dbae8764fb
-- 3f04cd3c25a99df91ff913977b8c5b343532db5d by Abseil Team <absl-team@google.com>: Stricter memory order constraints for CycleClock callback. PiperOrigin-RevId: 242670115 -- 216db48375306490f1722a11aaf33080939d9f2f by Abseil Team <absl-team@google.com>: internal/optional.h: move macro from types/optional.h ABSL_OPTIONAL_USE_INHERITING_CONSTRUCTORS is only used within this file. additionally check the macro with #ifdef rather than #if, fixes -Wundef warning: 'ABSL_OPTIONAL_USE_INHERITING_CONSTRUCTORS' is not defined, evaluates to 0 PiperOrigin-RevId: 242548205 -- fbe22e7d8dc5c0b3d43ac26297e97ddbaeab3d39 by Samuel Benzaquen <sbenza@google.com>: Implement %f natively for any input. It evaluates the input at runtime and allocates stack space accordingly. This removes a potential fallback into snprintf, improves performance, and removes all memory allocations in this formatting path. PiperOrigin-RevId: 242531736 -- 1458f9ba2a79ef0534e46527cd34770dee54164d by Greg Falcon <gfalcon@google.com>: Add explicit check for NVCC in compressed_tuple.h. NVCC claims to be MSVC, but does not implement this MSVC attribute. PiperOrigin-RevId: 242513453 GitOrigin-RevId: 3f04cd3c25a99df91ff913977b8c5b343532db5d Change-Id: I0742e8619c5248c7607961113e406486bc0e279b
483 lines
14 KiB
C++
483 lines
14 KiB
C++
#include "absl/strings/internal/str_format/float_conversion.h"
|
|
|
|
#include <string.h>
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <string>
|
|
|
|
namespace absl {
|
|
namespace str_format_internal {
|
|
|
|
namespace {
|
|
|
|
char *CopyStringTo(string_view v, char *out) {
|
|
std::memcpy(out, v.data(), v.size());
|
|
return out + v.size();
|
|
}
|
|
|
|
template <typename Float>
|
|
bool FallbackToSnprintf(const Float v, const ConversionSpec &conv,
|
|
FormatSinkImpl *sink) {
|
|
int w = conv.width() >= 0 ? conv.width() : 0;
|
|
int p = conv.precision() >= 0 ? conv.precision() : -1;
|
|
char fmt[32];
|
|
{
|
|
char *fp = fmt;
|
|
*fp++ = '%';
|
|
fp = CopyStringTo(conv.flags().ToString(), fp);
|
|
fp = CopyStringTo("*.*", fp);
|
|
if (std::is_same<long double, Float>()) {
|
|
*fp++ = 'L';
|
|
}
|
|
*fp++ = conv.conv().Char();
|
|
*fp = 0;
|
|
assert(fp < fmt + sizeof(fmt));
|
|
}
|
|
std::string space(512, '\0');
|
|
string_view result;
|
|
while (true) {
|
|
int n = snprintf(&space[0], space.size(), fmt, w, p, v);
|
|
if (n < 0) return false;
|
|
if (static_cast<size_t>(n) < space.size()) {
|
|
result = string_view(space.data(), n);
|
|
break;
|
|
}
|
|
space.resize(n + 1);
|
|
}
|
|
sink->Append(result);
|
|
return true;
|
|
}
|
|
|
|
// 128-bits in decimal: ceil(128*log(2)/log(10))
|
|
// or std::numeric_limits<__uint128_t>::digits10
|
|
constexpr int kMaxFixedPrecision = 39;
|
|
|
|
constexpr int kBufferLength = /*sign*/ 1 +
|
|
/*integer*/ kMaxFixedPrecision +
|
|
/*point*/ 1 +
|
|
/*fraction*/ kMaxFixedPrecision +
|
|
/*exponent e+123*/ 5;
|
|
|
|
struct Buffer {
|
|
void push_front(char c) {
|
|
assert(begin > data);
|
|
*--begin = c;
|
|
}
|
|
void push_back(char c) {
|
|
assert(end < data + sizeof(data));
|
|
*end++ = c;
|
|
}
|
|
void pop_back() {
|
|
assert(begin < end);
|
|
--end;
|
|
}
|
|
|
|
char &back() {
|
|
assert(begin < end);
|
|
return end[-1];
|
|
}
|
|
|
|
char last_digit() const { return end[-1] == '.' ? end[-2] : end[-1]; }
|
|
|
|
int size() const { return static_cast<int>(end - begin); }
|
|
|
|
char data[kBufferLength];
|
|
char *begin;
|
|
char *end;
|
|
};
|
|
|
|
enum class FormatStyle { Fixed, Precision };
|
|
|
|
// If the value is Inf or Nan, print it and return true.
|
|
// Otherwise, return false.
|
|
template <typename Float>
|
|
bool ConvertNonNumericFloats(char sign_char, Float v,
|
|
const ConversionSpec &conv, FormatSinkImpl *sink) {
|
|
char text[4], *ptr = text;
|
|
if (sign_char) *ptr++ = sign_char;
|
|
if (std::isnan(v)) {
|
|
ptr = std::copy_n(conv.conv().upper() ? "NAN" : "nan", 3, ptr);
|
|
} else if (std::isinf(v)) {
|
|
ptr = std::copy_n(conv.conv().upper() ? "INF" : "inf", 3, ptr);
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
return sink->PutPaddedString(string_view(text, ptr - text), conv.width(), -1,
|
|
conv.flags().left);
|
|
}
|
|
|
|
// Round up the last digit of the value.
|
|
// It will carry over and potentially overflow. 'exp' will be adjusted in that
|
|
// case.
|
|
template <FormatStyle mode>
|
|
void RoundUp(Buffer *buffer, int *exp) {
|
|
char *p = &buffer->back();
|
|
while (p >= buffer->begin && (*p == '9' || *p == '.')) {
|
|
if (*p == '9') *p = '0';
|
|
--p;
|
|
}
|
|
|
|
if (p < buffer->begin) {
|
|
*p = '1';
|
|
buffer->begin = p;
|
|
if (mode == FormatStyle::Precision) {
|
|
std::swap(p[1], p[2]); // move the .
|
|
++*exp;
|
|
buffer->pop_back();
|
|
}
|
|
} else {
|
|
++*p;
|
|
}
|
|
}
|
|
|
|
void PrintExponent(int exp, char e, Buffer *out) {
|
|
out->push_back(e);
|
|
if (exp < 0) {
|
|
out->push_back('-');
|
|
exp = -exp;
|
|
} else {
|
|
out->push_back('+');
|
|
}
|
|
// Exponent digits.
|
|
if (exp > 99) {
|
|
out->push_back(exp / 100 + '0');
|
|
out->push_back(exp / 10 % 10 + '0');
|
|
out->push_back(exp % 10 + '0');
|
|
} else {
|
|
out->push_back(exp / 10 + '0');
|
|
out->push_back(exp % 10 + '0');
|
|
}
|
|
}
|
|
|
|
template <typename Float, typename Int>
|
|
constexpr bool CanFitMantissa() {
|
|
return
|
|
#if defined(__clang__) && !defined(__SSE3__)
|
|
// Workaround for clang bug: https://bugs.llvm.org/show_bug.cgi?id=38289
|
|
// Casting from long double to uint64_t is miscompiled and drops bits.
|
|
(!std::is_same<Float, long double>::value ||
|
|
!std::is_same<Int, uint64_t>::value) &&
|
|
#endif
|
|
std::numeric_limits<Float>::digits <= std::numeric_limits<Int>::digits;
|
|
}
|
|
|
|
template <typename Float>
|
|
struct Decomposed {
|
|
Float mantissa;
|
|
int exponent;
|
|
};
|
|
|
|
// Decompose the double into an integer mantissa and an exponent.
|
|
template <typename Float>
|
|
Decomposed<Float> Decompose(Float v) {
|
|
int exp;
|
|
Float m = std::frexp(v, &exp);
|
|
m = std::ldexp(m, std::numeric_limits<Float>::digits);
|
|
exp -= std::numeric_limits<Float>::digits;
|
|
return {m, exp};
|
|
}
|
|
|
|
// Print 'digits' as decimal.
|
|
// In Fixed mode, we add a '.' at the end.
|
|
// In Precision mode, we add a '.' after the first digit.
|
|
template <FormatStyle mode, typename Int>
|
|
int PrintIntegralDigits(Int digits, Buffer *out) {
|
|
int printed = 0;
|
|
if (digits) {
|
|
for (; digits; digits /= 10) out->push_front(digits % 10 + '0');
|
|
printed = out->size();
|
|
if (mode == FormatStyle::Precision) {
|
|
out->push_front(*out->begin);
|
|
out->begin[1] = '.';
|
|
} else {
|
|
out->push_back('.');
|
|
}
|
|
} else if (mode == FormatStyle::Fixed) {
|
|
out->push_front('0');
|
|
out->push_back('.');
|
|
printed = 1;
|
|
}
|
|
return printed;
|
|
}
|
|
|
|
// Back out 'extra_digits' digits and round up if necessary.
|
|
bool RemoveExtraPrecision(int extra_digits, bool has_leftover_value,
|
|
Buffer *out, int *exp_out) {
|
|
if (extra_digits <= 0) return false;
|
|
|
|
// Back out the extra digits
|
|
out->end -= extra_digits;
|
|
|
|
bool needs_to_round_up = [&] {
|
|
// We look at the digit just past the end.
|
|
// There must be 'extra_digits' extra valid digits after end.
|
|
if (*out->end > '5') return true;
|
|
if (*out->end < '5') return false;
|
|
if (has_leftover_value || std::any_of(out->end + 1, out->end + extra_digits,
|
|
[](char c) { return c != '0'; }))
|
|
return true;
|
|
|
|
// Ends in ...50*, round to even.
|
|
return out->last_digit() % 2 == 1;
|
|
}();
|
|
|
|
if (needs_to_round_up) {
|
|
RoundUp<FormatStyle::Precision>(out, exp_out);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Print the value into the buffer.
|
|
// This will not include the exponent, which will be returned in 'exp_out' for
|
|
// Precision mode.
|
|
template <typename Int, typename Float, FormatStyle mode>
|
|
bool FloatToBufferImpl(Int int_mantissa, int exp, int precision, Buffer *out,
|
|
int *exp_out) {
|
|
assert((CanFitMantissa<Float, Int>()));
|
|
|
|
const int int_bits = std::numeric_limits<Int>::digits;
|
|
|
|
// In precision mode, we start printing one char to the right because it will
|
|
// also include the '.'
|
|
// In fixed mode we put the dot afterwards on the right.
|
|
out->begin = out->end =
|
|
out->data + 1 + kMaxFixedPrecision + (mode == FormatStyle::Precision);
|
|
|
|
if (exp >= 0) {
|
|
if (std::numeric_limits<Float>::digits + exp > int_bits) {
|
|
// The value will overflow the Int
|
|
return false;
|
|
}
|
|
int digits_printed = PrintIntegralDigits<mode>(int_mantissa << exp, out);
|
|
int digits_to_zero_pad = precision;
|
|
if (mode == FormatStyle::Precision) {
|
|
*exp_out = digits_printed - 1;
|
|
digits_to_zero_pad -= digits_printed - 1;
|
|
if (RemoveExtraPrecision(-digits_to_zero_pad, false, out, exp_out)) {
|
|
return true;
|
|
}
|
|
}
|
|
for (; digits_to_zero_pad-- > 0;) out->push_back('0');
|
|
return true;
|
|
}
|
|
|
|
exp = -exp;
|
|
// We need at least 4 empty bits for the next decimal digit.
|
|
// We will multiply by 10.
|
|
if (exp > int_bits - 4) return false;
|
|
|
|
const Int mask = (Int{1} << exp) - 1;
|
|
|
|
// Print the integral part first.
|
|
int digits_printed = PrintIntegralDigits<mode>(int_mantissa >> exp, out);
|
|
int_mantissa &= mask;
|
|
|
|
int fractional_count = precision;
|
|
if (mode == FormatStyle::Precision) {
|
|
if (digits_printed == 0) {
|
|
// Find the first non-zero digit, when in Precision mode.
|
|
*exp_out = 0;
|
|
if (int_mantissa) {
|
|
while (int_mantissa <= mask) {
|
|
int_mantissa *= 10;
|
|
--*exp_out;
|
|
}
|
|
}
|
|
out->push_front(static_cast<char>(int_mantissa >> exp) + '0');
|
|
out->push_back('.');
|
|
int_mantissa &= mask;
|
|
} else {
|
|
// We already have a digit, and a '.'
|
|
*exp_out = digits_printed - 1;
|
|
fractional_count -= *exp_out;
|
|
if (RemoveExtraPrecision(-fractional_count, int_mantissa != 0, out,
|
|
exp_out)) {
|
|
// If we had enough digits, return right away.
|
|
// The code below will try to round again otherwise.
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
auto get_next_digit = [&] {
|
|
int_mantissa *= 10;
|
|
int digit = static_cast<int>(int_mantissa >> exp);
|
|
int_mantissa &= mask;
|
|
return digit;
|
|
};
|
|
|
|
// Print fractional_count more digits, if available.
|
|
for (; fractional_count > 0; --fractional_count) {
|
|
out->push_back(get_next_digit() + '0');
|
|
}
|
|
|
|
int next_digit = get_next_digit();
|
|
if (next_digit > 5 ||
|
|
(next_digit == 5 && (int_mantissa || out->last_digit() % 2 == 1))) {
|
|
RoundUp<mode>(out, exp_out);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
template <FormatStyle mode, typename Float>
|
|
bool FloatToBuffer(Decomposed<Float> decomposed, int precision, Buffer *out,
|
|
int *exp) {
|
|
if (precision > kMaxFixedPrecision) return false;
|
|
|
|
// Try with uint64_t.
|
|
if (CanFitMantissa<Float, std::uint64_t>() &&
|
|
FloatToBufferImpl<std::uint64_t, Float, mode>(
|
|
static_cast<std::uint64_t>(decomposed.mantissa),
|
|
static_cast<std::uint64_t>(decomposed.exponent), precision, out, exp))
|
|
return true;
|
|
|
|
#if defined(__SIZEOF_INT128__)
|
|
// If that is not enough, try with __uint128_t.
|
|
return CanFitMantissa<Float, __uint128_t>() &&
|
|
FloatToBufferImpl<__uint128_t, Float, mode>(
|
|
static_cast<__uint128_t>(decomposed.mantissa),
|
|
static_cast<__uint128_t>(decomposed.exponent), precision, out,
|
|
exp);
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
void WriteBufferToSink(char sign_char, string_view str,
|
|
const ConversionSpec &conv, FormatSinkImpl *sink) {
|
|
int left_spaces = 0, zeros = 0, right_spaces = 0;
|
|
int missing_chars =
|
|
conv.width() >= 0 ? std::max(conv.width() - static_cast<int>(str.size()) -
|
|
static_cast<int>(sign_char != 0),
|
|
0)
|
|
: 0;
|
|
if (conv.flags().left) {
|
|
right_spaces = missing_chars;
|
|
} else if (conv.flags().zero) {
|
|
zeros = missing_chars;
|
|
} else {
|
|
left_spaces = missing_chars;
|
|
}
|
|
|
|
sink->Append(left_spaces, ' ');
|
|
if (sign_char) sink->Append(1, sign_char);
|
|
sink->Append(zeros, '0');
|
|
sink->Append(str);
|
|
sink->Append(right_spaces, ' ');
|
|
}
|
|
|
|
template <typename Float>
|
|
bool FloatToSink(const Float v, const ConversionSpec &conv,
|
|
FormatSinkImpl *sink) {
|
|
// Print the sign or the sign column.
|
|
Float abs_v = v;
|
|
char sign_char = 0;
|
|
if (std::signbit(abs_v)) {
|
|
sign_char = '-';
|
|
abs_v = -abs_v;
|
|
} else if (conv.flags().show_pos) {
|
|
sign_char = '+';
|
|
} else if (conv.flags().sign_col) {
|
|
sign_char = ' ';
|
|
}
|
|
|
|
// Print nan/inf.
|
|
if (ConvertNonNumericFloats(sign_char, abs_v, conv, sink)) {
|
|
return true;
|
|
}
|
|
|
|
int precision = conv.precision() < 0 ? 6 : conv.precision();
|
|
|
|
int exp = 0;
|
|
|
|
auto decomposed = Decompose(abs_v);
|
|
|
|
Buffer buffer;
|
|
|
|
switch (conv.conv().id()) {
|
|
case ConversionChar::f:
|
|
case ConversionChar::F:
|
|
if (!FloatToBuffer<FormatStyle::Fixed>(decomposed, precision, &buffer,
|
|
nullptr)) {
|
|
return FallbackToSnprintf(v, conv, sink);
|
|
}
|
|
if (!conv.flags().alt && buffer.back() == '.') buffer.pop_back();
|
|
break;
|
|
|
|
case ConversionChar::e:
|
|
case ConversionChar::E:
|
|
if (!FloatToBuffer<FormatStyle::Precision>(decomposed, precision, &buffer,
|
|
&exp)) {
|
|
return FallbackToSnprintf(v, conv, sink);
|
|
}
|
|
if (!conv.flags().alt && buffer.back() == '.') buffer.pop_back();
|
|
PrintExponent(exp, conv.conv().upper() ? 'E' : 'e', &buffer);
|
|
break;
|
|
|
|
case ConversionChar::g:
|
|
case ConversionChar::G:
|
|
precision = std::max(0, precision - 1);
|
|
if (!FloatToBuffer<FormatStyle::Precision>(decomposed, precision, &buffer,
|
|
&exp)) {
|
|
return FallbackToSnprintf(v, conv, sink);
|
|
}
|
|
if (precision + 1 > exp && exp >= -4) {
|
|
if (exp < 0) {
|
|
// Have 1.23456, needs 0.00123456
|
|
// Move the first digit
|
|
buffer.begin[1] = *buffer.begin;
|
|
// Add some zeros
|
|
for (; exp < -1; ++exp) *buffer.begin-- = '0';
|
|
*buffer.begin-- = '.';
|
|
*buffer.begin = '0';
|
|
} else if (exp > 0) {
|
|
// Have 1.23456, needs 1234.56
|
|
// Move the '.' exp positions to the right.
|
|
std::rotate(buffer.begin + 1, buffer.begin + 2,
|
|
buffer.begin + exp + 2);
|
|
}
|
|
exp = 0;
|
|
}
|
|
if (!conv.flags().alt) {
|
|
while (buffer.back() == '0') buffer.pop_back();
|
|
if (buffer.back() == '.') buffer.pop_back();
|
|
}
|
|
if (exp) PrintExponent(exp, conv.conv().upper() ? 'E' : 'e', &buffer);
|
|
break;
|
|
|
|
case ConversionChar::a:
|
|
case ConversionChar::A:
|
|
return FallbackToSnprintf(v, conv, sink);
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
WriteBufferToSink(sign_char,
|
|
string_view(buffer.begin, buffer.end - buffer.begin), conv,
|
|
sink);
|
|
|
|
return true;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
bool ConvertFloatImpl(long double v, const ConversionSpec &conv,
|
|
FormatSinkImpl *sink) {
|
|
return FloatToSink(v, conv, sink);
|
|
}
|
|
|
|
bool ConvertFloatImpl(float v, const ConversionSpec &conv,
|
|
FormatSinkImpl *sink) {
|
|
return FloatToSink(v, conv, sink);
|
|
}
|
|
|
|
bool ConvertFloatImpl(double v, const ConversionSpec &conv,
|
|
FormatSinkImpl *sink) {
|
|
return FloatToSink(v, conv, sink);
|
|
}
|
|
|
|
} // namespace str_format_internal
|
|
} // namespace absl
|