hostapd/src/common/sae.c

577 lines
14 KiB
C
Raw Normal View History

/*
* Simultaneous authentication of equals
* Copyright (c) 2012, Jouni Malinen <j@w1.fi>
*
* This software may be distributed under the terms of the BSD license.
* See README for more details.
*/
#include "includes.h"
/* TODO: move OpenSSL dependencies into crypto/crypto_openssl.c */
#include <openssl/bn.h>
#include <openssl/ec.h>
#include <openssl/obj_mac.h>
#include "common.h"
#include "crypto/sha256.h"
#include "crypto/random.h"
#include "ieee802_11_defs.h"
#include "sae.h"
static const u8 group19_prime[] = {
0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
};
static const u8 group19_order[] = {
0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xBC, 0xE6, 0xFA, 0xAD, 0xA7, 0x17, 0x9E, 0x84,
0xF3, 0xB9, 0xCA, 0xC2, 0xFC, 0x63, 0x25, 0x51
};
static int val_zero_or_one(const u8 *val, size_t len)
{
size_t i;
for (i = 0; i < len - 1; i++) {
if (val[i])
return 0;
}
return val[len - 1] <= 1;
}
static int val_zero(const u8 *val, size_t len)
{
size_t i;
for (i = 0; i < len; i++) {
if (val[i])
return 0;
}
return 1;
}
static int sae_get_rand(u8 *val)
{
int iter = 0;
do {
if (random_get_bytes(val, sizeof(group19_prime)) < 0)
return -1;
if (iter++ > 100)
return -1;
} while (os_memcmp(val, group19_order, sizeof(group19_prime)) >= 0 ||
val_zero_or_one(val, sizeof(group19_prime)));
return 0;
}
static EC_POINT * alloc_elem(EC_GROUP *group, const u8 *val, size_t len)
{
BIGNUM *x, *y;
EC_POINT *elem;
x = BN_bin2bn(val, len, NULL);
y = BN_bin2bn(val + len, len, NULL);
elem = EC_POINT_new(group);
if (x == NULL || y == NULL || elem == NULL) {
BN_free(x);
BN_free(y);
EC_POINT_free(elem);
return NULL;
}
if (!EC_POINT_set_affine_coordinates_GFp(group, elem, x, y, NULL)) {
EC_POINT_free(elem);
elem = NULL;
}
BN_free(x);
BN_free(y);
return elem;
}
static void sae_bn_to_bin(const BIGNUM *bn, u8 *bin, size_t len)
{
int offset = len - BN_num_bytes(bn);
os_memset(bin, 0, offset);
BN_bn2bin(bn, bin + offset);
}
static int sae_ec_point_to_bin(BN_CTX *bnctx, EC_GROUP *group, EC_POINT *point,
u8 *bin)
{
BIGNUM *x, *y;
int ret = -1;
x = BN_new();
y = BN_new();
if (x && y &&
EC_POINT_get_affine_coordinates_GFp(group, point, x, y, bnctx)) {
sae_bn_to_bin(x, bin, 32);
sae_bn_to_bin(y, bin + 32, 32);
ret = 0;
}
BN_free(x);
BN_free(y);
return ret;
}
static void sae_pwd_seed_key(const u8 *addr1, const u8 *addr2, u8 *key)
{
wpa_printf(MSG_DEBUG, "SAE: PWE derivation - addr1=" MACSTR
" addr2=" MACSTR, MAC2STR(addr1), MAC2STR(addr2));
if (os_memcmp(addr1, addr2, ETH_ALEN) > 0) {
os_memcpy(key, addr1, ETH_ALEN);
os_memcpy(key + ETH_ALEN, addr2, ETH_ALEN);
} else {
os_memcpy(key, addr2, ETH_ALEN);
os_memcpy(key + ETH_ALEN, addr1, ETH_ALEN);
}
}
static int sae_test_pwd_seed(BN_CTX *bnctx, EC_GROUP *group, const u8 *pwd_seed,
EC_POINT *pwe, u8 *pwe_bin)
{
u8 pwd_value[32];
BIGNUM *x;
int y_bit;
wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-seed", pwd_seed, 32);
/* pwd-value = KDF-z(pwd-seed, "SAE Hunting and Pecking", p) */
sha256_prf(pwd_seed, 32, "SAE Hunting and Pecking",
group19_prime, sizeof(group19_prime),
pwd_value, sizeof(pwd_value));
wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-value",
pwd_value, sizeof(pwd_value));
if (os_memcmp(pwd_value, group19_prime, sizeof(group19_prime)) >= 0)
return 0;
y_bit = pwd_seed[SHA256_MAC_LEN - 1] & 0x01;
x = BN_bin2bn(pwd_value, sizeof(pwd_value), NULL);
if (x == NULL)
return -1;
if (!EC_POINT_set_compressed_coordinates_GFp(group, pwe, x, y_bit,
bnctx) ||
!EC_POINT_is_on_curve(group, pwe, bnctx)) {
BN_free(x);
wpa_printf(MSG_DEBUG, "SAE: No solution found");
return 0;
}
BN_free(x);
wpa_printf(MSG_DEBUG, "SAE: PWE found");
if (sae_ec_point_to_bin(bnctx, group, pwe, pwe_bin) < 0)
return -1;
wpa_hexdump_key(MSG_DEBUG, "SAE: PWE x", pwe_bin, 32);
wpa_hexdump_key(MSG_DEBUG, "SAE: PWE y", pwe_bin + 32, 32);
return 1;
}
static int sae_derive_pwe(BN_CTX *bnctx, EC_GROUP *group, const u8 *addr1,
const u8 *addr2, const u8 *password,
size_t password_len, EC_POINT *pwe, u8 *pwe_bin)
{
u8 counter, k = 4;
u8 addrs[2 * ETH_ALEN];
const u8 *addr[2];
size_t len[2];
int found = 0;
EC_POINT *pwe_tmp;
u8 pwe_bin_tmp[2 * 32];
pwe_tmp = EC_POINT_new(group);
if (pwe_tmp == NULL)
return -1;
wpa_hexdump_ascii_key(MSG_DEBUG, "SAE: password",
password, password_len);
/*
* H(salt, ikm) = HMAC-SHA256(salt, ikm)
* pwd-seed = H(MAX(STA-A-MAC, STA-B-MAC) || MIN(STA-A-MAC, STA-B-MAC),
* password || counter)
*/
sae_pwd_seed_key(addr1, addr2, addrs);
addr[0] = password;
len[0] = password_len;
addr[1] = &counter;
len[1] = sizeof(counter);
/*
* Continue for at least k iterations to protect against side-channel
* attacks that attempt to determine the number of iterations required
* in the loop.
*/
for (counter = 1; counter < k || !found; counter++) {
u8 pwd_seed[SHA256_MAC_LEN];
int res;
wpa_printf(MSG_DEBUG, "SAE: counter = %u", counter);
if (hmac_sha256_vector(addrs, sizeof(addrs), 2, addr, len,
pwd_seed) < 0)
break;
res = sae_test_pwd_seed(bnctx, group, pwd_seed,
found ? pwe_tmp : pwe,
found ? pwe_bin_tmp : pwe_bin);
if (res < 0)
break;
if (res == 0)
continue;
if (found) {
wpa_printf(MSG_DEBUG, "SAE: Ignore this PWE (one was "
"already selected)");
} else {
wpa_printf(MSG_DEBUG, "SAE: Use this PWE");
found = 1;
}
if (counter > 200) {
/* This should not happen in practice */
wpa_printf(MSG_DEBUG, "SAE: Failed to derive PWE");
break;
}
}
EC_POINT_clear_free(pwe_tmp);
return found ? 0 : -1;
}
static int sae_derive_commit(struct sae_data *sae, BN_CTX *bnctx,
EC_GROUP *group, EC_POINT *pwe)
{
BIGNUM *x, *bn_rand, *bn_mask, *order;
EC_POINT *elem;
u8 mask[32];
int ret = -1;
if (sae_get_rand(sae->sae_rand) < 0 || sae_get_rand(mask) < 0)
return -1;
wpa_hexdump_key(MSG_DEBUG, "SAE: rand",
sae->sae_rand, sizeof(sae->sae_rand));
wpa_hexdump_key(MSG_DEBUG, "SAE: mask", mask, sizeof(mask));
x = BN_new();
bn_rand = BN_bin2bn(sae->sae_rand, 32, NULL);
bn_mask = BN_bin2bn(mask, sizeof(mask), NULL);
order = BN_bin2bn(group19_order, sizeof(group19_order), NULL);
elem = EC_POINT_new(group);
if (x == NULL || bn_rand == NULL || bn_mask == NULL || order == NULL ||
elem == NULL)
goto fail;
/* commit-scalar = (rand + mask) modulo r */
BN_add(x, bn_rand, bn_mask);
BN_mod(x, x, order, bnctx);
sae_bn_to_bin(x, sae->own_commit_scalar, 32);
wpa_hexdump(MSG_DEBUG, "SAE: commit-scalar",
sae->own_commit_scalar, 32);
/* COMMIT-ELEMENT = inverse(scalar-op(mask, PWE)) */
if (!EC_POINT_mul(group, elem, NULL, pwe, bn_mask, bnctx) ||
!EC_POINT_invert(group, elem, bnctx) ||
sae_ec_point_to_bin(bnctx, group, elem, sae->own_commit_element) <
0)
goto fail;
wpa_hexdump(MSG_DEBUG, "SAE: commit-element x",
sae->own_commit_element, 32);
wpa_hexdump(MSG_DEBUG, "SAE: commit-element y",
sae->own_commit_element + 32, 32);
ret = 0;
fail:
EC_POINT_free(elem);
BN_free(order);
BN_clear_free(bn_mask);
os_memset(mask, 0, sizeof(mask));
BN_clear_free(bn_rand);
BN_clear_free(x);
return ret;
}
int sae_prepare_commit(const u8 *addr1, const u8 *addr2,
const u8 *password, size_t password_len,
struct sae_data *sae)
{
BN_CTX *bnctx;
EC_POINT *pwe;
EC_GROUP *group;
int ret = 0;
bnctx = BN_CTX_new();
group = EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1);
pwe = EC_POINT_new(group);
if (bnctx == NULL || group == NULL || pwe == NULL ||
sae_derive_pwe(bnctx, group, addr1, addr2, password, password_len,
pwe, sae->pwe) < 0 ||
sae_derive_commit(sae, bnctx, group, pwe) < 0)
ret = -1;
EC_POINT_clear_free(pwe);
EC_GROUP_free(group);
BN_CTX_free(bnctx);
return ret;
}
static int sae_check_peer_commit(struct sae_data *sae)
{
/* 0 < scalar < r */
if (val_zero(sae->peer_commit_scalar, 32) ||
os_memcmp(sae->peer_commit_scalar, group19_order,
sizeof(group19_prime)) >= 0) {
wpa_printf(MSG_DEBUG, "SAE: Invalid peer scalar");
return -1;
}
/* element x and y coordinates < p */
if (os_memcmp(sae->peer_commit_element, group19_prime,
sizeof(group19_prime)) >= 0 ||
os_memcmp(sae->peer_commit_element + 32, group19_prime,
sizeof(group19_prime)) >= 0) {
wpa_printf(MSG_DEBUG, "SAE: Invalid coordinates in peer "
"element");
return -1;
}
return 0;
}
static int sae_derive_k(struct sae_data *sae, u8 *k, BN_CTX *bnctx,
EC_GROUP *group)
{
EC_POINT *pwe, *peer_elem, *K;
BIGNUM *k_bn, *rand_bn, *peer_scalar;
int ret = -1;
pwe = alloc_elem(group, sae->pwe, 32);
peer_scalar = BN_bin2bn(sae->peer_commit_scalar, 32, NULL);
peer_elem = alloc_elem(group, sae->peer_commit_element, 32);
K = EC_POINT_new(group);
k_bn = BN_new();
rand_bn = BN_bin2bn(sae->sae_rand, 32, NULL);
if (pwe == NULL || peer_elem == NULL || peer_scalar == NULL ||
K == NULL || k_bn == NULL || rand_bn == NULL)
goto fail;
if (!EC_POINT_is_on_curve(group, peer_elem, NULL)) {
wpa_printf(MSG_DEBUG, "SAE: Peer element is not on curve");
goto fail;
}
/*
* K = scalar-op(rand, (elem-op(scalar-op(peer-commit-scalar, PWE),
* PEER-COMMIT-ELEMENT)))
* If K is identity element (point-at-infinity), reject
* k = F(K) (= x coordinate)
*/
if (!EC_POINT_mul(group, K, NULL, pwe, peer_scalar, bnctx) ||
!EC_POINT_add(group, K, K, peer_elem, bnctx) ||
!EC_POINT_mul(group, K, NULL, K, rand_bn, bnctx) ||
EC_POINT_is_at_infinity(group, K) ||
!EC_POINT_get_affine_coordinates_GFp(group, K, k_bn, NULL, bnctx)) {
wpa_printf(MSG_DEBUG, "SAE: Failed to calculate K and k");
goto fail;
}
sae_bn_to_bin(k_bn, k, 32);
wpa_hexdump_key(MSG_DEBUG, "SAE: k", k, 32);
ret = 0;
fail:
EC_POINT_free(pwe);
EC_POINT_free(peer_elem);
EC_POINT_clear_free(K);
BN_free(k_bn);
BN_free(rand_bn);
return ret;
}
static int sae_derive_keys(struct sae_data *sae, const u8 *k, BN_CTX *bnctx)
{
u8 null_key[32], val[32];
u8 keyseed[SHA256_MAC_LEN];
u8 keys[32 + 32];
BIGNUM *order, *own_scalar, *peer_scalar, *tmp;
int ret = -1;
order = BN_bin2bn(group19_order, sizeof(group19_order), NULL);
own_scalar = BN_bin2bn(sae->own_commit_scalar, 32, NULL);
peer_scalar = BN_bin2bn(sae->peer_commit_scalar, 32, NULL);
tmp = BN_new();
if (order == NULL || own_scalar == NULL || peer_scalar == NULL ||
tmp == NULL)
goto fail;
/* keyseed = H(<0>32, k)
* KCK || PMK = KDF-512(keyseed, "SAE KCK and PMK",
* (commit-scalar + peer-commit-scalar) modulo r)
* PMKID = L((commit-scalar + peer-commit-scalar) modulo r, 0, 128)
*/
os_memset(null_key, 0, sizeof(null_key));
hmac_sha256(null_key, sizeof(null_key), k, 32, keyseed);
wpa_hexdump_key(MSG_DEBUG, "SAE: keyseed", keyseed, sizeof(keyseed));
BN_add(tmp, own_scalar, peer_scalar);
BN_mod(tmp, tmp, order, bnctx);
sae_bn_to_bin(tmp, val, sizeof(group19_prime));
wpa_hexdump(MSG_DEBUG, "SAE: PMKID", val, 16);
sha256_prf(keyseed, sizeof(keyseed), "SAE KCK and PMK",
val, sizeof(val), keys, sizeof(keys));
os_memcpy(sae->kck, keys, 32);
os_memcpy(sae->pmk, keys + 32, 32);
wpa_hexdump_key(MSG_DEBUG, "SAE: KCK", sae->kck, 32);
wpa_hexdump_key(MSG_DEBUG, "SAE: PMK", sae->pmk, 32);
ret = 0;
fail:
BN_free(order);
BN_free(own_scalar);
BN_free(tmp);
return ret;
}
int sae_process_commit(struct sae_data *sae)
{
BN_CTX *bnctx;
EC_GROUP *group;
int ret = 0;
u8 k[32];
if (sae_check_peer_commit(sae) < 0)
return -1;
bnctx = BN_CTX_new();
group = EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1);
if (bnctx == NULL || group == NULL ||
sae_derive_k(sae, k, bnctx, group) < 0 ||
sae_derive_keys(sae, k, bnctx) < 0)
ret = -1;
EC_GROUP_free(group);
BN_CTX_free(bnctx);
return ret;
}
void sae_write_commit(struct sae_data *sae, struct wpabuf *buf)
{
wpabuf_put_le16(buf, 19); /* Finite Cyclic Group */
/* TODO: Anti-Clogging Token (if requested) */
wpabuf_put_data(buf, sae->own_commit_scalar, 32);
wpabuf_put_data(buf, sae->own_commit_element, 2 * 32);
}
u16 sae_parse_commit(struct sae_data *sae, const u8 *data, size_t len)
{
const u8 *pos = data, *end = data + len;
size_t val_len;
wpa_hexdump(MSG_DEBUG, "SAE: Commit fields", data, len);
/* Check Finite Cyclic Group */
if (pos + 2 > end)
return WLAN_STATUS_UNSPECIFIED_FAILURE;
if (WPA_GET_LE16(pos) != 19) {
wpa_printf(MSG_DEBUG, "SAE: Unsupported Finite Cyclic Group %u",
WPA_GET_LE16(pos));
return WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED;
}
pos += 2;
val_len = 32;
if (pos + val_len > end) {
wpa_printf(MSG_DEBUG, "SAE: Not enough data for scalar");
return WLAN_STATUS_UNSPECIFIED_FAILURE;
}
os_memcpy(sae->peer_commit_scalar, pos, val_len);
wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-scalar",
sae->peer_commit_scalar, val_len);
pos += val_len;
if (pos + 2 * val_len > end) {
wpa_printf(MSG_DEBUG, "SAE: Not enough data for "
"commit-element");
return WLAN_STATUS_UNSPECIFIED_FAILURE;
}
os_memcpy(sae->peer_commit_element, pos, 2 * val_len);
wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-element(x)",
sae->peer_commit_element, val_len);
wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-element(y)",
sae->peer_commit_element + val_len, val_len);
pos += 2 * val_len;
if (end > pos) {
wpa_hexdump(MSG_DEBUG, "SAE: Unexpected extra data in commit",
pos, end - pos);
}
return WLAN_STATUS_SUCCESS;
}
void sae_write_confirm(struct sae_data *sae, struct wpabuf *buf)
{
const u8 *sc;
const u8 *addr[5];
size_t len[5];
/* Send-Confirm */
sc = wpabuf_put(buf, 0);
wpabuf_put_le16(buf, sae->send_confirm);
sae->send_confirm++;
/* Confirm
* CN(key, X, Y, Z, ...) =
* HMAC-SHA256(key, D2OS(X) || D2OS(Y) || D2OS(Z) | ...)
* confirm = CN(KCK, send-confirm, commit-scalar, COMMIT-ELEMENT,
* peer-commit-scalar, PEER-COMMIT-ELEMENT)
*/
addr[0] = sc;
len[0] = 2;
addr[1] = sae->own_commit_scalar;
len[1] = 32;
addr[2] = sae->own_commit_element;
len[2] = 2 * 32;
addr[3] = sae->peer_commit_scalar;
len[3] = 32;
addr[4] = sae->peer_commit_element;
len[4] = 2 * 32;
hmac_sha256_vector(sae->kck, sizeof(sae->kck), 5, addr, len,
wpabuf_put(buf, SHA256_MAC_LEN));
}