * t - 102);
return t * (0.0037 / (n * n) + 0.00078 / n + 0.00006) / n;
} else {
double t = (x - cutoff) / (0.8 - cutoff);
t = -0.00022633 +
(6.54034 - (14.6538 - (14.458 - (8.259 - 1.91864 * t) * t) * t) * t) *
t;
return t * (0.04213 + 0.01365 / n) / n;
}
}
// Returns the AndersonDarling p-value given n and the value of the statistic
double AndersonDarlingPValue(int n, double z) {
double ad = AndersonDarlingInf(z);
double errfix = AndersonDarlingErrFix(n, ad);
return ad + errfix;
}
double AndersonDarlingStatistic(const std::vector<double>& random_sample) {
int n = random_sample.size();
double ad_sum = 0;
for (int i = 0; i < n; i++) {
ad_sum += (2 * i + 1) *
std::log(random_sample[i] * (1 - random_sample[n - 1 - i]));
}
double ad_statistic = -n - 1 / static_cast<double>(n) * ad_sum;
return ad_statistic;
}
// Tests if the array of doubles is uniformly distributed.
// Returns the p-value of the Anderson Darling Statistic
// for the given set of sorted random doubles
// See "Evaluating the Anderson-Darling Distribution" by
// Marsaglia and Marsaglia for details.
double AndersonDarlingTest(const std::vector<double>& random_sample) {
double ad_statistic = AndersonDarlingStatistic(random_sample);
double p = AndersonDarlingPValue(random_sample.size(), ad_statistic);
return p;
}
// Testing that NextRandom generates uniform random numbers. Applies the
// Anderson-Darling test for uniformity
TEST(ExponentialBiasedTest, TestNextRandom) {
for (auto n : std::vector<int>({
10, // Check short-range correlation
100, 1000,
10000 // Make sure there's no systemic error
})) {
uint64_t x = 1;
// This assumes that the prng returns 48 bit numbers
uint64_t max_prng_value = static_cast<uint64_t>(1) << 48;
// Initialize.
for (int i = 1; i <= 20; i++) {
x = ExponentialBiased::NextRandom(x);
}
std::vector<uint64_t> int_random_sample(n);
// Collect samples
for (int i = 0; i < n; i++) {
int_random_sample[i] = x;
x = ExponentialBiased::NextRandom(x);
}
// First sort them...
std::sort(int_random_sample.begin(), int_random_sample.end());
std::vector<double> random_sample(n);
// Convert them to uniform randoms (in the range [0,1])
for (int i = 0; i < n; i++) {
random_sample[i] =
static_cast<double>(int_random_sample[i]) / max_prng_value;
}
// Now compute the Anderson-Darling statistic
double ad_pvalue = AndersonDarlingTest(random_sample);
EXPECT_GT(std::min(ad_pvalue, 1 - ad_pvalue), 0.0001)
<< "prng is not uniform: n = " << n << " p = " << ad_pvalue;
}
}
// The generator needs to be available as a thread_local and as a static
// variable.
TEST(ExponentialBiasedTest, InitializationModes) {
ABSL_CONST_INIT static ExponentialBiased eb_static;
EXPECT_THAT(eb_static.Get(2), Ge(0));
#if ABSL_HAVE_THREAD_LOCAL
thread_local ExponentialBiased eb_thread;
EXPECT_THAT(eb_thread.Get(2), Ge(0));
#endif
ExponentialBiased eb_stack;
EXPECT_THAT(eb_stack.Get(2), Ge(0));
}
} // namespace base_internal
} // namespace absl

View file

@ -172,7 +172,7 @@
#if ABSL_HAVE_BUILTIN(__builtin_expect) || \
(defined(__GNUC__) && !defined(__clang__))
#define ABSL_PREDICT_FALSE(x) (__builtin_expect(x, 0))
#define ABSL_PREDICT_TRUE(x) (__builtin_expect(!!(x), 1))
#define ABSL_PREDICT_TRUE(x) (__builtin_expect(false || (x), true))
#else
#define ABSL_PREDICT_FALSE(x) (x)
#define ABSL_PREDICT_TRUE(x) (x)

View file

@ -493,6 +493,7 @@ cc_library(
":have_sse",
"//absl/base",
"//absl/base:core_headers",
"//absl/base:exponential_biased",
"//absl/debugging:stacktrace",
"//absl/memory",
"//absl/synchronization",

View file

@ -538,6 +538,7 @@ absl_cc_library(
${ABSL_DEFAULT_COPTS}
DEPS
absl::base
absl::exponential_biased
absl::have_sse
absl::synchronization
)

View file

@ -401,7 +401,7 @@ class flat_hash_map : public absl::container_internal::raw_hash_map<
// for the past-the-end iterator, which is invalidated.
//
// `swap()` requires that the flat hash map's hashing and key equivalence
// functions be Swappable, and are exchaged using unqualified calls to
// functions be Swappable, and are exchanged using unqualified calls to
// non-member `swap()`. If the map's allocator has
// `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
// set to `true`, the allocators are also exchanged using an unqualified call

View file

@ -21,6 +21,7 @@
#include <limits>
#include "absl/base/attributes.h"
#include "absl/base/internal/exponential_biased.h"
#include "absl/container/internal/have_sse.h"
#include "absl/debugging/stacktrace.h"
#include "absl/memory/memory.h"
@ -37,77 +38,13 @@ ABSL_CONST_INIT std::atomic<bool> g_hashtablez_enabled{
ABSL_CONST_INIT std::atomic<int32_t> g_hashtablez_sample_parameter{1 << 10};
ABSL_CONST_INIT std::atomic<int32_t> g_hashtablez_max_samples{1 << 20};
// Returns the next pseudo-random value.
// pRNG is: aX+b mod c with a = 0x5DEECE66D, b = 0xB, c = 1<<48
// This is the lrand64 generator.
uint64_t NextRandom(uint64_t rnd) {
const uint64_t prng_mult = uint64_t{0x5DEECE66D};
const uint64_t prng_add = 0xB;
const uint64_t prng_mod_power = 48;
const uint64_t prng_mod_mask = ~(~uint64_t{0} << prng_mod_power);
return (prng_mult * rnd + prng_add) & prng_mod_mask;
}
// Generates a geometric variable with the specified mean.
// This is done by generating a random number between 0 and 1 and applying
// the inverse cumulative distribution function for an exponential.
// Specifically: Let m be the inverse of the sample period, then
// the probability distribution function is m*exp(-mx) so the CDF is
// p = 1 - exp(-mx), so
// q = 1 - p = exp(-mx)
// log_e(q) = -mx
// -log_e(q)/m = x
// log_2(q) * (-log_e(2) * 1/m) = x
// In the code, q is actually in the range 1 to 2**26, hence the -26 below
//
int64_t GetGeometricVariable(int64_t mean) {
#if ABSL_HAVE_THREAD_LOCAL
thread_local
#else // ABSL_HAVE_THREAD_LOCAL
// SampleSlow and hence GetGeometricVariable is guarded by a single mutex when
// there are not thread locals. Thus, a single global rng is acceptable for
// that case.
static
#endif // ABSL_HAVE_THREAD_LOCAL
uint64_t rng = []() {
// We don't get well distributed numbers from this so we call
// NextRandom() a bunch to mush the bits around. We use a global_rand
// to handle the case where the same thread (by memory address) gets
// created and destroyed repeatedly.
ABSL_CONST_INIT static std::atomic<uint32_t> global_rand(0);
uint64_t r = reinterpret_cast<uint64_t>(&rng) +
global_rand.fetch_add(1, std::memory_order_relaxed);
for (int i = 0; i < 20; ++i) {
r = NextRandom(r);
}
return r;
}();
rng = NextRandom(rng);
// Take the top 26 bits as the random number
// (This plus the 1<<58 sampling bound give a max possible step of
// 5194297183973780480 bytes.)
const uint64_t prng_mod_power = 48; // Number of bits in prng
// The uint32_t cast is to prevent a (hard-to-reproduce) NAN
// under piii debug for some binaries.
double q = static_cast<uint32_t>(rng >> (prng_mod_power - 26)) + 1.0;
// Put the computed p-value through the CDF of a geometric.
double interval = (log2(q) - 26) * (-std::log(2.0) * mean);
// Very large values of interval overflow int64_t. If we happen to
// hit such improbable condition, we simply cheat and clamp interval
// to largest supported value.
if (interval > static_cast<double>(std::numeric_limits<int64_t>::max() / 2)) {
return std::numeric_limits<int64_t>::max() / 2;
}
// Small values of interval are equivalent to just sampling next time.
if (interval < 1) {
return 1;
}
return static_cast<int64_t>(interval);
}
thread_local absl::base_internal::ExponentialBiased
g_exponential_biased_generator;
#else
ABSL_CONST_INIT static absl::base_internal::ExponentialBiased
g_exponential_biased_generator;
#endif
} // namespace
@ -253,8 +190,12 @@ HashtablezInfo* SampleSlow(int64_t* next_sample) {
}
bool first = *next_sample < 0;
*next_sample = GetGeometricVariable(
*next_sample = g_exponential_biased_generator.Get(
g_hashtablez_sample_parameter.load(std::memory_order_relaxed));
// Small values of interval are equivalent to just sampling next time.
if (*next_sample < 1) {
*next_sample = 1;
}
// g_hashtablez_enabled can be dynamically flipped, we need to set a threshold
// low enough that we will start sampling in a reasonable time, so we just use

View file

@ -614,13 +614,17 @@ class raw_hash_set {
iterator() {}
// PRECONDITION: not an end() iterator.
reference operator*() const { return PolicyTraits::element(slot_); }
reference operator*() const {
/* To be enabled: assert_is_full(); */
return PolicyTraits::element(slot_);
}
// PRECONDITION: not an end() iterator.
pointer operator->() const { return &operator*(); }
// PRECONDITION: not an end() iterator.
iterator& operator++() {
/* To be enabled: assert_is_full(); */
++ctrl_;
++slot_;
skip_empty_or_deleted();
@ -634,6 +638,8 @@ class raw_hash_set {
}
friend bool operator==(const iterator& a, const iterator& b) {
/* To be enabled: a.assert_is_valid(); */
/* To be enabled: b.assert_is_valid(); */
return a.ctrl_ == b.ctrl_;
}
friend bool operator!=(const iterator& a, const iterator& b) {
@ -644,6 +650,11 @@ class raw_hash_set {
iterator(ctrl_t* ctrl) : ctrl_(ctrl) {} // for end()
iterator(ctrl_t* ctrl, slot_type* slot) : ctrl_(ctrl), slot_(slot) {}
void assert_is_full() const { assert(IsFull(*ctrl_)); }
void assert_is_valid() const {
assert(!ctrl_ || IsFull(*ctrl_) || *ctrl_ == kSentinel);
}
void skip_empty_or_deleted() {
while (IsEmptyOrDeleted(*ctrl_)) {
// ctrl is not necessarily aligned to Group::kWidth. It is also likely
@ -1155,7 +1166,7 @@ class raw_hash_set {
// This overload is necessary because otherwise erase<K>(const K&) would be
// a better match if non-const iterator is passed as an argument.
void erase(iterator it) {
assert(it != end());
it.assert_is_full();
PolicyTraits::destroy(&alloc_ref(), it.slot_);
erase_meta_only(it);
}
@ -1172,12 +1183,14 @@ class raw_hash_set {
template <typename H, typename E>
void merge(raw_hash_set<Policy, H, E, Alloc>& src) { // NOLINT
assert(this != &src);
for (auto it = src.begin(), e = src.end(); it != e; ++it) {
for (auto it = src.begin(), e = src.end(); it != e;) {
auto next = std::next(it);
if (PolicyTraits::apply(InsertSlot<false>{*this, std::move(*it.slot_)},
PolicyTraits::element(it.slot_))
.second) {
src.erase_meta_only(it);
}
it = next;
}
}
@ -1187,6 +1200,7 @@ class raw_hash_set {
}
node_type extract(const_iterator position) {
position.inner_.assert_is_full();
auto node =
CommonAccess::Transfer<node_type>(alloc_ref(), position.inner_.slot_);
erase_meta_only(position);

View file

@ -1837,7 +1837,7 @@ TEST(TableDeathTest, EraseOfEndAsserts) {
IntTable t;
// Extra simple "regexp" as regexp support is highly varied across platforms.
constexpr char kDeathMsg[] = "it != end";
constexpr char kDeathMsg[] = "IsFull";
EXPECT_DEATH_IF_SUPPORTED(t.erase(t.end()), kDeathMsg);
}

View file

@ -5,10 +5,29 @@ set(ABSL_LSAN_LINKOPTS "")
set(ABSL_HAVE_LSAN OFF)
set(ABSL_DEFAULT_LINKOPTS "")
if("${CMAKE_SYSTEM_PROCESSOR}" STREQUAL "x86_64")
if (MSVC)
set(ABSL_RANDOM_RANDEN_COPTS "${ABSL_RANDOM_HWAES_MSVC_X64_FLAGS}")
else()
set(ABSL_RANDOM_RANDEN_COPTS "${ABSL_RANDOM_HWAES_X64_FLAGS}")
endif()
elseif("${CMAKE_SYSTEM_PROCESSOR}" STREQUAL "arm")
if ("${CMAKE_SIZEOF_VOID_P}" STREQUAL "8")
set(ABSL_RANDOM_RANDEN_COPTS "${ABSL_RANDOM_HWAES_ARM64_FLAGS}")
elseif("${CMAKE_SIZEOF_VOID_P}" STREQUAL "4")
set(ABSL_RANDOM_RANDEN_COPTS "${ABSL_RANDOM_HWAES_ARM32_FLAGS}")
else()
message(WARNING "Value of CMAKE_SIZEOF_VOID_P (${CMAKE_SIZEOF_VOID_P}) is not supported.")
endif()
else()
message(WARNING "Value of CMAKE_SYSTEM_PROCESSOR (${CMAKE_SYSTEM_PROCESSOR}) is unknown and cannot be used to set ABSL_RANDOM_RANDEN_COPTS")
set(ABSL_RANDOM_RANDEN_COPTS "")
endif()
if("${CMAKE_CXX_COMPILER_ID}" STREQUAL "GNU")
set(ABSL_DEFAULT_COPTS "${ABSL_GCC_FLAGS}")
set(ABSL_TEST_COPTS "${ABSL_GCC_FLAGS};${ABSL_GCC_TEST_FLAGS}")
set(ABSL_RANDOM_RANDEN_COPTS "${ABSL_RANDOM_HWAES_X64_FLAGS}")
elseif("${CMAKE_CXX_COMPILER_ID}" MATCHES "Clang")
# MATCHES so we get both Clang and AppleClang
if(MSVC)
@ -16,11 +35,9 @@ elseif("${CMAKE_CXX_COMPILER_ID}" MATCHES "Clang")
set(ABSL_DEFAULT_COPTS "${ABSL_CLANG_CL_FLAGS}")
set(ABSL_TEST_COPTS "${ABSL_CLANG_CL_FLAGS};${ABSL_CLANG_CL_TEST_FLAGS}")
set(ABSL_DEFAULT_LINKOPTS "${ABSL_MSVC_LINKOPTS}")
set(ABSL_RANDOM_RANDEN_COPTS "${ABSL_RANDOM_HWAES_MSVC_X64_FLAGS}")
else()
set(ABSL_DEFAULT_COPTS "${ABSL_LLVM_FLAGS}")
set(ABSL_TEST_COPTS "${ABSL_LLVM_FLAGS};${ABSL_LLVM_TEST_FLAGS}")
set(ABSL_RANDOM_RANDEN_COPTS "${ABSL_RANDOM_HWAES_X64_FLAGS}")
if("${CMAKE_CXX_COMPILER_ID}" STREQUAL "Clang")
# AppleClang doesn't have lsan
# https://developer.apple.com/documentation/code_diagnostics
@ -34,12 +51,10 @@ elseif("${CMAKE_CXX_COMPILER_ID}" STREQUAL "MSVC")
set(ABSL_DEFAULT_COPTS "${ABSL_MSVC_FLAGS}")
set(ABSL_TEST_COPTS "${ABSL_MSVC_FLAGS};${ABSL_MSVC_TEST_FLAGS}")
set(ABSL_DEFAULT_LINKOPTS "${ABSL_MSVC_LINKOPTS}")
set(ABSL_RANDOM_RANDEN_COPTS "${ABSL_RANDOM_HWAES_MSVC_X64_FLAGS}")
else()
message(WARNING "Unknown compiler: ${CMAKE_CXX_COMPILER}. Building with no default flags")
set(ABSL_DEFAULT_COPTS "")
set(ABSL_TEST_COPTS "")
set(ABSL_RANDOM_RANDEN_COPTS "")
endif()
if("${CMAKE_CXX_STANDARD}" EQUAL 98)

View file

@ -69,10 +69,10 @@ cc_library(
"//absl/base:base_internal",
"//absl/base:core_headers",
"//absl/meta:type_traits",
"//absl/random/internal:distribution_impl",
"//absl/random/internal:distributions",
"//absl/random/internal:fast_uniform_bits",
"//absl/random/internal:fastmath",
"//absl/random/internal:generate_real",
"//absl/random/internal:iostream_state_saver",
"//absl/random/internal:traits",
"//absl/random/internal:uniform_helper",

View file

@ -58,7 +58,7 @@ absl_cc_library(
DEPS
absl::base_internal
absl::core_headers
absl::random_internal_distribution_impl
absl::random_internal_generate_real
absl::random_internal_distributions
absl::random_internal_fast_uniform_bits
absl::random_internal_fastmath
@ -543,19 +543,18 @@ absl_cc_library(
# Internal-only target, do not depend on directly.
absl_cc_library(
NAME
random_internal_distribution_impl
random_internal_generate_real
HDRS
"internal/distribution_impl.h"
"internal/generate_real.h"
COPTS
${ABSL_DEFAULT_COPTS}
LINKOPTS
${ABSL_DEFAULT_LINKOPTS}
DEPS
absl::bits
absl::config
absl::int128
absl::random_internal_fastmath
absl::random_internal_traits
absl::type_traits
)
# Internal-only target, do not depend on directly.
@ -767,9 +766,9 @@ absl_cc_test(
# Internal-only target, do not depend on directly.
absl_cc_test(
NAME
random_internal_distribution_impl_test
random_internal_generate_real_test
SRCS
"internal/distribution_impl_test.cc"
"internal/generate_real_test.cc"
COPTS
${ABSL_TEST_COPTS}
LINKOPTS
@ -777,8 +776,7 @@ absl_cc_test(
DEPS
absl::bits
absl::flags
absl::int128
absl::random_internal_distribution_impl
absl::random_internal_generate_real
gtest_main
)
@ -1029,7 +1027,6 @@ absl_cc_library(
${ABSL_DEFAULT_LINKOPTS}
DEPS
absl::core_headers
absl::random_internal_distribution_impl
absl::random_internal_fast_uniform_bits
absl::random_internal_iostream_state_saver
absl::random_internal_traits

View file

@ -22,9 +22,10 @@
#include <ostream>
#include <type_traits>
#include "absl/random/internal/distribution_impl.h"
#include "absl/meta/type_traits.h"
#include "absl/random/internal/fast_uniform_bits.h"
#include "absl/random/internal/fastmath.h"
#include "absl/random/internal/generate_real.h"
#include "absl/random/internal/iostream_state_saver.h"
namespace absl {
@ -275,15 +276,21 @@ typename beta_distribution<RealType>::result_type
beta_distribution<RealType>::AlgorithmJoehnk(
URBG& g, // NOLINT(runtime/references)
const param_type& p) {
using random_internal::GeneratePositiveTag;
using random_internal::GenerateRealFromBits;
using real_type =
absl::conditional_t<std::is_same<RealType, float>::value, float, double>;
// Based on Joehnk, M. D. Erzeugung von betaverteilten und gammaverteilten
// Zufallszahlen. Metrika 8.1 (1964): 5-15.
// This method is described in Knuth, Vol 2 (Third Edition), pp 134.
using RandU64ToReal = typename random_internal::RandU64ToReal<result_type>;
using random_internal::PositiveValueT;
result_type u, v, x, y, z;
for (;;) {
u = RandU64ToReal::template Value<PositiveValueT, false>(fast_u64_(g));
v = RandU64ToReal::template Value<PositiveValueT, false>(fast_u64_(g));
u = GenerateRealFromBits<real_type, GeneratePositiveTag, false>(
fast_u64_(g));
v = GenerateRealFromBits<real_type, GeneratePositiveTag, false>(
fast_u64_(g));
// Direct method. std::pow is slow for float, so rely on the optimizer to
// remove the std::pow() path for that case.
@ -327,12 +334,14 @@ typename beta_distribution<RealType>::result_type
beta_distribution<RealType>::AlgorithmCheng(
URBG& g, // NOLINT(runtime/references)
const param_type& p) {
using random_internal::GeneratePositiveTag;
using random_internal::GenerateRealFromBits;
using real_type =
absl::conditional_t<std::is_same<RealType, float>::value, float, double>;
// Based on Cheng, Russell CH. Generating beta variates with nonintegral
// shape parameters. Communications of the ACM 21.4 (1978): 317-322.
// (https://dl.acm.org/citation.cfm?id=359482).
using RandU64ToReal = typename random_internal::RandU64ToReal<result_type>;
using random_internal::PositiveValueT;
static constexpr result_type kLogFour =
result_type(1.3862943611198906188344642429163531361); // log(4)
static constexpr result_type kS =
@ -341,8 +350,10 @@ beta_distribution<RealType>::AlgorithmCheng(
const bool use_algorithm_ba = (p.method_ == param_type::CHENG_BA);
result_type u1, u2, v, w, z, r, s, t, bw_inv, lhs;
for (;;) {
u1 = RandU64ToReal::template Value<PositiveValueT, false>(fast_u64_(g));
u2 = RandU64ToReal::template Value<PositiveValueT, false>(fast_u64_(g));
u1 = GenerateRealFromBits<real_type, GeneratePositiveTag, false>(
fast_u64_(g));
u2 = GenerateRealFromBits<real_type, GeneratePositiveTag, false>(
fast_u64_(g));
v = p.y_ * std::log(u1 / (1 - u1));
w = p.a_ * std::exp(v);
bw_inv = result_type(1) / (p.b_ + w);

View file

@ -92,7 +92,7 @@ TYPED_TEST(BetaDistributionInterfaceTest, SerializeTest) {
for (TypeParam alpha : kValues) {
for (TypeParam beta : kValues) {
ABSL_INTERNAL_LOG(
INFO, absl::StrFormat("Smoke test for Beta(%f, %f)", alpha, beta));
INFO, absl::StrFormat("Smoke test for Beta(%a, %a)", alpha, beta));
param_type param(alpha, beta);
absl::beta_distribution<TypeParam> before(alpha, beta);

View file

@ -21,8 +21,9 @@
#include <limits>
#include <type_traits>
#include "absl/random/internal/distribution_impl.h"
#include "absl/meta/type_traits.h"
#include "absl/random/internal/fast_uniform_bits.h"
#include "absl/random/internal/generate_real.h"
#include "absl/random/internal/iostream_state_saver.h"
namespace absl {
@ -118,9 +119,14 @@ typename exponential_distribution<RealType>::result_type
exponential_distribution<RealType>::operator()(
URBG& g, // NOLINT(runtime/references)
const param_type& p) {
using random_internal::NegativeValueT;
const result_type u = random_internal::RandU64ToReal<
result_type>::template Value<NegativeValueT, false>(fast_u64_(g));
using random_internal::GenerateNegativeTag;
using random_internal::GenerateRealFromBits;
using real_type =
absl::conditional_t<std::is_same<RealType, float>::value, float, double>;
const result_type u = GenerateRealFromBits<real_type, GenerateNegativeTag,
false>(fast_u64_(g)); // U(-1, 0)
// log1p(-x) is mathematically equivalent to log(1 - x) but has more
// accuracy for x near zero.
return p.neg_inv_lambda_ * std::log1p(u);

View file

@ -28,8 +28,8 @@
#include <limits>
#include <type_traits>
#include "absl/random/internal/distribution_impl.h"
#include "absl/random/internal/fast_uniform_bits.h"
#include "absl/random/internal/generate_real.h"
#include "absl/random/internal/iostream_state_saver.h"
namespace absl {
@ -207,12 +207,18 @@ namespace random_internal {
template <typename URBG>
inline double gaussian_distribution_base::zignor_fallback(URBG& g, bool neg) {
using random_internal::GeneratePositiveTag;
using random_internal::GenerateRealFromBits;
// This fallback path happens approximately 0.05% of the time.
double x, y;
do {
// kRInv = 1/r, U(0, 1)
x = kRInv * std::log(RandU64ToDouble<PositiveValueT, false>(fast_u64_(g)));
y = -std::log(RandU64ToDouble<PositiveValueT, false>(fast_u64_(g)));
x = kRInv *
std::log(GenerateRealFromBits<double, GeneratePositiveTag, false>(
fast_u64_(g)));
y = -std::log(
GenerateRealFromBits<double, GeneratePositiveTag, false>(fast_u64_(g)));
} while ((y + y) < (x * x));
return neg ? (x - kR) : (kR - x);
}
@ -220,6 +226,10 @@ inline double gaussian_distribution_base::zignor_fallback(URBG& g, bool neg) {
template <typename URBG>
inline double gaussian_distribution_base::zignor(
URBG& g) { // NOLINT(runtime/references)
using random_internal::GeneratePositiveTag;
using random_internal::GenerateRealFromBits;
using random_internal::GenerateSignedTag;
while (true) {
// We use a single uint64_t to generate both a double and a strip.
// These bits are unused when the generated double is > 1/2^5.
@ -227,7 +237,8 @@ inline double gaussian_distribution_base::zignor(
// values (those smaller than 1/2^5, which all end up on the left tail).
uint64_t bits = fast_u64_(g);
int i = static_cast<int>(bits & kMask); // pick a random strip
double j = RandU64ToDouble<SignedValueT, false>(bits); // U(-1, 1)
double j = GenerateRealFromBits<double, GenerateSignedTag, false>(
bits); // U(-1, 1)
const double x = j * zg_.x[i];
// Retangular box. Handles >97% of all cases.
@ -244,7 +255,8 @@ inline double gaussian_distribution_base::zignor(
}
// i > 0: Wedge samples using precomputed values.
double v = RandU64ToDouble<PositiveValueT, false>(fast_u64_(g)); // U(0, 1)
double v = GenerateRealFromBits<double, GeneratePositiveTag, false>(
fast_u64_(g)); // U(0, 1)
if ((zg_.f[i + 1] + v * (zg_.f[i] - zg_.f[i + 1])) <
std::exp(-0.5 * x * x)) {
return x;

View file

@ -175,9 +175,9 @@ cc_library(
)
cc_library(
name = "distribution_impl",
name = "generate_real",
hdrs = [
"distribution_impl.h",
"generate_real.h",
],
copts = ABSL_DEFAULT_COPTS,
linkopts = ABSL_DEFAULT_LINKOPTS,
@ -185,8 +185,7 @@ cc_library(
":fastmath",
":traits",
"//absl/base:bits",
"//absl/base:config",
"//absl/numeric:int128",
"//absl/meta:type_traits",
],
)
@ -398,16 +397,17 @@ cc_test(
)
cc_test(
name = "distribution_impl_test",
name = "generate_real_test",
size = "small",
srcs = ["distribution_impl_test.cc"],
srcs = [
"generate_real_test.cc",
],
copts = ABSL_TEST_COPTS,
linkopts = ABSL_DEFAULT_LINKOPTS,
deps = [
":distribution_impl",
":generate_real",
"//absl/base:bits",
"//absl/flags:flag",
"//absl/numeric:int128",
"@com_google_googletest//:gtest_main",
],
)

View file

@ -1,194 +0,0 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_RANDOM_INTERNAL_DISTRIBUTION_IMPL_H_
#define ABSL_RANDOM_INTERNAL_DISTRIBUTION_IMPL_H_
// This file contains some implementation details which are used by one or more
// of the absl random number distributions.
#include <cfloat>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <limits>
#include <type_traits>
#if (defined(_WIN32) || defined(_WIN64)) && defined(_M_IA64)
#include <intrin.h> // NOLINT(build/include_order)
#pragma intrinsic(_umul128)
#define ABSL_INTERNAL_USE_UMUL128 1
#endif
#include "absl/base/config.h"
#include "absl/base/internal/bits.h"
#include "absl/numeric/int128.h"
#include "absl/random/internal/fastmath.h"
#include "absl/random/internal/traits.h"
namespace absl {
namespace random_internal {
// Creates a double from `bits`, with the template fields controlling the
// output.
//
// RandU64To is both more efficient and generates more unique values in the
// result interval than known implementations of std::generate_canonical().
//
// The `Signed` parameter controls whether positive, negative, or both are
// returned (thus affecting the output interval).
// When Signed == SignedValueT, range is U(-1, 1)
// When Signed == NegativeValueT, range is U(-1, 0)
// When Signed == PositiveValueT, range is U(0, 1)
//
// When the `IncludeZero` parameter is true, the function may return 0 for some
// inputs, otherwise it never returns 0.
//
// The `ExponentBias` parameter determines the scale of the output range by
// adjusting the exponent.
//
// When a value in U(0,1) is required, use:
// RandU64ToDouble<PositiveValueT, true, 0>();
//
// When a value in U(-1,1) is required, use:
// RandU64ToDouble<SignedValueT, false, 0>() => U(-1, 1)
// This generates more distinct values than the mathematically equivalent
// expression `U(0, 1) * 2.0 - 1.0`, and is preferable.
//
// Scaling the result by powers of 2 (and avoiding a multiply) is also possible:
// RandU64ToDouble<PositiveValueT, false, 1>(); => U(0, 2)
// RandU64ToDouble<PositiveValueT, false, -1>(); => U(0, 0.5)
//
// Tristate types controlling the output.
struct PositiveValueT {};
struct NegativeValueT {};
struct SignedValueT {};
// RandU64ToDouble is the double-result variant of RandU64To, described above.
template <typename Signed, bool IncludeZero, int ExponentBias = 0>
inline double RandU64ToDouble(uint64_t bits) {
static_assert(std::is_same<Signed, PositiveValueT>::value ||
std::is_same<Signed, NegativeValueT>::value ||
std::is_same<Signed, SignedValueT>::value,
"");
// Maybe use the left-most bit for a sign bit.
uint64_t sign = std::is_same<Signed, NegativeValueT>::value
? 0x8000000000000000ull
: 0; // Sign bits.
if (std::is_same<Signed, SignedValueT>::value) {
sign = bits & 0x8000000000000000ull;
bits = bits & 0x7FFFFFFFFFFFFFFFull;
}
if (IncludeZero) {
if (bits == 0u) return 0;
}
// Number of leading zeros is mapped to the exponent: 2^-clz
int clz = base_internal::CountLeadingZeros64(bits);
// Shift number left to erase leading zeros.
bits <<= IncludeZero ? clz : (clz & 63);
// Shift number right to remove bits that overflow double mantissa. The
// direction of the shift depends on `clz`.
bits >>= (64 - DBL_MANT_DIG);
// Compute IEEE 754 double exponent.
// In the Signed case, bits is a 63-bit number with a 0 msb. Adjust the
// exponent to account for that.
const uint64_t exp =
(std::is_same<Signed, SignedValueT>::value ? 1023U : 1022U) +
static_cast<uint64_t>(ExponentBias - clz);
constexpr int kExp = DBL_MANT_DIG - 1;
// Construct IEEE 754 double from exponent and mantissa.
const uint64_t val = sign | (exp << kExp) | (bits & ((1ULL << kExp) - 1U));
double res;
static_assert(sizeof(res) == sizeof(val), "double is not 64 bit");
// Memcpy value from "val" to "res" to avoid aliasing problems. Assumes that
// endian-ness is same for double and uint64_t.
std::memcpy(&res, &val, sizeof(res));
return res;
}
// RandU64ToFloat is the float-result variant of RandU64To, described above.
template <typename Signed, bool IncludeZero, int ExponentBias = 0>
inline float RandU64ToFloat(uint64_t bits) {
static_assert(std::is_same<Signed, PositiveValueT>::value ||
std::is_same<Signed, NegativeValueT>::value ||
std::is_same<Signed, SignedValueT>::value,
"");
// Maybe use the left-most bit for a sign bit.
uint64_t sign = std::is_same<Signed, NegativeValueT>::value
? 0x80000000ul
: 0; // Sign bits.
if (std::is_same<Signed, SignedValueT>::value) {
uint64_t a = bits & 0x8000000000000000ull;
sign = static_cast<uint32_t>(a >> 32);
bits = bits & 0x7FFFFFFFFFFFFFFFull;
}
if (IncludeZero) {
if (bits == 0u) return 0;
}
// Number of leading zeros is mapped to the exponent: 2^-clz
int clz = base_internal::CountLeadingZeros64(bits);
// Shift number left to erase leading zeros.
bits <<= IncludeZero ? clz : (clz & 63);
// Shift number right to remove bits that overflow double mantissa. The
// direction of the shift depends on `clz`.
bits >>= (64 - FLT_MANT_DIG);
// Construct IEEE 754 float exponent.
// In the Signed case, bits is a 63-bit number with a 0 msb. Adjust the
// exponent to account for that.
const uint32_t exp =
(std::is_same<Signed, SignedValueT>::value ? 127U : 126U) +
static_cast<uint32_t>(ExponentBias - clz);
constexpr int kExp = FLT_MANT_DIG - 1;
const uint32_t val = sign | (exp << kExp) | (bits & ((1U << kExp) - 1U));
float res;
static_assert(sizeof(res) == sizeof(val), "float is not 32 bit");
// Assumes that endian-ness is same for float and uint32_t.
std::memcpy(&res, &val, sizeof(res));
return res;
}
template <typename Result>
struct RandU64ToReal {
template <typename Signed, bool IncludeZero, int ExponentBias = 0>
static inline Result Value(uint64_t bits) {
return RandU64ToDouble<Signed, IncludeZero, ExponentBias>(bits);
}
};
template <>
struct RandU64ToReal<float> {
template <typename Signed, bool IncludeZero, int ExponentBias = 0>
static inline float Value(uint64_t bits) {
return RandU64ToFloat<Signed, IncludeZero, ExponentBias>(bits);
}
};
} // namespace random_internal
} // namespace absl
#endif // ABSL_RANDOM_INTERNAL_DISTRIBUTION_IMPL_H_

View file

@ -0,0 +1,144 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_RANDOM_INTERNAL_GENERATE_REAL_H_
#define ABSL_RANDOM_INTERNAL_GENERATE_REAL_H_
// This file contains some implementation details which are used by one or more
// of the absl random number distributions.
#include <cstdint>
#include <cstring>
#include <limits>
#include <type_traits>
#include "absl/base/internal/bits.h"
#include "absl/meta/type_traits.h"
#include "absl/random/internal/fastmath.h"
#include "absl/random/internal/traits.h"
namespace absl {
namespace random_internal {
// Tristate tag types controlling the output of GenerateRealFromBits.
struct GeneratePositiveTag {};
struct GenerateNegativeTag {};
struct GenerateSignedTag {};
// GenerateRealFromBits generates a single real value from a single 64-bit
// `bits` with template fields controlling the output.
//
// The `SignedTag` parameter controls whether positive, negative,
// or either signed/unsigned may be returned.
// When SignedTag == GeneratePositiveTag, range is U(0, 1)
// When SignedTag == GenerateNegativeTag, range is U(-1, 0)
// When SignedTag == GenerateSignedTag, range is U(-1, 1)
//
// When the `IncludeZero` parameter is true, the function may return 0 for some
// inputs, otherwise it never returns 0.
//
// When a value in U(0,1) is required, use:
// Uniform64ToReal<double, PositiveValueT, true>;
//
// When a value in U(-1,1) is required, use:
// Uniform64ToReal<double, SignedValueT, false>;
//
// This generates more distinct values than the mathematical equivalent
// `U(0, 1) * 2.0 - 1.0`.
//
// Scaling the result by powers of 2 (and avoiding a multiply) is also possible:
// GenerateRealFromBits<double>(..., -1); => U(0, 0.5)
// GenerateRealFromBits<double>(..., 1); => U(0, 2)
//
template <typename RealType, // Real type, either float or double.
typename SignedTag = GeneratePositiveTag, // Whether a positive,
// negative, or signed
// value is generated.
bool IncludeZero = true>
inline RealType GenerateRealFromBits(uint64_t bits, int exp_bias = 0) {
using real_type = RealType;
using uint_type = absl::conditional_t<std::is_same<real_type, float>::value,
uint32_t, uint64_t>;
static_assert(
(std::is_same<double, real_type>::value ||
std::is_same<float, real_type>::value),
"GenerateRealFromBits must be parameterized by either float or double.");
static_assert(sizeof(uint_type) == sizeof(real_type),
"Mismatched unsinged and real types.");
static_assert((std::numeric_limits<real_type>::is_iec559 &&
std::numeric_limits<real_type>::radix == 2),
"RealType representation is not IEEE 754 binary.");
static_assert((std::is_same<SignedTag, GeneratePositiveTag>::value ||
std::is_same<SignedTag, GenerateNegativeTag>::value ||
std::is_same<SignedTag, GenerateSignedTag>::value),
"");
static constexpr int kExp = std::numeric_limits<real_type>::digits - 1;
static constexpr uint_type kMask = (static_cast<uint_type>(1) << kExp) - 1u;
static constexpr int kUintBits = sizeof(uint_type) * 8;
int exp = exp_bias + int{std::numeric_limits<real_type>::max_exponent - 2};
// Determine the sign bit.
// Depending on the SignedTag, this may use the left-most bit
// or it may be a constant value.
uint_type sign = std::is_same<SignedTag, GenerateNegativeTag>::value
? (static_cast<uint_type>(1) << (kUintBits - 1))
: 0;
if (std::is_same<SignedTag, GenerateSignedTag>::value) {
if (std::is_same<uint_type, uint64_t>::value) {
sign = bits & uint64_t{0x8000000000000000};
}
if (std::is_same<uint_type, uint32_t>::value) {
const uint64_t tmp = bits & uint64_t{0x8000000000000000};
sign = static_cast<uint32_t>(tmp >> 32);
}
// adjust the bits and the exponent to account for removing
// the leading bit.
bits = bits & uint64_t{0x7FFFFFFFFFFFFFFF};
exp++;
}
if (IncludeZero) {
if (bits == 0u) return 0;
}
// Number of leading zeros is mapped to the exponent: 2^-clz
// bits is 0..01xxxxxx. After shifting, we're left with 1xxx...0..0
int clz = base_internal::CountLeadingZeros64(bits);
bits <<= (IncludeZero ? clz : (clz & 63)); // remove 0-bits.
exp -= clz; // set the exponent.
bits >>= (63 - kExp);
// Construct the 32-bit or 64-bit IEEE 754 floating-point value from
// the individual fields: sign, exp, mantissa(bits).
uint_type val =
(std::is_same<SignedTag, GeneratePositiveTag>::value ? 0u : sign) |
(static_cast<uint_type>(exp) << kExp) |
(static_cast<uint_type>(bits) & kMask);
// bit_cast to the output-type
real_type result;
memcpy(static_cast<void*>(&result), static_cast<const void*>(&val),
sizeof(result));
return result;
}
} // namespace random_internal
} // namespace absl
#endif // ABSL_RANDOM_INTERNAL_GENERATE_REAL_H_

View file

@ -12,57 +12,74 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/random/internal/distribution_impl.h"
#include "absl/random/internal/generate_real.h"
#include <cfloat>
#include <cstddef>
#include <cstdint>
#include <string>
#include "gtest/gtest.h"
#include "absl/base/internal/bits.h"
#include "absl/flags/flag.h"
#include "absl/numeric/int128.h"
ABSL_FLAG(int64_t, absl_random_test_trials, 50000,
"Number of trials for the probability tests.");
using absl::random_internal::NegativeValueT;
using absl::random_internal::PositiveValueT;
using absl::random_internal::RandU64ToDouble;
using absl::random_internal::RandU64ToFloat;
using absl::random_internal::SignedValueT;
using absl::random_internal::GenerateNegativeTag;
using absl::random_internal::GeneratePositiveTag;
using absl::random_internal::GenerateRealFromBits;
using absl::random_internal::GenerateSignedTag;
namespace {
TEST(DistributionImplTest, U64ToFloat_Positive_NoZero_Test) {
TEST(GenerateRealTest, U64ToFloat_Positive_NoZero_Test) {
auto ToFloat = [](uint64_t a) {
return RandU64ToFloat<PositiveValueT, false>(a);
return GenerateRealFromBits<float, GeneratePositiveTag, false>(a);
};
EXPECT_EQ(ToFloat(0x0000000000000000), 2.710505431e-20f);
EXPECT_EQ(ToFloat(0x0000000000000001), 5.421010862e-20f);
EXPECT_EQ(ToFloat(0x8000000000000000), 0.5);
EXPECT_EQ(ToFloat(0x8000000000000001), 0.5);
EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), 0.9999999404f);
}
TEST(DistributionImplTest, U64ToFloat_Positive_Zero_Test) {
TEST(GenerateRealTest, U64ToFloat_Positive_Zero_Test) {
auto ToFloat = [](uint64_t a) {
return RandU64ToFloat<PositiveValueT, true>(a);
return GenerateRealFromBits<float, GeneratePositiveTag, true>(a);
};
EXPECT_EQ(ToFloat(0x0000000000000000), 0.0);
EXPECT_EQ(ToFloat(0x0000000000000001), 5.421010862e-20f);
EXPECT_EQ(ToFloat(0x8000000000000000), 0.5);
EXPECT_EQ(ToFloat(0x8000000000000001), 0.5);
EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), 0.9999999404f);
}
TEST(DistributionImplTest, U64ToFloat_Negative_NoZero_Test) {
TEST(GenerateRealTest, U64ToFloat_Negative_NoZero_Test) {
auto ToFloat = [](uint64_t a) {
return RandU64ToFloat<NegativeValueT, false>(a);
return GenerateRealFromBits<float, GenerateNegativeTag, false>(a);
};
EXPECT_EQ(ToFloat(0x0000000000000000), -2.710505431e-20f);
EXPECT_EQ(ToFloat(0x0000000000000001), -5.421010862e-20f);
EXPECT_EQ(ToFloat(0x8000000000000000), -0.5);
EXPECT_EQ(ToFloat(0x8000000000000001), -0.5);
EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), -0.9999999404f);
}
TEST(DistributionImplTest, U64ToFloat_Signed_NoZero_Test) {
TEST(GenerateRealTest, U64ToFloat_Negative_Zero_Test) {
auto ToFloat = [](uint64_t a) {
return RandU64ToFloat<SignedValueT, false>(a);
return GenerateRealFromBits<float, GenerateNegativeTag, true>(a);
};
EXPECT_EQ(ToFloat(0x0000000000000000), 0.0);
EXPECT_EQ(ToFloat(0x0000000000000001), -5.421010862e-20f);
EXPECT_EQ(ToFloat(0x8000000000000000), -0.5);
EXPECT_EQ(ToFloat(0x8000000000000001), -0.5);
EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), -0.9999999404f);
}
TEST(GenerateRealTest, U64ToFloat_Signed_NoZero_Test) {
auto ToFloat = [](uint64_t a) {
return GenerateRealFromBits<float, GenerateSignedTag, false>(a);
};
EXPECT_EQ(ToFloat(0x0000000000000000), 5.421010862e-20f);
EXPECT_EQ(ToFloat(0x0000000000000001), 1.084202172e-19f);
@ -72,9 +89,9 @@ TEST(DistributionImplTest, U64ToFloat_Signed_NoZero_Test) {
EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), -0.9999999404f);
}
TEST(DistributionImplTest, U64ToFloat_Signed_Zero_Test) {
TEST(GenerateRealTest, U64ToFloat_Signed_Zero_Test) {
auto ToFloat = [](uint64_t a) {
return RandU64ToFloat<SignedValueT, true>(a);
return GenerateRealFromBits<float, GenerateSignedTag, true>(a);
};
EXPECT_EQ(ToFloat(0x0000000000000000), 0);
EXPECT_EQ(ToFloat(0x0000000000000001), 1.084202172e-19f);
@ -84,9 +101,9 @@ TEST(DistributionImplTest, U64ToFloat_Signed_Zero_Test) {
EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), -0.9999999404f);
}
TEST(DistributionImplTest, U64ToFloat_Signed_Bias_Test) {
TEST(GenerateRealTest, U64ToFloat_Signed_Bias_Test) {
auto ToFloat = [](uint64_t a) {
return RandU64ToFloat<SignedValueT, true, 1>(a);
return GenerateRealFromBits<float, GenerateSignedTag, true>(a, 1);
};
EXPECT_EQ(ToFloat(0x0000000000000000), 0);
EXPECT_EQ(ToFloat(0x0000000000000001), 2 * 1.084202172e-19f);
@ -96,9 +113,9 @@ TEST(DistributionImplTest, U64ToFloat_Signed_Bias_Test) {
EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), 2 * -0.9999999404f);
}
TEST(DistributionImplTest, U64ToFloatTest) {
TEST(GenerateRealTest, U64ToFloatTest) {
auto ToFloat = [](uint64_t a) -> float {
return RandU64ToFloat<PositiveValueT, true>(a);
return GenerateRealFromBits<float, GeneratePositiveTag, true>(a);
};
EXPECT_EQ(ToFloat(0x0000000000000000), 0.0f);
@ -150,44 +167,60 @@ TEST(DistributionImplTest, U64ToFloatTest) {
}
}
TEST(DistributionImplTest, U64ToDouble_Positive_NoZero_Test) {
TEST(GenerateRealTest, U64ToDouble_Positive_NoZero_Test) {
auto ToDouble = [](uint64_t a) {
return RandU64ToDouble<PositiveValueT, false>(a);
return GenerateRealFromBits<double, GeneratePositiveTag, false>(a);
};
EXPECT_EQ(ToDouble(0x0000000000000000), 2.710505431213761085e-20);
EXPECT_EQ(ToDouble(0x0000000000000001), 5.42101086242752217004e-20);
EXPECT_EQ(ToDouble(0x0000000000000002), 1.084202172485504434e-19);
EXPECT_EQ(ToDouble(0x8000000000000000), 0.5);
EXPECT_EQ(ToDouble(0x8000000000000001), 0.5);
EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), 0.999999999999999888978);
}
TEST(DistributionImplTest, U64ToDouble_Positive_Zero_Test) {
TEST(GenerateRealTest, U64ToDouble_Positive_Zero_Test) {
auto ToDouble = [](uint64_t a) {
return RandU64ToDouble<PositiveValueT, true>(a);
return GenerateRealFromBits<double, GeneratePositiveTag, true>(a);
};
EXPECT_EQ(ToDouble(0x0000000000000000), 0.0);
EXPECT_EQ(ToDouble(0x0000000000000001), 5.42101086242752217004e-20);
EXPECT_EQ(ToDouble(0x8000000000000000), 0.5);
EXPECT_EQ(ToDouble(0x8000000000000001), 0.5);
EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), 0.999999999999999888978);
}
TEST(DistributionImplTest, U64ToDouble_Negative_NoZero_Test) {
TEST(GenerateRealTest, U64ToDouble_Negative_NoZero_Test) {
auto ToDouble = [](uint64_t a) {
return RandU64ToDouble<NegativeValueT, false>(a);
return GenerateRealFromBits<double, GenerateNegativeTag, false>(a);
};
EXPECT_EQ(ToDouble(0x0000000000000000), -2.710505431213761085e-20);
EXPECT_EQ(ToDouble(0x0000000000000001), -5.42101086242752217004e-20);
EXPECT_EQ(ToDouble(0x0000000000000002), -1.084202172485504434e-19);
EXPECT_EQ(ToDouble(0x8000000000000000), -0.5);
EXPECT_EQ(ToDouble(0x8000000000000001), -0.5);
EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), -0.999999999999999888978);
}
TEST(DistributionImplTest, U64ToDouble_Signed_NoZero_Test) {
TEST(GenerateRealTest, U64ToDouble_Negative_Zero_Test) {
auto ToDouble = [](uint64_t a) {
return RandU64ToDouble<SignedValueT, false>(a);
return GenerateRealFromBits<double, GenerateNegativeTag, true>(a);
};
EXPECT_EQ(ToDouble(0x0000000000000000), 0.0);
EXPECT_EQ(ToDouble(0x0000000000000001), -5.42101086242752217004e-20);
EXPECT_EQ(ToDouble(0x0000000000000002), -1.084202172485504434e-19);
EXPECT_EQ(ToDouble(0x8000000000000000), -0.5);
EXPECT_EQ(ToDouble(0x8000000000000001), -0.5);
EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), -0.999999999999999888978);
}
TEST(GenerateRealTest, U64ToDouble_Signed_NoZero_Test) {
auto ToDouble = [](uint64_t a) {
return GenerateRealFromBits<double, GenerateSignedTag, false>(a);
};
EXPECT_EQ(ToDouble(0x0000000000000000), 5.42101086242752217004e-20);
@ -198,9 +231,9 @@ TEST(DistributionImplTest, U64ToDouble_Signed_NoZero_Test) {
EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), -0.999999999999999888978);
}
TEST(DistributionImplTest, U64ToDouble_Signed_Zero_Test) {
TEST(GenerateRealTest, U64ToDouble_Signed_Zero_Test) {
auto ToDouble = [](uint64_t a) {
return RandU64ToDouble<SignedValueT, true>(a);
return GenerateRealFromBits<double, GenerateSignedTag, true>(a);
};
EXPECT_EQ(ToDouble(0x0000000000000000), 0);
EXPECT_EQ(ToDouble(0x0000000000000001), 1.084202172485504434e-19);
@ -210,9 +243,9 @@ TEST(DistributionImplTest, U64ToDouble_Signed_Zero_Test) {
EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), -0.999999999999999888978);
}
TEST(DistributionImplTest, U64ToDouble_Signed_Bias_Test) {
TEST(GenerateRealTest, U64ToDouble_GenerateSignedTag_Bias_Test) {
auto ToDouble = [](uint64_t a) {
return RandU64ToDouble<SignedValueT, true, -1>(a);
return GenerateRealFromBits<double, GenerateSignedTag, true>(a, -1);
};
EXPECT_EQ(ToDouble(0x0000000000000000), 0);
EXPECT_EQ(ToDouble(0x0000000000000001), 1.084202172485504434e-19 / 2);
@ -222,9 +255,9 @@ TEST(DistributionImplTest, U64ToDouble_Signed_Bias_Test) {
EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), -0.999999999999999888978 / 2);
}
TEST(DistributionImplTest, U64ToDoubleTest) {
TEST(GenerateRealTest, U64ToDoubleTest) {
auto ToDouble = [](uint64_t a) {
return RandU64ToDouble<PositiveValueT, true>(a);
return GenerateRealFromBits<double, GeneratePositiveTag, true>(a);
};
EXPECT_EQ(ToDouble(0x0000000000000000), 0.0);
@ -296,9 +329,9 @@ TEST(DistributionImplTest, U64ToDoubleTest) {
}
}
TEST(DistributionImplTest, U64ToDoubleSignedTest) {
TEST(GenerateRealTest, U64ToDoubleSignedTest) {
auto ToDouble = [](uint64_t a) {
return RandU64ToDouble<SignedValueT, false>(a);
return GenerateRealFromBits<double, GenerateSignedTag, false>(a);
};
EXPECT_EQ(ToDouble(0x0000000000000000), 5.42101086242752217004e-20);
@ -379,10 +412,10 @@ TEST(DistributionImplTest, U64ToDoubleSignedTest) {
}
}
TEST(DistributionImplTest, ExhaustiveFloat) {
TEST(GenerateRealTest, ExhaustiveFloat) {
using absl::base_internal::CountLeadingZeros64;
auto ToFloat = [](uint64_t a) {
return RandU64ToFloat<PositiveValueT, true>(a);
return GenerateRealFromBits<float, GeneratePositiveTag, true>(a);
};
// Rely on RandU64ToFloat generating values from greatest to least when

View file

@ -23,8 +23,8 @@
#include <ostream>
#include <type_traits>
#include "absl/random/internal/distribution_impl.h"
#include "absl/random/internal/fastmath.h"
#include "absl/random/internal/generate_real.h"
#include "absl/random/internal/iostream_state_saver.h"
#include "absl/random/internal/traits.h"
#include "absl/random/uniform_int_distribution.h"

View file

@ -22,9 +22,9 @@
#include <ostream>
#include <type_traits>
#include "absl/random/internal/distribution_impl.h"
#include "absl/random/internal/fast_uniform_bits.h"
#include "absl/random/internal/fastmath.h"
#include "absl/random/internal/generate_real.h"
#include "absl/random/internal/iostream_state_saver.h"
namespace absl {
@ -164,9 +164,9 @@ typename poisson_distribution<IntType>::result_type
poisson_distribution<IntType>::operator()(
URBG& g, // NOLINT(runtime/references)
const param_type& p) {
using random_internal::PositiveValueT;
using random_internal::RandU64ToDouble;
using random_internal::SignedValueT;
using random_internal::GeneratePositiveTag;
using random_internal::GenerateRealFromBits;
using random_internal::GenerateSignedTag;
if (p.split_ != 0) {
// Use Knuth's algorithm with range splitting to avoid floating-point
@ -186,7 +186,8 @@ poisson_distribution<IntType>::operator()(
for (int split = p.split_; split > 0; --split) {
double r = 1.0;
do {
r *= RandU64ToDouble<PositiveValueT, true>(fast_u64_(g));
r *= GenerateRealFromBits<double, GeneratePositiveTag, true>(
fast_u64_(g)); // U(-1, 0)
++n;
} while (r > p.emu_);
--n;
@ -205,10 +206,11 @@ poisson_distribution<IntType>::operator()(
// and k = max(f).
const double a = p.mean_ + 0.5;
for (;;) {
const double u =
RandU64ToDouble<PositiveValueT, false>(fast_u64_(g)); // (0, 1)
const double v =
RandU64ToDouble<SignedValueT, false>(fast_u64_(g)); // (-1, 1)
const double u = GenerateRealFromBits<double, GeneratePositiveTag, false>(
fast_u64_(g)); // U(0, 1)
const double v = GenerateRealFromBits<double, GenerateSignedTag, false>(
fast_u64_(g)); // U(-1, 1)
const double x = std::floor(p.s_ * v / u + a);
if (x < 0) continue; // f(negative) = 0
const double rhs = x * p.lmu_;

View file

@ -34,7 +34,6 @@
#include <type_traits>
#include "absl/base/optimization.h"
#include "absl/random/internal/distribution_impl.h"
#include "absl/random/internal/fast_uniform_bits.h"
#include "absl/random/internal/iostream_state_saver.h"
#include "absl/random/internal/traits.h"

View file

@ -39,8 +39,9 @@
#include <limits>
#include <type_traits>
#include "absl/random/internal/distribution_impl.h"
#include "absl/meta/type_traits.h"
#include "absl/random/internal/fast_uniform_bits.h"
#include "absl/random/internal/generate_real.h"
#include "absl/random/internal/iostream_state_saver.h"
namespace absl {
@ -76,6 +77,7 @@ class uniform_real_distribution {
// is not possible, so value generation cannot use the full range of the
// real type.
assert(range_ <= (std::numeric_limits<result_type>::max)());
assert(std::isfinite(range_));
}
result_type a() const { return lo_; }
@ -151,10 +153,15 @@ template <typename URBG>
typename uniform_real_distribution<RealType>::result_type
uniform_real_distribution<RealType>::operator()(
URBG& gen, const param_type& p) { // NOLINT(runtime/references)
using random_internal::PositiveValueT;
using random_internal::GeneratePositiveTag;
using random_internal::GenerateRealFromBits;
using real_type =
absl::conditional_t<std::is_same<RealType, float>::value, float, double>;
while (true) {
const result_type sample = random_internal::RandU64ToReal<
result_type>::template Value<PositiveValueT, true>(fast_u64_(gen));
const result_type sample =
GenerateRealFromBits<real_type, GeneratePositiveTag, true>(
fast_u64_(gen));
const result_type res = p.a() + (sample * p.range_);
if (res < p.b() || p.range_ <= 0 || !std::isfinite(p.range_)) {
return res;