hostapd/src/common/sae.c

997 lines
25 KiB
C
Raw Normal View History

/*
* Simultaneous authentication of equals
* Copyright (c) 2012-2013, Jouni Malinen <j@w1.fi>
*
* This software may be distributed under the terms of the BSD license.
* See README for more details.
*/
#include "includes.h"
#include "common.h"
#include "crypto/crypto.h"
#include "crypto/sha256.h"
#include "crypto/random.h"
#include "crypto/dh_groups.h"
#include "ieee802_11_defs.h"
#include "sae.h"
int sae_set_group(struct sae_data *sae, int group)
{
sae_clear_data(sae);
/* First, check if this is an ECC group */
sae->ec = crypto_ec_init(group);
if (sae->ec) {
sae->group = group;
sae->prime_len = crypto_ec_prime_len(sae->ec);
sae->prime = crypto_ec_get_prime(sae->ec);
sae->order = crypto_ec_get_order(sae->ec);
return 0;
}
/* Not an ECC group, check FFC */
sae->dh = dh_groups_get(group);
if (sae->dh) {
sae->group = group;
sae->prime_len = sae->dh->prime_len;
if (sae->prime_len > SAE_MAX_PRIME_LEN) {
sae_clear_data(sae);
return -1;
}
sae->prime_buf = crypto_bignum_init_set(sae->dh->prime,
sae->prime_len);
if (sae->prime_buf == NULL) {
sae_clear_data(sae);
return -1;
}
sae->prime = sae->prime_buf;
sae->order_buf = crypto_bignum_init_set(sae->dh->order,
sae->dh->order_len);
if (sae->order_buf == NULL) {
sae_clear_data(sae);
return -1;
}
sae->order = sae->order_buf;
return 0;
}
/* Unsupported group */
return -1;
}
void sae_clear_data(struct sae_data *sae)
{
if (sae == NULL)
return;
crypto_ec_deinit(sae->ec);
crypto_bignum_deinit(sae->prime_buf, 0);
crypto_bignum_deinit(sae->order_buf, 0);
crypto_bignum_deinit(sae->sae_rand, 1);
crypto_bignum_deinit(sae->pwe_ffc, 1);
crypto_bignum_deinit(sae->own_commit_scalar, 0);
crypto_bignum_deinit(sae->peer_commit_scalar, 0);
crypto_ec_point_deinit(sae->pwe_ecc, 1);
os_memset(sae, 0, sizeof(*sae));
}
static int val_one(const u8 *val, size_t len)
{
size_t i;
for (i = 0; i < len - 1; i++) {
if (val[i])
return 0;
}
return val[len - 1] == 1;
}
static int val_zero_or_one(const u8 *val, size_t len)
{
size_t i;
for (i = 0; i < len - 1; i++) {
if (val[i])
return 0;
}
return val[len - 1] <= 1;
}
static void buf_shift_right(u8 *buf, size_t len, size_t bits)
{
size_t i;
for (i = len - 1; i > 0; i--)
buf[i] = (buf[i - 1] << (8 - bits)) | (buf[i] >> bits);
buf[0] >>= bits;
}
static struct crypto_bignum * sae_get_rand(struct sae_data *sae)
{
u8 val[SAE_MAX_PRIME_LEN];
int iter = 0;
struct crypto_bignum *bn = NULL;
int order_len_bits = crypto_bignum_bits(sae->order);
size_t order_len = (order_len_bits + 7) / 8;
if (order_len > sizeof(val))
return NULL;
for (;;) {
if (iter++ > 100)
return NULL;
if (random_get_bytes(val, order_len) < 0)
return NULL;
if (order_len_bits % 8)
buf_shift_right(val, order_len, 8 - order_len_bits % 8);
if (val_zero_or_one(val, order_len))
continue;
bn = crypto_bignum_init_set(val, order_len);
if (bn == NULL)
return NULL;
if (crypto_bignum_cmp(bn, sae->order) >= 0)
continue;
break;
}
os_memset(val, 0, order_len);
return bn;
}
static struct crypto_bignum * sae_get_rand_and_mask(struct sae_data *sae)
{
crypto_bignum_deinit(sae->sae_rand, 1);
sae->sae_rand = sae_get_rand(sae);
if (sae->sae_rand == NULL)
return NULL;
return sae_get_rand(sae);
}
static void sae_pwd_seed_key(const u8 *addr1, const u8 *addr2, u8 *key)
{
wpa_printf(MSG_DEBUG, "SAE: PWE derivation - addr1=" MACSTR
" addr2=" MACSTR, MAC2STR(addr1), MAC2STR(addr2));
if (os_memcmp(addr1, addr2, ETH_ALEN) > 0) {
os_memcpy(key, addr1, ETH_ALEN);
os_memcpy(key + ETH_ALEN, addr2, ETH_ALEN);
} else {
os_memcpy(key, addr2, ETH_ALEN);
os_memcpy(key + ETH_ALEN, addr1, ETH_ALEN);
}
}
static int sae_test_pwd_seed(struct sae_data *sae, const u8 *pwd_seed,
struct crypto_ec_point *pwe)
{
u8 pwd_value[SAE_MAX_PRIME_LEN], prime[SAE_MAX_PRIME_LEN];
struct crypto_bignum *x;
int y_bit;
size_t bits;
if (crypto_bignum_to_bin(sae->prime, prime, sizeof(prime),
sae->prime_len) < 0)
return -1;
wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-seed", pwd_seed, SHA256_MAC_LEN);
/* pwd-value = KDF-z(pwd-seed, "SAE Hunting and Pecking", p) */
bits = crypto_ec_prime_len_bits(sae->ec);
sha256_prf_bits(pwd_seed, SHA256_MAC_LEN, "SAE Hunting and Pecking",
prime, sae->prime_len, pwd_value, bits);
if (bits % 8)
buf_shift_right(pwd_value, sizeof(pwd_value), 8 - bits % 8);
wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-value",
pwd_value, sae->prime_len);
if (os_memcmp(pwd_value, prime, sae->prime_len) >= 0)
return 0;
y_bit = pwd_seed[SHA256_MAC_LEN - 1] & 0x01;
x = crypto_bignum_init_set(pwd_value, sae->prime_len);
if (x == NULL)
return -1;
if (crypto_ec_point_solve_y_coord(sae->ec, pwe, x, y_bit) < 0) {
crypto_bignum_deinit(x, 0);
wpa_printf(MSG_DEBUG, "SAE: No solution found");
return 0;
}
crypto_bignum_deinit(x, 0);
wpa_printf(MSG_DEBUG, "SAE: PWE found");
return 1;
}
static int sae_derive_pwe(struct sae_data *sae, const u8 *addr1,
const u8 *addr2, const u8 *password,
size_t password_len)
{
u8 counter, k = 4;
u8 addrs[2 * ETH_ALEN];
const u8 *addr[2];
size_t len[2];
int found = 0;
struct crypto_ec_point *pwe_tmp;
if (sae->pwe_ecc == NULL) {
sae->pwe_ecc = crypto_ec_point_init(sae->ec);
if (sae->pwe_ecc == NULL)
return -1;
}
pwe_tmp = crypto_ec_point_init(sae->ec);
if (pwe_tmp == NULL)
return -1;
wpa_hexdump_ascii_key(MSG_DEBUG, "SAE: password",
password, password_len);
/*
* H(salt, ikm) = HMAC-SHA256(salt, ikm)
* pwd-seed = H(MAX(STA-A-MAC, STA-B-MAC) || MIN(STA-A-MAC, STA-B-MAC),
* password || counter)
*/
sae_pwd_seed_key(addr1, addr2, addrs);
addr[0] = password;
len[0] = password_len;
addr[1] = &counter;
len[1] = sizeof(counter);
/*
* Continue for at least k iterations to protect against side-channel
* attacks that attempt to determine the number of iterations required
* in the loop.
*/
for (counter = 1; counter < k || !found; counter++) {
u8 pwd_seed[SHA256_MAC_LEN];
int res;
if (counter > 200) {
/* This should not happen in practice */
wpa_printf(MSG_DEBUG, "SAE: Failed to derive PWE");
break;
}
wpa_printf(MSG_DEBUG, "SAE: counter = %u", counter);
if (hmac_sha256_vector(addrs, sizeof(addrs), 2, addr, len,
pwd_seed) < 0)
break;
res = sae_test_pwd_seed(sae, pwd_seed,
found ? pwe_tmp : sae->pwe_ecc);
if (res < 0)
break;
if (res == 0)
continue;
if (found) {
wpa_printf(MSG_DEBUG, "SAE: Ignore this PWE (one was "
"already selected)");
} else {
wpa_printf(MSG_DEBUG, "SAE: Use this PWE");
found = 1;
}
}
crypto_ec_point_deinit(pwe_tmp, 1);
return found ? 0 : -1;
}
static int sae_derive_commit(struct sae_data *sae)
{
struct crypto_bignum *mask;
struct crypto_ec_point *elem;
int ret = -1;
mask = sae_get_rand_and_mask(sae);
if (mask == NULL) {
wpa_printf(MSG_DEBUG, "SAE: Could not get rand/mask");
return -1;
}
elem = crypto_ec_point_init(sae->ec);
if (elem == NULL)
goto fail;
if (!sae->own_commit_scalar) {
sae->own_commit_scalar = crypto_bignum_init();
if (!sae->own_commit_scalar)
goto fail;
}
/* commit-scalar = (rand + mask) modulo r */
crypto_bignum_add(sae->sae_rand, mask, sae->own_commit_scalar);
crypto_bignum_mod(sae->own_commit_scalar, sae->order,
sae->own_commit_scalar);
/* COMMIT-ELEMENT = inverse(scalar-op(mask, PWE)) */
if (crypto_ec_point_mul(sae->ec, sae->pwe_ecc, mask, elem) < 0 ||
crypto_ec_point_invert(sae->ec, elem) < 0 ||
crypto_ec_point_to_bin(sae->ec, elem, sae->own_commit_element,
sae->own_commit_element + sae->prime_len) <
0) {
wpa_printf(MSG_DEBUG, "SAE: Could not compute commit-element");
goto fail;
}
wpa_hexdump(MSG_DEBUG, "SAE: commit-element x",
sae->own_commit_element, sae->prime_len);
wpa_hexdump(MSG_DEBUG, "SAE: commit-element y",
sae->own_commit_element + sae->prime_len, sae->prime_len);
ret = 0;
fail:
crypto_ec_point_deinit(elem, 0);
crypto_bignum_deinit(mask, 1);
return ret;
}
static int sae_prepare_commit_ec(const u8 *addr1, const u8 *addr2,
const u8 *password, size_t password_len,
struct sae_data *sae)
{
if (sae_derive_pwe(sae, addr1, addr2, password, password_len) < 0 ||
sae_derive_commit(sae) < 0)
return -1;
return 0;
}
static int sae_test_pwd_seed_dh(struct sae_data *sae, const u8 *pwd_seed,
struct crypto_bignum *pwe)
{
u8 pwd_value[SAE_MAX_PRIME_LEN], pwe_bin[SAE_MAX_PRIME_LEN];
size_t bits = sae->prime_len * 8;
u8 exp[1];
struct crypto_bignum *a, *b;
int res;
wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-seed", pwd_seed, SHA256_MAC_LEN);
/* pwd-value = KDF-z(pwd-seed, "SAE Hunting and Pecking", p) */
sha256_prf_bits(pwd_seed, SHA256_MAC_LEN, "SAE Hunting and Pecking",
sae->dh->prime, sae->prime_len, pwd_value, bits);
if (bits % 8)
buf_shift_right(pwd_value, sizeof(pwd_value), 8 - bits % 8);
wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-value", pwd_value, sae->prime_len);
if (os_memcmp(pwd_value, sae->dh->prime, sae->prime_len) >= 0) {
wpa_printf(MSG_DEBUG, "SAE: pwd-value >= p");
return 0;
}
/* PWE = pwd-value^((p-1)/r) modulo p */
a = crypto_bignum_init_set(pwd_value, sae->prime_len);
if (sae->dh->safe_prime) {
/*
* r = (p-1)/2 for the group used here, so this becomes:
* PWE = pwd-value^2 modulo p
*/
exp[0] = 2;
b = crypto_bignum_init_set(exp, sizeof(exp));
if (a == NULL || b == NULL)
res = -1;
else
res = crypto_bignum_exptmod(a, b, sae->prime, pwe);
} else {
struct crypto_bignum *tmp;
exp[0] = 1;
b = crypto_bignum_init_set(exp, sizeof(exp));
tmp = crypto_bignum_init();
if (a == NULL || b == NULL || tmp == NULL ||
crypto_bignum_sub(sae->prime, b, tmp) < 0 ||
crypto_bignum_div(tmp, sae->order, b) < 0)
res = -1;
else
res = crypto_bignum_exptmod(a, b, sae->prime, pwe);
crypto_bignum_deinit(tmp, 0);
}
crypto_bignum_deinit(a, 0);
crypto_bignum_deinit(b, 0);
if (res < 0) {
wpa_printf(MSG_DEBUG, "SAE: Failed to calculate PWE");
return -1;
}
res = crypto_bignum_to_bin(pwe, pwe_bin, sizeof(pwe_bin),
sae->prime_len);
if (res < 0) {
wpa_printf(MSG_DEBUG, "SAE: Not room for PWE");
return -1;
}
wpa_hexdump_key(MSG_DEBUG, "SAE: PWE candidate", pwe_bin, res);
/* if (PWE > 1) --> found */
if (val_zero_or_one(pwe_bin, sae->prime_len)) {
wpa_printf(MSG_DEBUG, "SAE: PWE <= 1");
return 0;
}
wpa_printf(MSG_DEBUG, "SAE: PWE found");
return 1;
}
static int sae_derive_pwe_dh(struct sae_data *sae, const u8 *addr1,
const u8 *addr2, const u8 *password,
size_t password_len)
{
u8 counter;
u8 addrs[2 * ETH_ALEN];
const u8 *addr[2];
size_t len[2];
int found = 0;
if (sae->pwe_ffc == NULL) {
sae->pwe_ffc = crypto_bignum_init();
if (sae->pwe_ffc == NULL)
return -1;
}
wpa_hexdump_ascii_key(MSG_DEBUG, "SAE: password",
password, password_len);
/*
* H(salt, ikm) = HMAC-SHA256(salt, ikm)
* pwd-seed = H(MAX(STA-A-MAC, STA-B-MAC) || MIN(STA-A-MAC, STA-B-MAC),
* password || counter)
*/
sae_pwd_seed_key(addr1, addr2, addrs);
addr[0] = password;
len[0] = password_len;
addr[1] = &counter;
len[1] = sizeof(counter);
for (counter = 1; !found; counter++) {
u8 pwd_seed[SHA256_MAC_LEN];
int res;
if (counter > 200) {
/* This should not happen in practice */
wpa_printf(MSG_DEBUG, "SAE: Failed to derive PWE");
break;
}
wpa_printf(MSG_DEBUG, "SAE: counter = %u", counter);
if (hmac_sha256_vector(addrs, sizeof(addrs), 2, addr, len,
pwd_seed) < 0)
break;
res = sae_test_pwd_seed_dh(sae, pwd_seed, sae->pwe_ffc);
if (res < 0)
break;
if (res > 0) {
wpa_printf(MSG_DEBUG, "SAE: Use this PWE");
found = 1;
}
}
return found ? 0 : -1;
}
static int sae_derive_commit_dh(struct sae_data *sae)
{
struct crypto_bignum *mask, *elem;
int ret = -1;
mask = sae_get_rand_and_mask(sae);
if (mask == NULL) {
wpa_printf(MSG_DEBUG, "SAE: Could not get rand/mask");
return -1;
}
elem = crypto_bignum_init();
if (elem == NULL)
goto fail;
if (!sae->own_commit_scalar) {
sae->own_commit_scalar = crypto_bignum_init();
if (!sae->own_commit_scalar)
goto fail;
}
/* commit-scalar = (rand + mask) modulo r */
crypto_bignum_add(sae->sae_rand, mask, sae->own_commit_scalar);
crypto_bignum_mod(sae->own_commit_scalar, sae->order,
sae->own_commit_scalar);
/* COMMIT-ELEMENT = inverse(scalar-op(mask, PWE)) */
if (crypto_bignum_exptmod(sae->pwe_ffc, mask, sae->prime, elem) < 0 ||
crypto_bignum_inverse(elem, sae->prime, elem) < 0 ||
crypto_bignum_to_bin(elem, sae->own_commit_element,
sizeof(sae->own_commit_element),
sae->prime_len) < 0) {
wpa_printf(MSG_DEBUG, "SAE: Could not compute commit-element");
goto fail;
}
wpa_hexdump(MSG_DEBUG, "SAE: commit-element",
sae->own_commit_element, sae->prime_len);
ret = 0;
fail:
crypto_bignum_deinit(elem, 0);
crypto_bignum_deinit(mask, 1);
return ret;
}
static int sae_prepare_commit_dh(const u8 *addr1, const u8 *addr2,
const u8 *password, size_t password_len,
struct sae_data *sae)
{
if (sae_derive_pwe_dh(sae, addr1, addr2, password, password_len) < 0 ||
sae_derive_commit_dh(sae) < 0)
return -1;
return 0;
}
int sae_prepare_commit(const u8 *addr1, const u8 *addr2,
const u8 *password, size_t password_len,
struct sae_data *sae)
{
if (sae->ec) {
return sae_prepare_commit_ec(addr1, addr2, password,
password_len, sae);
}
if (sae->dh) {
return sae_prepare_commit_dh(addr1, addr2, password,
password_len, sae);
}
return -1;
}
static int sae_check_peer_commit(struct sae_data *sae)
{
u8 prime[SAE_MAX_PRIME_LEN];
if (crypto_bignum_to_bin(sae->prime, prime, sizeof(prime),
sae->prime_len) < 0)
return -1;
/* 0 < scalar < r */
if (crypto_bignum_is_zero(sae->peer_commit_scalar) ||
crypto_bignum_cmp(sae->peer_commit_scalar, sae->order) >= 0) {
wpa_printf(MSG_DEBUG, "SAE: Invalid peer scalar");
return -1;
}
if (sae->dh) {
if (os_memcmp(sae->peer_commit_element, prime, sae->prime_len)
>= 0 ||
val_zero_or_one(sae->peer_commit_element, sae->prime_len)) {
wpa_printf(MSG_DEBUG, "SAE: Invalid peer element");
return -1;
}
return 0;
}
/* element x and y coordinates < p */
if (os_memcmp(sae->peer_commit_element, prime, sae->prime_len) >= 0 ||
os_memcmp(sae->peer_commit_element + sae->prime_len, prime,
sae->prime_len) >= 0) {
wpa_printf(MSG_DEBUG, "SAE: Invalid coordinates in peer "
"element");
return -1;
}
return 0;
}
static int sae_derive_k_ec(struct sae_data *sae, u8 *k)
{
struct crypto_ec_point *peer_elem, *K;
int ret = -1;
peer_elem = crypto_ec_point_from_bin(sae->ec, sae->peer_commit_element);
K = crypto_ec_point_init(sae->ec);
if (peer_elem == NULL || K == NULL)
goto fail;
if (!crypto_ec_point_is_on_curve(sae->ec, peer_elem)) {
wpa_printf(MSG_DEBUG, "SAE: Peer element is not on curve");
goto fail;
}
/*
* K = scalar-op(rand, (elem-op(scalar-op(peer-commit-scalar, PWE),
* PEER-COMMIT-ELEMENT)))
* If K is identity element (point-at-infinity), reject
* k = F(K) (= x coordinate)
*/
if (crypto_ec_point_mul(sae->ec, sae->pwe_ecc, sae->peer_commit_scalar,
K) < 0 ||
crypto_ec_point_add(sae->ec, K, peer_elem, K) < 0 ||
crypto_ec_point_mul(sae->ec, K, sae->sae_rand, K) < 0 ||
crypto_ec_point_is_at_infinity(sae->ec, K) ||
crypto_ec_point_to_bin(sae->ec, K, k, NULL) < 0) {
wpa_printf(MSG_DEBUG, "SAE: Failed to calculate K and k");
goto fail;
}
wpa_hexdump_key(MSG_DEBUG, "SAE: k", k, sae->prime_len);
ret = 0;
fail:
crypto_ec_point_deinit(peer_elem, 0);
crypto_ec_point_deinit(K, 1);
return ret;
}
static int sae_derive_k_dh(struct sae_data *sae, u8 *k)
{
struct crypto_bignum *peer_elem, *K;
int ret = -1;
peer_elem = crypto_bignum_init_set(sae->peer_commit_element,
sae->prime_len);
K = crypto_bignum_init();
if (peer_elem == NULL || K == NULL)
goto fail;
/*
* K = scalar-op(rand, (elem-op(scalar-op(peer-commit-scalar, PWE),
* PEER-COMMIT-ELEMENT)))
* If K is identity element (one), reject.
* k = F(K) (= x coordinate)
*/
if (crypto_bignum_exptmod(sae->pwe_ffc, sae->peer_commit_scalar,
sae->prime, K) < 0 ||
crypto_bignum_mulmod(K, peer_elem, sae->prime, K) < 0 ||
crypto_bignum_exptmod(K, sae->sae_rand, sae->prime, K) < 0 ||
crypto_bignum_to_bin(K, k, SAE_MAX_PRIME_LEN, sae->prime_len) < 0 ||
val_one(k, sae->prime_len)) {
wpa_printf(MSG_DEBUG, "SAE: Failed to calculate K and k");
goto fail;
}
wpa_hexdump_key(MSG_DEBUG, "SAE: k", k, sae->prime_len);
ret = 0;
fail:
crypto_bignum_deinit(peer_elem, 0);
crypto_bignum_deinit(K, 1);
return ret;
}
static int sae_derive_k(struct sae_data *sae, u8 *k)
{
if (sae->ec)
return sae_derive_k_ec(sae, k);
return sae_derive_k_dh(sae, k);
}
static int sae_derive_keys(struct sae_data *sae, const u8 *k)
{
u8 null_key[SAE_KEYSEED_KEY_LEN], val[SAE_MAX_PRIME_LEN];
u8 keyseed[SHA256_MAC_LEN];
u8 keys[SAE_KCK_LEN + SAE_PMK_LEN];
struct crypto_bignum *tmp;
int ret = -1;
tmp = crypto_bignum_init();
if (tmp == NULL)
goto fail;
/* keyseed = H(<0>32, k)
* KCK || PMK = KDF-512(keyseed, "SAE KCK and PMK",
* (commit-scalar + peer-commit-scalar) modulo r)
* PMKID = L((commit-scalar + peer-commit-scalar) modulo r, 0, 128)
*/
os_memset(null_key, 0, sizeof(null_key));
hmac_sha256(null_key, sizeof(null_key), k, sae->prime_len, keyseed);
wpa_hexdump_key(MSG_DEBUG, "SAE: keyseed", keyseed, sizeof(keyseed));
crypto_bignum_add(sae->own_commit_scalar, sae->peer_commit_scalar, tmp);
crypto_bignum_mod(tmp, sae->order, tmp);
crypto_bignum_to_bin(tmp, val, sizeof(val), sae->prime_len);
wpa_hexdump(MSG_DEBUG, "SAE: PMKID", val, SAE_PMKID_LEN);
sha256_prf(keyseed, sizeof(keyseed), "SAE KCK and PMK",
val, sae->prime_len, keys, sizeof(keys));
os_memcpy(sae->kck, keys, SAE_KCK_LEN);
os_memcpy(sae->pmk, keys + SAE_KCK_LEN, SAE_PMK_LEN);
wpa_hexdump_key(MSG_DEBUG, "SAE: KCK", sae->kck, SAE_KCK_LEN);
wpa_hexdump_key(MSG_DEBUG, "SAE: PMK", sae->pmk, SAE_PMK_LEN);
ret = 0;
fail:
crypto_bignum_deinit(tmp, 0);
return ret;
}
int sae_process_commit(struct sae_data *sae)
{
u8 k[SAE_MAX_PRIME_LEN];
if (sae_check_peer_commit(sae) < 0 ||
sae_derive_k(sae, k) < 0 ||
sae_derive_keys(sae, k) < 0)
return -1;
return 0;
}
void sae_write_commit(struct sae_data *sae, struct wpabuf *buf,
const struct wpabuf *token)
{
wpabuf_put_le16(buf, sae->group); /* Finite Cyclic Group */
if (token)
wpabuf_put_buf(buf, token);
crypto_bignum_to_bin(sae->own_commit_scalar,
wpabuf_put(buf, sae->prime_len), sae->prime_len,
sae->prime_len);
wpabuf_put_data(buf, sae->own_commit_element,
(sae->ec ? 2 : 1) * sae->prime_len);
}
static u16 sae_group_allowed(struct sae_data *sae, int *allowed_groups,
u16 group)
{
if (allowed_groups) {
int i;
for (i = 0; allowed_groups[i] >= 0; i++) {
if (allowed_groups[i] == group)
break;
}
if (allowed_groups[i] != group) {
wpa_printf(MSG_DEBUG, "SAE: Proposed group %u not "
"enabled in the current configuration",
group);
return WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED;
}
}
if (sae->state == SAE_COMMITTED && group != sae->group) {
wpa_printf(MSG_DEBUG, "SAE: Do not allow group to be changed");
return WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED;
}
if (group != sae->group && sae_set_group(sae, group) < 0) {
wpa_printf(MSG_DEBUG, "SAE: Unsupported Finite Cyclic Group %u",
group);
return WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED;
}
if (sae->dh && !allowed_groups) {
wpa_printf(MSG_DEBUG, "SAE: Do not allow FFC group %u without "
"explicit configuration enabling it", group);
return WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED;
}
return WLAN_STATUS_SUCCESS;
}
static void sae_parse_commit_token(struct sae_data *sae, const u8 **pos,
const u8 *end, const u8 **token,
size_t *token_len)
{
if (*pos + (sae->ec ? 3 : 2) * sae->prime_len < end) {
size_t tlen = end - (*pos + (sae->ec ? 3 : 2) * sae->prime_len);
wpa_hexdump(MSG_DEBUG, "SAE: Anti-Clogging Token", *pos, tlen);
if (token)
*token = *pos;
if (token_len)
*token_len = tlen;
*pos += tlen;
} else {
if (token)
*token = NULL;
if (token_len)
*token_len = 0;
}
}
static u16 sae_parse_commit_scalar(struct sae_data *sae, const u8 **pos,
const u8 *end)
{
struct crypto_bignum *peer_scalar;
if (*pos + sae->prime_len > end) {
wpa_printf(MSG_DEBUG, "SAE: Not enough data for scalar");
return WLAN_STATUS_UNSPECIFIED_FAILURE;
}
peer_scalar = crypto_bignum_init_set(*pos, sae->prime_len);
if (peer_scalar == NULL)
return WLAN_STATUS_UNSPECIFIED_FAILURE;
/*
* IEEE Std 802.11-2012, 11.3.8.6.1: If there is a protocol instance for
* the peer and it is in Authenticated state, the new Commit Message
* shall be dropped if the peer-scalar is identical to the one used in
* the existing protocol instance.
*/
if (sae->state == SAE_ACCEPTED && sae->peer_commit_scalar &&
crypto_bignum_cmp(sae->peer_commit_scalar, peer_scalar) == 0) {
wpa_printf(MSG_DEBUG, "SAE: Do not accept re-use of previous "
"peer-commit-scalar");
crypto_bignum_deinit(peer_scalar, 0);
return WLAN_STATUS_UNSPECIFIED_FAILURE;
}
crypto_bignum_deinit(sae->peer_commit_scalar, 0);
sae->peer_commit_scalar = peer_scalar;
wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-scalar", *pos, sae->prime_len);
*pos += sae->prime_len;
return WLAN_STATUS_SUCCESS;
}
static u16 sae_parse_commit_element(struct sae_data *sae, const u8 *pos,
const u8 *end)
{
if (sae->dh) {
if (pos + sae->prime_len > end) {
wpa_printf(MSG_DEBUG, "SAE: Not enough data for "
"commit-element");
return WLAN_STATUS_UNSPECIFIED_FAILURE;
}
os_memcpy(sae->peer_commit_element, pos, sae->prime_len);
wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-element",
sae->peer_commit_element, sae->prime_len);
return WLAN_STATUS_SUCCESS;
}
if (pos + 2 * sae->prime_len > end) {
wpa_printf(MSG_DEBUG, "SAE: Not enough data for "
"commit-element");
return WLAN_STATUS_UNSPECIFIED_FAILURE;
}
os_memcpy(sae->peer_commit_element, pos, 2 * sae->prime_len);
wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-element(x)",
sae->peer_commit_element, sae->prime_len);
wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-element(y)",
sae->peer_commit_element + sae->prime_len, sae->prime_len);
return WLAN_STATUS_SUCCESS;
}
u16 sae_parse_commit(struct sae_data *sae, const u8 *data, size_t len,
const u8 **token, size_t *token_len, int *allowed_groups)
{
const u8 *pos = data, *end = data + len;
u16 res;
wpa_hexdump(MSG_DEBUG, "SAE: Commit fields", data, len);
/* Check Finite Cyclic Group */
if (pos + 2 > end)
return WLAN_STATUS_UNSPECIFIED_FAILURE;
res = sae_group_allowed(sae, allowed_groups, WPA_GET_LE16(pos));
if (res != WLAN_STATUS_SUCCESS)
return res;
pos += 2;
/* Optional Anti-Clogging Token */
sae_parse_commit_token(sae, &pos, end, token, token_len);
/* commit-scalar */
res = sae_parse_commit_scalar(sae, &pos, end);
if (res != WLAN_STATUS_SUCCESS)
return res;
/* commit-element */
return sae_parse_commit_element(sae, pos, end);
}
static void sae_cn_confirm(struct sae_data *sae, const u8 *sc,
const struct crypto_bignum *scalar1,
const u8 *element1,
const struct crypto_bignum *scalar2,
const u8 *element2, u8 *confirm)
{
const u8 *addr[5];
size_t len[5];
u8 scalar_b1[SAE_MAX_PRIME_LEN], scalar_b2[SAE_MAX_PRIME_LEN];
/* Confirm
* CN(key, X, Y, Z, ...) =
* HMAC-SHA256(key, D2OS(X) || D2OS(Y) || D2OS(Z) | ...)
* confirm = CN(KCK, send-confirm, commit-scalar, COMMIT-ELEMENT,
* peer-commit-scalar, PEER-COMMIT-ELEMENT)
* verifier = CN(KCK, peer-send-confirm, peer-commit-scalar,
* PEER-COMMIT-ELEMENT, commit-scalar, COMMIT-ELEMENT)
*/
addr[0] = sc;
len[0] = 2;
crypto_bignum_to_bin(scalar1, scalar_b1, sizeof(scalar_b1),
sae->prime_len);
addr[1] = scalar_b1;
len[1] = sae->prime_len;
addr[2] = element1;
len[2] = (sae->ec ? 2 : 1) * sae->prime_len;
crypto_bignum_to_bin(scalar2, scalar_b2, sizeof(scalar_b2),
sae->prime_len);
addr[3] = scalar_b2;
len[3] = sae->prime_len;
addr[4] = element2;
len[4] = (sae->ec ? 2 : 1) * sae->prime_len;
hmac_sha256_vector(sae->kck, sizeof(sae->kck), 5, addr, len, confirm);
}
void sae_write_confirm(struct sae_data *sae, struct wpabuf *buf)
{
const u8 *sc;
/* Send-Confirm */
sc = wpabuf_put(buf, 0);
wpabuf_put_le16(buf, sae->send_confirm);
sae->send_confirm++;
sae_cn_confirm(sae, sc, sae->own_commit_scalar, sae->own_commit_element,
sae->peer_commit_scalar, sae->peer_commit_element,
wpabuf_put(buf, SHA256_MAC_LEN));
}
int sae_check_confirm(struct sae_data *sae, const u8 *data, size_t len)
{
u8 verifier[SHA256_MAC_LEN];
wpa_hexdump(MSG_DEBUG, "SAE: Confirm fields", data, len);
if (len < 2 + SHA256_MAC_LEN) {
wpa_printf(MSG_DEBUG, "SAE: Too short confirm message");
return -1;
}
wpa_printf(MSG_DEBUG, "SAE: peer-send-confirm %u", WPA_GET_LE16(data));
sae_cn_confirm(sae, data, sae->peer_commit_scalar,
sae->peer_commit_element,
sae->own_commit_scalar, sae->own_commit_element,
verifier);
if (os_memcmp(verifier, data + 2, SHA256_MAC_LEN) != 0) {
wpa_printf(MSG_DEBUG, "SAE: Confirm mismatch");
wpa_hexdump(MSG_DEBUG, "SAE: Received confirm",
data + 2, SHA256_MAC_LEN);
wpa_hexdump(MSG_DEBUG, "SAE: Calculated verifier",
verifier, SHA256_MAC_LEN);
return -1;
}
return 0;
}