078b89b3c0
-- e54b9c7bbb0c58475676c268e2e19c69f4bce48a by Jorg Brown <jorg@google.com>: Tweak ABSL_PREDICT_TRUE slightly, for better code on some platforms and/or optimization levels. "false || (x)" is more verbose than "!!(x)", but ultimately more efficient. For example, given this code: void InitIfNecessary() { if (ABSL_PREDICT_TRUE(NeedsInit())) { SlowInitIfNecessary(); } } Clang with default optimization level will produce: Before this CL After this CL InitIfNecessary: InitIfNecessary: push rbp push rbp mov rbp, rsp mov rbp, rsp call NeedsInit call NeedsInit xor al, -1 xor al, -1 test al, 1 test al, 1 jne .LBB2_1 jne .LBB3_1 jmp .LBB2_2 jmp .LBB3_2 .LBB2_1: .LBB3_1: call SlowInitIfNecessary call SlowInitIfNecessary .LBB2_2: .LBB3_2: pop rbp pop rbp ret ret PiperOrigin-RevId: 276401386 -- 0a3c4dfd8342bf2b1b11a87f1c662c883f73cab7 by Abseil Team <absl-team@google.com>: Fix comment nit: sem_open => sem_init. The code calls sem_init, not sem_open, to initialize an unnamed semaphore. (sem_open creates or opens a named semaphore.) PiperOrigin-RevId: 276344072 -- b36a664e9459057509a90e83d3482e1d3a4c44c7 by Abseil Team <absl-team@google.com>: Fix typo in flat_hash_map.h: exchaged -> exchanged PiperOrigin-RevId: 276295792 -- 7bbd8d18276eb110c8335743e35fceb662ddf3d6 by Samuel Benzaquen <sbenza@google.com>: Add assertions to verify use of iterators. PiperOrigin-RevId: 276283300 -- 677398a8ffcb1f59182cffe57a4fe7ff147a0404 by Laramie Leavitt <lar@google.com>: Migrate distribution_impl.h/cc to generate_real.h/cc. Combine the methods RandU64To<Float,Double> into a single method: GenerateRealFromBits(). Remove rejection sampling from absl::uniform_real_distribution. PiperOrigin-RevId: 276158675 -- c60c9d11d24b0c546329d998e78e15a84b3153f5 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 276126962 -- 4c840cab6a8d86efa29b397cafaf7520eece68cc by Andy Soffer <asoffer@google.com>: Update CMakeLists.txt to address https://github.com/abseil/abseil-cpp/issues/365. This does not cover every platform, but it does at least address the first-order issue of assuming gcc implies x86. PiperOrigin-RevId: 276116253 -- 98da366e6b5d51afe5d7ac6722126aca23d85ee6 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 276097452 GitOrigin-RevId: e54b9c7bbb0c58475676c268e2e19c69f4bce48a Change-Id: I02d84454bb71ab21ad3d39650acf6cc6e36f58d7
250 lines
8.5 KiB
C++
250 lines
8.5 KiB
C++
// Copyright 2017 The Abseil Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#ifndef ABSL_RANDOM_LOG_UNIFORM_INT_DISTRIBUTION_H_
|
|
#define ABSL_RANDOM_LOG_UNIFORM_INT_DISTRIBUTION_H_
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <istream>
|
|
#include <limits>
|
|
#include <ostream>
|
|
#include <type_traits>
|
|
|
|
#include "absl/random/internal/fastmath.h"
|
|
#include "absl/random/internal/generate_real.h"
|
|
#include "absl/random/internal/iostream_state_saver.h"
|
|
#include "absl/random/internal/traits.h"
|
|
#include "absl/random/uniform_int_distribution.h"
|
|
|
|
namespace absl {
|
|
|
|
// log_uniform_int_distribution:
|
|
//
|
|
// Returns a random variate R in range [min, max] such that
|
|
// floor(log(R-min, base)) is uniformly distributed.
|
|
// We ensure uniformity by discretization using the
|
|
// boundary sets [0, 1, base, base * base, ... min(base*n, max)]
|
|
//
|
|
template <typename IntType = int>
|
|
class log_uniform_int_distribution {
|
|
private:
|
|
using unsigned_type =
|
|
typename random_internal::make_unsigned_bits<IntType>::type;
|
|
|
|
public:
|
|
using result_type = IntType;
|
|
|
|
class param_type {
|
|
public:
|
|
using distribution_type = log_uniform_int_distribution;
|
|
|
|
explicit param_type(
|
|
result_type min = 0,
|
|
result_type max = (std::numeric_limits<result_type>::max)(),
|
|
result_type base = 2)
|
|
: min_(min),
|
|
max_(max),
|
|
base_(base),
|
|
range_(static_cast<unsigned_type>(max_) -
|
|
static_cast<unsigned_type>(min_)),
|
|
log_range_(0) {
|
|
assert(max_ >= min_);
|
|
assert(base_ > 1);
|
|
|
|
if (base_ == 2) {
|
|
// Determine where the first set bit is on range(), giving a log2(range)
|
|
// value which can be used to construct bounds.
|
|
log_range_ = (std::min)(random_internal::LeadingSetBit(range()),
|
|
std::numeric_limits<unsigned_type>::digits);
|
|
} else {
|
|
// NOTE: Computing the logN(x) introduces error from 2 sources:
|
|
// 1. Conversion of int to double loses precision for values >=
|
|
// 2^53, which may cause some log() computations to operate on
|
|
// different values.
|
|
// 2. The error introduced by the division will cause the result
|
|
// to differ from the expected value.
|
|
//
|
|
// Thus a result which should equal K may equal K +/- epsilon,
|
|
// which can eliminate some values depending on where the bounds fall.
|
|
const double inv_log_base = 1.0 / std::log(base_);
|
|
const double log_range = std::log(static_cast<double>(range()) + 0.5);
|
|
log_range_ = static_cast<int>(std::ceil(inv_log_base * log_range));
|
|
}
|
|
}
|
|
|
|
result_type(min)() const { return min_; }
|
|
result_type(max)() const { return max_; }
|
|
result_type base() const { return base_; }
|
|
|
|
friend bool operator==(const param_type& a, const param_type& b) {
|
|
return a.min_ == b.min_ && a.max_ == b.max_ && a.base_ == b.base_;
|
|
}
|
|
|
|
friend bool operator!=(const param_type& a, const param_type& b) {
|
|
return !(a == b);
|
|
}
|
|
|
|
private:
|
|
friend class log_uniform_int_distribution;
|
|
|
|
int log_range() const { return log_range_; }
|
|
unsigned_type range() const { return range_; }
|
|
|
|
result_type min_;
|
|
result_type max_;
|
|
result_type base_;
|
|
unsigned_type range_; // max - min
|
|
int log_range_; // ceil(logN(range_))
|
|
|
|
static_assert(std::is_integral<IntType>::value,
|
|
"Class-template absl::log_uniform_int_distribution<> must be "
|
|
"parameterized using an integral type.");
|
|
};
|
|
|
|
log_uniform_int_distribution() : log_uniform_int_distribution(0) {}
|
|
|
|
explicit log_uniform_int_distribution(
|
|
result_type min,
|
|
result_type max = (std::numeric_limits<result_type>::max)(),
|
|
result_type base = 2)
|
|
: param_(min, max, base) {}
|
|
|
|
explicit log_uniform_int_distribution(const param_type& p) : param_(p) {}
|
|
|
|
void reset() {}
|
|
|
|
// generating functions
|
|
template <typename URBG>
|
|
result_type operator()(URBG& g) { // NOLINT(runtime/references)
|
|
return (*this)(g, param_);
|
|
}
|
|
|
|
template <typename URBG>
|
|
result_type operator()(URBG& g, // NOLINT(runtime/references)
|
|
const param_type& p) {
|
|
return (p.min)() + Generate(g, p);
|
|
}
|
|
|
|
result_type(min)() const { return (param_.min)(); }
|
|
result_type(max)() const { return (param_.max)(); }
|
|
result_type base() const { return param_.base(); }
|
|
|
|
param_type param() const { return param_; }
|
|
void param(const param_type& p) { param_ = p; }
|
|
|
|
friend bool operator==(const log_uniform_int_distribution& a,
|
|
const log_uniform_int_distribution& b) {
|
|
return a.param_ == b.param_;
|
|
}
|
|
friend bool operator!=(const log_uniform_int_distribution& a,
|
|
const log_uniform_int_distribution& b) {
|
|
return a.param_ != b.param_;
|
|
}
|
|
|
|
private:
|
|
// Returns a log-uniform variate in the range [0, p.range()]. The caller
|
|
// should add min() to shift the result to the correct range.
|
|
template <typename URNG>
|
|
unsigned_type Generate(URNG& g, // NOLINT(runtime/references)
|
|
const param_type& p);
|
|
|
|
param_type param_;
|
|
};
|
|
|
|
template <typename IntType>
|
|
template <typename URBG>
|
|
typename log_uniform_int_distribution<IntType>::unsigned_type
|
|
log_uniform_int_distribution<IntType>::Generate(
|
|
URBG& g, // NOLINT(runtime/references)
|
|
const param_type& p) {
|
|
// sample e over [0, log_range]. Map the results of e to this:
|
|
// 0 => 0
|
|
// 1 => [1, b-1]
|
|
// 2 => [b, (b^2)-1]
|
|
// n => [b^(n-1)..(b^n)-1]
|
|
const int e = absl::uniform_int_distribution<int>(0, p.log_range())(g);
|
|
if (e == 0) {
|
|
return 0;
|
|
}
|
|
const int d = e - 1;
|
|
|
|
unsigned_type base_e, top_e;
|
|
if (p.base() == 2) {
|
|
base_e = static_cast<unsigned_type>(1) << d;
|
|
|
|
top_e = (e >= std::numeric_limits<unsigned_type>::digits)
|
|
? (std::numeric_limits<unsigned_type>::max)()
|
|
: (static_cast<unsigned_type>(1) << e) - 1;
|
|
} else {
|
|
const double r = std::pow(p.base(), d);
|
|
const double s = (r * p.base()) - 1.0;
|
|
|
|
base_e = (r > (std::numeric_limits<unsigned_type>::max)())
|
|
? (std::numeric_limits<unsigned_type>::max)()
|
|
: static_cast<unsigned_type>(r);
|
|
|
|
top_e = (s > (std::numeric_limits<unsigned_type>::max)())
|
|
? (std::numeric_limits<unsigned_type>::max)()
|
|
: static_cast<unsigned_type>(s);
|
|
}
|
|
|
|
const unsigned_type lo = (base_e >= p.range()) ? p.range() : base_e;
|
|
const unsigned_type hi = (top_e >= p.range()) ? p.range() : top_e;
|
|
|
|
// choose uniformly over [lo, hi]
|
|
return absl::uniform_int_distribution<result_type>(lo, hi)(g);
|
|
}
|
|
|
|
template <typename CharT, typename Traits, typename IntType>
|
|
std::basic_ostream<CharT, Traits>& operator<<(
|
|
std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references)
|
|
const log_uniform_int_distribution<IntType>& x) {
|
|
using stream_type =
|
|
typename random_internal::stream_format_type<IntType>::type;
|
|
auto saver = random_internal::make_ostream_state_saver(os);
|
|
os << static_cast<stream_type>((x.min)()) << os.fill()
|
|
<< static_cast<stream_type>((x.max)()) << os.fill()
|
|
<< static_cast<stream_type>(x.base());
|
|
return os;
|
|
}
|
|
|
|
template <typename CharT, typename Traits, typename IntType>
|
|
std::basic_istream<CharT, Traits>& operator>>(
|
|
std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references)
|
|
log_uniform_int_distribution<IntType>& x) { // NOLINT(runtime/references)
|
|
using param_type = typename log_uniform_int_distribution<IntType>::param_type;
|
|
using result_type =
|
|
typename log_uniform_int_distribution<IntType>::result_type;
|
|
using stream_type =
|
|
typename random_internal::stream_format_type<IntType>::type;
|
|
|
|
stream_type min;
|
|
stream_type max;
|
|
stream_type base;
|
|
|
|
auto saver = random_internal::make_istream_state_saver(is);
|
|
is >> min >> max >> base;
|
|
if (!is.fail()) {
|
|
x.param(param_type(static_cast<result_type>(min),
|
|
static_cast<result_type>(max),
|
|
static_cast<result_type>(base)));
|
|
}
|
|
return is;
|
|
}
|
|
|
|
} // namespace absl
|
|
|
|
#endif // ABSL_RANDOM_LOG_UNIFORM_INT_DISTRIBUTION_H_
|