Export of internal Abseil changes.
-- 3f04cd3c25a99df91ff913977b8c5b343532db5d by Abseil Team <absl-team@google.com>: Stricter memory order constraints for CycleClock callback. PiperOrigin-RevId: 242670115 -- 216db48375306490f1722a11aaf33080939d9f2f by Abseil Team <absl-team@google.com>: internal/optional.h: move macro from types/optional.h ABSL_OPTIONAL_USE_INHERITING_CONSTRUCTORS is only used within this file. additionally check the macro with #ifdef rather than #if, fixes -Wundef warning: 'ABSL_OPTIONAL_USE_INHERITING_CONSTRUCTORS' is not defined, evaluates to 0 PiperOrigin-RevId: 242548205 -- fbe22e7d8dc5c0b3d43ac26297e97ddbaeab3d39 by Samuel Benzaquen <sbenza@google.com>: Implement %f natively for any input. It evaluates the input at runtime and allocates stack space accordingly. This removes a potential fallback into snprintf, improves performance, and removes all memory allocations in this formatting path. PiperOrigin-RevId: 242531736 -- 1458f9ba2a79ef0534e46527cd34770dee54164d by Greg Falcon <gfalcon@google.com>: Add explicit check for NVCC in compressed_tuple.h. NVCC claims to be MSVC, but does not implement this MSVC attribute. PiperOrigin-RevId: 242513453 GitOrigin-RevId: 3f04cd3c25a99df91ff913977b8c5b343532db5d Change-Id: I0742e8619c5248c7607961113e406486bc0e279b
This commit is contained in:
parent
044da8a29c
commit
dbae8764fb
8 changed files with 78 additions and 584 deletions
|
@ -55,10 +55,23 @@ static constexpr int32_t kShift = 2;
|
|||
static constexpr double kFrequencyScale = 1.0 / (1 << kShift);
|
||||
static std::atomic<CycleClockSourceFunc> cycle_clock_source;
|
||||
|
||||
CycleClockSourceFunc LoadCycleClockSource() {
|
||||
// Optimize for the common case (no callback) by first doing a relaxed load;
|
||||
// this is significantly faster on non-x86 platforms.
|
||||
if (cycle_clock_source.load(std::memory_order_relaxed) == nullptr) {
|
||||
return nullptr;
|
||||
}
|
||||
// This corresponds to the store(std::memory_order_release) in
|
||||
// CycleClockSource::Register, and makes sure that any updates made prior to
|
||||
// registering the callback are visible to this thread before the callback is
|
||||
// invoked.
|
||||
return cycle_clock_source.load(std::memory_order_acquire);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
int64_t CycleClock::Now() {
|
||||
auto fn = cycle_clock_source.load(std::memory_order_relaxed);
|
||||
auto fn = LoadCycleClockSource();
|
||||
if (fn == nullptr) {
|
||||
return base_internal::UnscaledCycleClock::Now() >> kShift;
|
||||
}
|
||||
|
@ -70,7 +83,8 @@ double CycleClock::Frequency() {
|
|||
}
|
||||
|
||||
void CycleClockSource::Register(CycleClockSourceFunc source) {
|
||||
cycle_clock_source.store(source, std::memory_order_relaxed);
|
||||
// Corresponds to the load(std::memory_order_acquire) in LoadCycleClockSource.
|
||||
cycle_clock_source.store(source, std::memory_order_release);
|
||||
}
|
||||
|
||||
#else
|
||||
|
|
|
@ -38,13 +38,13 @@
|
|||
|
||||
#include "absl/utility/utility.h"
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#if defined(_MSC_VER) && !defined(__NVCC__)
|
||||
// We need to mark these classes with this declspec to ensure that
|
||||
// CompressedTuple happens.
|
||||
#define ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC __declspec(empty_bases)
|
||||
#else // _MSC_VER
|
||||
#else
|
||||
#define ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC
|
||||
#endif // _MSC_VER
|
||||
#endif
|
||||
|
||||
namespace absl {
|
||||
namespace container_internal {
|
||||
|
|
|
@ -557,7 +557,6 @@ cc_library(
|
|||
visibility = ["//visibility:private"],
|
||||
deps = [
|
||||
":strings",
|
||||
"//absl/base:bits",
|
||||
"//absl/base:core_headers",
|
||||
"//absl/container:inlined_vector",
|
||||
"//absl/meta:type_traits",
|
||||
|
|
|
@ -384,7 +384,6 @@ absl_cc_library(
|
|||
COPTS
|
||||
${ABSL_DEFAULT_COPTS}
|
||||
DEPS
|
||||
absl::bits
|
||||
absl::strings
|
||||
absl::core_headers
|
||||
absl::inlined_vector
|
||||
|
|
|
@ -2,7 +2,6 @@
|
|||
#include <stdarg.h>
|
||||
#include <stdio.h>
|
||||
#include <cmath>
|
||||
#include <limits>
|
||||
#include <string>
|
||||
|
||||
#include "gtest/gtest.h"
|
||||
|
@ -398,8 +397,8 @@ TEST_F(FormatConvertTest, Float) {
|
|||
#endif // _MSC_VER
|
||||
|
||||
const char *const kFormats[] = {
|
||||
"%", "%.3", "%8.5", "%9", "%.5000", "%.60", "%.30", "%03",
|
||||
"%+", "% ", "%-10", "%#15.3", "%#.0", "%.0", "%1$*2$", "%1$.*2$"};
|
||||
"%", "%.3", "%8.5", "%9", "%.60", "%.30", "%03", "%+",
|
||||
"% ", "%-10", "%#15.3", "%#.0", "%.0", "%1$*2$", "%1$.*2$"};
|
||||
|
||||
std::vector<double> doubles = {0.0,
|
||||
-0.0,
|
||||
|
@ -439,36 +438,12 @@ TEST_F(FormatConvertTest, Float) {
|
|||
}
|
||||
}
|
||||
|
||||
// Workaround libc bug.
|
||||
// https://sourceware.org/bugzilla/show_bug.cgi?id=22142
|
||||
if (StrPrint("%f", std::numeric_limits<double>::max()) !=
|
||||
"1797693134862315708145274237317043567980705675258449965989174768031"
|
||||
"5726078002853876058955863276687817154045895351438246423432132688946"
|
||||
"4182768467546703537516986049910576551282076245490090389328944075868"
|
||||
"5084551339423045832369032229481658085593321233482747978262041447231"
|
||||
"68738177180919299881250404026184124858368.000000") {
|
||||
for (auto &d : doubles) {
|
||||
using L = std::numeric_limits<double>;
|
||||
double d2 = std::abs(d);
|
||||
if (d2 == L::max() || d2 == L::min() || d2 == L::denorm_min()) {
|
||||
d = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (const char *fmt : kFormats) {
|
||||
for (char f : {'f', 'F', //
|
||||
'g', 'G', //
|
||||
'a', 'A', //
|
||||
'e', 'E'}) {
|
||||
std::string fmt_str = std::string(fmt) + f;
|
||||
|
||||
if (fmt == absl::string_view("%.5000") && f != 'f' && f != 'F') {
|
||||
// This particular test takes way too long with snprintf.
|
||||
// Disable for the case we are not implementing natively.
|
||||
continue;
|
||||
}
|
||||
|
||||
for (double d : doubles) {
|
||||
int i = -10;
|
||||
FormatArgImpl args[2] = {FormatArgImpl(d), FormatArgImpl(i)};
|
||||
|
@ -479,24 +454,27 @@ TEST_F(FormatConvertTest, Float) {
|
|||
ASSERT_EQ(StrPrint(fmt_str.c_str(), d, i),
|
||||
FormatPack(format, absl::MakeSpan(args)))
|
||||
<< fmt_str << " " << StrPrint("%.18g", d) << " "
|
||||
<< StrPrint("%a", d) << " " << StrPrint("%.1080f", d);
|
||||
<< StrPrint("%.999f", d);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(FormatConvertTest, LongDouble) {
|
||||
#if _MSC_VER
|
||||
// MSVC has a different rounding policy than us so we can't test our
|
||||
// implementation against the native one there.
|
||||
return;
|
||||
#endif // _MSC_VER
|
||||
const char *const kFormats[] = {"%", "%.3", "%8.5", "%9", "%.5000",
|
||||
const char *const kFormats[] = {"%", "%.3", "%8.5", "%9",
|
||||
"%.60", "%+", "% ", "%-10"};
|
||||
|
||||
// This value is not representable in double, but it is in long double that
|
||||
// uses the extended format.
|
||||
// This is to verify that we are not truncating the value mistakenly through a
|
||||
// double.
|
||||
long double very_precise = 10000000000000000.25L;
|
||||
|
||||
std::vector<long double> doubles = {
|
||||
0.0,
|
||||
-0.0,
|
||||
very_precise,
|
||||
1 / very_precise,
|
||||
std::numeric_limits<long double>::max(),
|
||||
-std::numeric_limits<long double>::max(),
|
||||
std::numeric_limits<long double>::min(),
|
||||
|
@ -504,44 +482,22 @@ TEST_F(FormatConvertTest, LongDouble) {
|
|||
std::numeric_limits<long double>::infinity(),
|
||||
-std::numeric_limits<long double>::infinity()};
|
||||
|
||||
for (long double base : {1.L, 12.L, 123.L, 1234.L, 12345.L, 123456.L,
|
||||
1234567.L, 12345678.L, 123456789.L, 1234567890.L,
|
||||
12345678901.L, 123456789012.L, 1234567890123.L,
|
||||
// This value is not representable in double, but it
|
||||
// is in long double that uses the extended format.
|
||||
// This is to verify that we are not truncating the
|
||||
// value mistakenly through a double.
|
||||
10000000000000000.25L}) {
|
||||
for (int exp : {-1000, -500, 0, 500, 1000}) {
|
||||
for (int sign : {1, -1}) {
|
||||
doubles.push_back(sign * std::ldexp(base, exp));
|
||||
doubles.push_back(sign / std::ldexp(base, exp));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (const char *fmt : kFormats) {
|
||||
for (char f : {'f', 'F', //
|
||||
'g', 'G', //
|
||||
'a', 'A', //
|
||||
'e', 'E'}) {
|
||||
std::string fmt_str = std::string(fmt) + 'L' + f;
|
||||
|
||||
if (fmt == absl::string_view("%.5000") && f != 'f' && f != 'F') {
|
||||
// This particular test takes way too long with snprintf.
|
||||
// Disable for the case we are not implementing natively.
|
||||
continue;
|
||||
}
|
||||
|
||||
for (auto d : doubles) {
|
||||
FormatArgImpl arg(d);
|
||||
UntypedFormatSpecImpl format(fmt_str);
|
||||
// We use ASSERT_EQ here because failures are usually correlated and a
|
||||
// bug would print way too many failed expectations causing the test to
|
||||
// time out.
|
||||
ASSERT_EQ(StrPrint(fmt_str.c_str(), d), FormatPack(format, {&arg, 1}))
|
||||
ASSERT_EQ(StrPrint(fmt_str.c_str(), d),
|
||||
FormatPack(format, {&arg, 1}))
|
||||
<< fmt_str << " " << StrPrint("%.18Lg", d) << " "
|
||||
<< StrPrint("%La", d) << " " << StrPrint("%.1080Lf", d);
|
||||
<< StrPrint("%.999Lf", d);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -2,476 +2,15 @@
|
|||
|
||||
#include <string.h>
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
#include <limits>
|
||||
#include <string>
|
||||
|
||||
#include "absl/base/attributes.h"
|
||||
#include "absl/base/internal/bits.h"
|
||||
#include "absl/base/optimization.h"
|
||||
#include "absl/meta/type_traits.h"
|
||||
#include "absl/numeric/int128.h"
|
||||
#include "absl/types/span.h"
|
||||
|
||||
namespace absl {
|
||||
namespace str_format_internal {
|
||||
|
||||
namespace {
|
||||
|
||||
// Calculates `10 * (*v) + carry` and stores the result in `*v` and returns
|
||||
// the carry.
|
||||
template <typename Int>
|
||||
inline Int MultiplyBy10WithCarry(Int *v, Int carry) {
|
||||
using NextInt = absl::conditional_t<sizeof(Int) == 4, uint64_t, uint128>;
|
||||
static_assert(sizeof(void *) >= sizeof(Int),
|
||||
"Don't want to use uint128 in 32-bit mode. It is too slow.");
|
||||
NextInt tmp = 10 * static_cast<NextInt>(*v) + carry;
|
||||
*v = static_cast<Int>(tmp);
|
||||
return static_cast<Int>(tmp >> (sizeof(Int) * 8));
|
||||
}
|
||||
|
||||
// Calculates `(2^64 * carry + *v) / 10`.
|
||||
// Stores the quotient in `*v` and returns the remainder.
|
||||
// Requires: `0 <= carry <= 9`
|
||||
inline uint64_t DivideBy10WithCarry(uint64_t *v, uint64_t carry) {
|
||||
constexpr uint64_t divisor = 10;
|
||||
// 2^64 / divisor = word_quotient + word_remainder / divisor
|
||||
constexpr uint64_t word_quotient = (uint64_t{1} << 63) / (divisor / 2);
|
||||
constexpr uint64_t word_remainder = uint64_t{} - word_quotient * divisor;
|
||||
|
||||
const uint64_t mod = *v % divisor;
|
||||
const uint64_t next_carry = word_remainder * carry + mod;
|
||||
*v = *v / divisor + carry * word_quotient + next_carry / divisor;
|
||||
return next_carry % divisor;
|
||||
}
|
||||
|
||||
int LeadingZeros(uint64_t v) { return base_internal::CountLeadingZeros64(v); }
|
||||
int LeadingZeros(uint128 v) {
|
||||
auto high = static_cast<uint64_t>(v >> 64);
|
||||
auto low = static_cast<uint64_t>(v);
|
||||
return high != 0 ? base_internal::CountLeadingZeros64(high)
|
||||
: 64 + base_internal::CountLeadingZeros64(low);
|
||||
}
|
||||
|
||||
int TrailingZeros(uint64_t v) {
|
||||
return base_internal::CountTrailingZerosNonZero64(v);
|
||||
}
|
||||
int TrailingZeros(uint128 v) {
|
||||
auto high = static_cast<uint64_t>(v >> 64);
|
||||
auto low = static_cast<uint64_t>(v);
|
||||
return low == 0 ? 64 + base_internal::CountTrailingZerosNonZero64(high)
|
||||
: base_internal::CountTrailingZerosNonZero64(low);
|
||||
}
|
||||
|
||||
// The buffer must have an extra digit that is known to not need rounding.
|
||||
// This is done below by having an extra '0' digit on the left.
|
||||
void RoundUp(char *last_digit) {
|
||||
char *p = last_digit;
|
||||
while (*p == '9' || *p == '.') {
|
||||
if (*p == '9') *p = '0';
|
||||
--p;
|
||||
}
|
||||
++*p;
|
||||
}
|
||||
|
||||
void RoundToEven(char *last_digit) {
|
||||
char *p = last_digit;
|
||||
if (*p == '.') --p;
|
||||
if (*p % 2 == 1) RoundUp(p);
|
||||
}
|
||||
|
||||
char *PrintIntegralDigitsFromRightDynamic(uint128 v, Span<uint32_t> array,
|
||||
int exp, char *p) {
|
||||
if (v == 0) {
|
||||
*--p = '0';
|
||||
return p;
|
||||
}
|
||||
|
||||
int w = exp / 32;
|
||||
const int offset = exp % 32;
|
||||
// Left shift v by exp bits.
|
||||
array[w] = static_cast<uint32_t>(v << offset);
|
||||
for (v >>= (32 - offset); v; v >>= 32) array[++w] = static_cast<uint32_t>(v);
|
||||
|
||||
// While we have more than one word available, go in chunks of 1e9.
|
||||
// We are guaranteed to have at least those many digits.
|
||||
// `w` holds the largest populated word, so keep it updated.
|
||||
while (w > 0) {
|
||||
uint32_t carry = 0;
|
||||
for (int i = w; i >= 0; --i) {
|
||||
uint64_t tmp = uint64_t{array[i]} + (uint64_t{carry} << 32);
|
||||
array[i] = tmp / uint64_t{1000000000};
|
||||
carry = tmp % uint64_t{1000000000};
|
||||
}
|
||||
// If the highest word is now empty, remove it from view.
|
||||
if (array[w] == 0) --w;
|
||||
|
||||
for (int i = 0; i < 9; ++i, carry /= 10) {
|
||||
*--p = carry % 10 + '0';
|
||||
}
|
||||
}
|
||||
|
||||
// Print the leftover of the last word.
|
||||
for (auto last = array[0]; last != 0; last /= 10) {
|
||||
*--p = last % 10 + '0';
|
||||
}
|
||||
|
||||
return p;
|
||||
}
|
||||
|
||||
struct FractionalResult {
|
||||
const char *end;
|
||||
int precision;
|
||||
};
|
||||
|
||||
FractionalResult PrintFractionalDigitsDynamic(uint128 v, Span<uint32_t> array,
|
||||
char *p, int exp, int precision) {
|
||||
int w = exp / 32;
|
||||
const int offset = exp % 32;
|
||||
|
||||
// Right shift `v` by `exp` bits.
|
||||
array[w] = static_cast<uint32_t>(v << (32 - offset));
|
||||
v >>= offset;
|
||||
// Make sure we don't overflow the array. We already calculated that non-zero
|
||||
// bits fit, so we might not have space for leading zero bits.
|
||||
for (int pos = w; v; v >>= 32) array[--pos] = static_cast<uint32_t>(v);
|
||||
|
||||
// Multiply the whole sequence by 10.
|
||||
// On each iteration, the leftover carry word is the next digit.
|
||||
// `w` holds the largest populated word, so keep it updated.
|
||||
for (; w >= 0 && precision > 0; --precision) {
|
||||
uint32_t carry = 0;
|
||||
for (int i = w; i >= 0; --i) {
|
||||
carry = MultiplyBy10WithCarry(&array[i], carry);
|
||||
}
|
||||
// If the lowest word is now empty, remove it from view.
|
||||
if (array[w] == 0) --w;
|
||||
*p++ = carry + '0';
|
||||
}
|
||||
|
||||
constexpr uint32_t threshold = 0x80000000;
|
||||
if (array[0] < threshold) {
|
||||
// We round down, so nothing to do.
|
||||
} else if (array[0] > threshold ||
|
||||
std::any_of(&array[1], &array[w + 1],
|
||||
[](uint32_t word) { return word != 0; })) {
|
||||
RoundUp(p - 1);
|
||||
} else {
|
||||
RoundToEven(p - 1);
|
||||
}
|
||||
return {p, precision};
|
||||
}
|
||||
|
||||
// Generic digit printer.
|
||||
// `bits` determines how many bits of termporary space it needs for the
|
||||
// calcualtions.
|
||||
template <int bits, typename = void>
|
||||
class DigitPrinter {
|
||||
static constexpr int kInts = (bits + 31) / 32;
|
||||
|
||||
public:
|
||||
// Quick upper bound for the number of decimal digits we need.
|
||||
// This would be std::ceil(std::log10(std::pow(2, bits))), but that is not
|
||||
// constexpr.
|
||||
static constexpr int kDigits10 = 1 + (bits + 9) / 10 * 3 + bits / 900;
|
||||
using InputType = uint128;
|
||||
|
||||
static char *PrintIntegralDigitsFromRight(InputType v, int exp, char *end) {
|
||||
std::array<uint32_t, kInts> array{};
|
||||
return PrintIntegralDigitsFromRightDynamic(v, absl::MakeSpan(array), exp,
|
||||
end);
|
||||
}
|
||||
|
||||
static FractionalResult PrintFractionalDigits(InputType v, char *p, int exp,
|
||||
int precision) {
|
||||
std::array<uint32_t, kInts> array{};
|
||||
return PrintFractionalDigitsDynamic(v, absl::MakeSpan(array), p, exp,
|
||||
precision);
|
||||
}
|
||||
};
|
||||
|
||||
// Specialiation for 64-bit working space.
|
||||
// This is a performance optimization over the generic primary template.
|
||||
// Only enabled in 64-bit platforms. The generic one is faster in 32-bit
|
||||
// platforms.
|
||||
template <int bits>
|
||||
class DigitPrinter<bits, absl::enable_if_t<bits == 64 && (sizeof(void *) >=
|
||||
sizeof(uint64_t))>> {
|
||||
public:
|
||||
static constexpr size_t kDigits10 = 20;
|
||||
using InputType = uint64_t;
|
||||
|
||||
static char *PrintIntegralDigitsFromRight(uint64_t v, int exp, char *p) {
|
||||
v <<= exp;
|
||||
do {
|
||||
*--p = DivideBy10WithCarry(&v, 0) + '0';
|
||||
} while (v != 0);
|
||||
return p;
|
||||
}
|
||||
|
||||
static FractionalResult PrintFractionalDigits(uint64_t v, char *p, int exp,
|
||||
int precision) {
|
||||
v <<= (64 - exp);
|
||||
while (precision > 0) {
|
||||
if (!v) return {p, precision};
|
||||
*p++ = MultiplyBy10WithCarry(&v, uint64_t{}) + '0';
|
||||
--precision;
|
||||
}
|
||||
|
||||
// We need to round.
|
||||
if (v < 0x8000000000000000) {
|
||||
// We round down, so nothing to do.
|
||||
} else if (v > 0x8000000000000000) {
|
||||
// We round up.
|
||||
RoundUp(p - 1);
|
||||
} else {
|
||||
RoundToEven(p - 1);
|
||||
}
|
||||
|
||||
assert(precision == 0);
|
||||
// Precision can only be zero here. Return a constant instead.
|
||||
return {p, 0};
|
||||
}
|
||||
};
|
||||
|
||||
// Specialiation for 128-bit working space.
|
||||
// This is a performance optimization over the generic primary template.
|
||||
template <int bits>
|
||||
class DigitPrinter<bits, absl::enable_if_t<bits == 128 && (sizeof(void *) >=
|
||||
sizeof(uint64_t))>> {
|
||||
public:
|
||||
static constexpr size_t kDigits10 = 40;
|
||||
using InputType = uint128;
|
||||
|
||||
static char *PrintIntegralDigitsFromRight(uint128 v, int exp, char *p) {
|
||||
v <<= exp;
|
||||
auto high = static_cast<uint64_t>(v >> 64);
|
||||
auto low = static_cast<uint64_t>(v);
|
||||
|
||||
do {
|
||||
uint64_t carry = DivideBy10WithCarry(&high, 0);
|
||||
carry = DivideBy10WithCarry(&low, carry);
|
||||
*--p = carry + '0';
|
||||
} while (high != 0u);
|
||||
|
||||
while (low != 0u) {
|
||||
*--p = DivideBy10WithCarry(&low, 0) + '0';
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
static FractionalResult PrintFractionalDigits(uint128 v, char *p, int exp,
|
||||
int precision) {
|
||||
v <<= (128 - exp);
|
||||
auto high = static_cast<uint64_t>(v >> 64);
|
||||
auto low = static_cast<uint64_t>(v);
|
||||
|
||||
// While we have digits to print and `low` is not empty, do the long
|
||||
// multiplication.
|
||||
while (precision > 0 && low != 0) {
|
||||
uint64_t carry = MultiplyBy10WithCarry(&low, uint64_t{});
|
||||
carry = MultiplyBy10WithCarry(&high, carry);
|
||||
|
||||
*p++ = carry + '0';
|
||||
--precision;
|
||||
}
|
||||
|
||||
// Now `low` is empty, so use a faster approach for the rest of the digits.
|
||||
// This block is pretty much the same as the main loop for the 64-bit case
|
||||
// above.
|
||||
while (precision > 0) {
|
||||
if (!high) return {p, precision};
|
||||
*p++ = MultiplyBy10WithCarry(&high, uint64_t{}) + '0';
|
||||
--precision;
|
||||
}
|
||||
|
||||
// We need to round.
|
||||
if (high < 0x8000000000000000) {
|
||||
// We round down, so nothing to do.
|
||||
} else if (high > 0x8000000000000000 || low != 0) {
|
||||
// We round up.
|
||||
RoundUp(p - 1);
|
||||
} else {
|
||||
RoundToEven(p - 1);
|
||||
}
|
||||
|
||||
assert(precision == 0);
|
||||
// Precision can only be zero here. Return a constant instead.
|
||||
return {p, 0};
|
||||
}
|
||||
};
|
||||
|
||||
struct FormatState {
|
||||
char sign_char;
|
||||
int precision;
|
||||
const ConversionSpec &conv;
|
||||
FormatSinkImpl *sink;
|
||||
};
|
||||
|
||||
void FinalPrint(string_view data, int trailing_zeros,
|
||||
const FormatState &state) {
|
||||
if (state.conv.width() < 0) {
|
||||
// No width specified. Fast-path.
|
||||
if (state.sign_char != '\0') state.sink->Append(1, state.sign_char);
|
||||
state.sink->Append(data);
|
||||
state.sink->Append(trailing_zeros, '0');
|
||||
return;
|
||||
}
|
||||
|
||||
int left_spaces = 0, zeros = 0, right_spaces = 0;
|
||||
int total_size = (state.sign_char != 0 ? 1 : 0) +
|
||||
static_cast<int>(data.size()) + trailing_zeros;
|
||||
int missing_chars = std::max(state.conv.width() - total_size, 0);
|
||||
if (state.conv.flags().left) {
|
||||
right_spaces = missing_chars;
|
||||
} else if (state.conv.flags().zero) {
|
||||
zeros = missing_chars;
|
||||
} else {
|
||||
left_spaces = missing_chars;
|
||||
}
|
||||
|
||||
state.sink->Append(left_spaces, ' ');
|
||||
if (state.sign_char != '\0') state.sink->Append(1, state.sign_char);
|
||||
state.sink->Append(zeros, '0');
|
||||
state.sink->Append(data);
|
||||
state.sink->Append(trailing_zeros, '0');
|
||||
state.sink->Append(right_spaces, ' ');
|
||||
}
|
||||
|
||||
template <int num_bits, typename Int>
|
||||
void FormatFPositiveExp(Int v, int exp, const FormatState &state) {
|
||||
using IntegralPrinter = DigitPrinter<num_bits>;
|
||||
char buffer[IntegralPrinter::kDigits10 + /* . */ 1];
|
||||
buffer[IntegralPrinter::kDigits10] = '.';
|
||||
|
||||
const char *digits = IntegralPrinter::PrintIntegralDigitsFromRight(
|
||||
static_cast<typename IntegralPrinter::InputType>(v), exp,
|
||||
buffer + sizeof(buffer) - 1);
|
||||
size_t size = buffer + sizeof(buffer) - digits;
|
||||
|
||||
// In `alt` mode (flag #) we keep the `.` even if there are no fractional
|
||||
// digits. In non-alt mode, we strip it.
|
||||
if (ABSL_PREDICT_FALSE(state.precision == 0 && !state.conv.flags().alt)) {
|
||||
--size;
|
||||
}
|
||||
|
||||
FinalPrint(string_view(digits, size), state.precision, state);
|
||||
}
|
||||
|
||||
template <int num_bits, typename Int>
|
||||
void FormatFNegativeExp(Int v, int exp, const FormatState &state) {
|
||||
constexpr int input_bits = sizeof(Int) * 8;
|
||||
|
||||
using IntegralPrinter = DigitPrinter<input_bits>;
|
||||
using FractionalPrinter = DigitPrinter<num_bits>;
|
||||
|
||||
static constexpr size_t integral_size =
|
||||
1 + /* in case we need to round up an extra digit */
|
||||
IntegralPrinter::kDigits10 + 1;
|
||||
char buffer[integral_size + /* . */ 1 + num_bits];
|
||||
buffer[integral_size] = '.';
|
||||
char *const integral_digits_end = buffer + integral_size;
|
||||
char *integral_digits_start;
|
||||
char *const fractional_digits_start = buffer + integral_size + 1;
|
||||
|
||||
if (exp < input_bits) {
|
||||
integral_digits_start = IntegralPrinter::PrintIntegralDigitsFromRight(
|
||||
v >> exp, 0, integral_digits_end);
|
||||
} else {
|
||||
integral_digits_start = integral_digits_end - 1;
|
||||
*integral_digits_start = '0';
|
||||
}
|
||||
|
||||
// PrintFractionalDigits may pull a carried 1 all the way up through the
|
||||
// integral portion.
|
||||
integral_digits_start[-1] = '0';
|
||||
auto fractional_result = FractionalPrinter::PrintFractionalDigits(
|
||||
static_cast<typename FractionalPrinter::InputType>(v),
|
||||
fractional_digits_start, exp, state.precision);
|
||||
if (integral_digits_start[-1] != '0') --integral_digits_start;
|
||||
|
||||
size_t size = fractional_result.end - integral_digits_start;
|
||||
|
||||
// In `alt` mode (flag #) we keep the `.` even if there are no fractional
|
||||
// digits. In non-alt mode, we strip it.
|
||||
if (ABSL_PREDICT_FALSE(state.precision == 0 && !state.conv.flags().alt)) {
|
||||
--size;
|
||||
}
|
||||
FinalPrint(string_view(integral_digits_start, size),
|
||||
fractional_result.precision, state);
|
||||
}
|
||||
|
||||
template <typename Int>
|
||||
void FormatF(Int mantissa, int exp, const FormatState &state) {
|
||||
// Remove trailing zeros as they are not useful.
|
||||
// This helps use faster implementations/less stack space in some cases.
|
||||
if (mantissa != 0) {
|
||||
int trailing = TrailingZeros(mantissa);
|
||||
mantissa >>= trailing;
|
||||
exp += trailing;
|
||||
}
|
||||
|
||||
// The table driven dispatch gives us two benefits: fast distpatch and
|
||||
// prevent inlining.
|
||||
// We must not inline any of the functions below (other than the ones for
|
||||
// 64-bit) to avoid blowing up this stack frame.
|
||||
|
||||
if (exp >= 0) {
|
||||
// We will left shift the mantissa. Calculate how many bits we need.
|
||||
// Special case 64-bit as we will use a uint64_t for it. Use a table for the
|
||||
// rest and unconditionally use uint128.
|
||||
const int total_bits = sizeof(Int) * 8 - LeadingZeros(mantissa) + exp;
|
||||
|
||||
if (total_bits <= 64) {
|
||||
return FormatFPositiveExp<64>(mantissa, exp, state);
|
||||
} else {
|
||||
using Formatter = void (*)(uint128, int, const FormatState &);
|
||||
static constexpr Formatter kFormatters[] = {
|
||||
FormatFPositiveExp<1 << 7>, FormatFPositiveExp<1 << 8>,
|
||||
FormatFPositiveExp<1 << 9>, FormatFPositiveExp<1 << 10>,
|
||||
FormatFPositiveExp<1 << 11>, FormatFPositiveExp<1 << 12>,
|
||||
FormatFPositiveExp<1 << 13>, FormatFPositiveExp<1 << 14>,
|
||||
FormatFPositiveExp<1 << 15>,
|
||||
};
|
||||
static constexpr int max_total_bits =
|
||||
sizeof(Int) * 8 + std::numeric_limits<long double>::max_exponent;
|
||||
assert(total_bits <= max_total_bits);
|
||||
static_assert(max_total_bits <= (1 << 15), "");
|
||||
const int log2 =
|
||||
64 - LeadingZeros((static_cast<uint64_t>(total_bits) - 1) / 128);
|
||||
assert(log2 < std::end(kFormatters) - std::begin(kFormatters));
|
||||
kFormatters[log2](mantissa, exp, state);
|
||||
}
|
||||
} else {
|
||||
exp = -exp;
|
||||
|
||||
// We know we don't need more than Int itself for the integral part.
|
||||
// We need `precision` fractional digits, but there are at most `exp`
|
||||
// non-zero digits after the decimal point. The rest will be zeros.
|
||||
// Special case 64-bit as we will use a uint64_t for it. Use a table for the
|
||||
// rest and unconditionally use uint128.
|
||||
|
||||
if (exp <= 64) {
|
||||
return FormatFNegativeExp<64>(mantissa, exp, state);
|
||||
} else {
|
||||
using Formatter = void (*)(uint128, int, const FormatState &);
|
||||
static constexpr Formatter kFormatters[] = {
|
||||
FormatFNegativeExp<1 << 7>, FormatFNegativeExp<1 << 8>,
|
||||
FormatFNegativeExp<1 << 9>, FormatFNegativeExp<1 << 10>,
|
||||
FormatFNegativeExp<1 << 11>, FormatFNegativeExp<1 << 12>,
|
||||
FormatFNegativeExp<1 << 13>, FormatFNegativeExp<1 << 14>};
|
||||
static_assert(
|
||||
-std::numeric_limits<long double>::min_exponent <= (1 << 14), "");
|
||||
const int log2 =
|
||||
64 - LeadingZeros((static_cast<uint64_t>(exp) - 1) / 128);
|
||||
assert(log2 < std::end(kFormatters) - std::begin(kFormatters));
|
||||
kFormatters[log2](mantissa, exp, state);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
char *CopyStringTo(string_view v, char *out) {
|
||||
std::memcpy(out, v.data(), v.size());
|
||||
return out + v.size();
|
||||
|
@ -556,7 +95,7 @@ template <typename Float>
|
|||
bool ConvertNonNumericFloats(char sign_char, Float v,
|
||||
const ConversionSpec &conv, FormatSinkImpl *sink) {
|
||||
char text[4], *ptr = text;
|
||||
if (sign_char != '\0') *ptr++ = sign_char;
|
||||
if (sign_char) *ptr++ = sign_char;
|
||||
if (std::isnan(v)) {
|
||||
ptr = std::copy_n(conv.conv().upper() ? "NAN" : "nan", 3, ptr);
|
||||
} else if (std::isinf(v)) {
|
||||
|
@ -626,12 +165,7 @@ constexpr bool CanFitMantissa() {
|
|||
|
||||
template <typename Float>
|
||||
struct Decomposed {
|
||||
using MantissaType =
|
||||
absl::conditional_t<std::is_same<long double, Float>::value, uint128,
|
||||
uint64_t>;
|
||||
static_assert(std::numeric_limits<Float>::digits <= sizeof(MantissaType) * 8,
|
||||
"");
|
||||
MantissaType mantissa;
|
||||
Float mantissa;
|
||||
int exponent;
|
||||
};
|
||||
|
||||
|
@ -642,8 +176,7 @@ Decomposed<Float> Decompose(Float v) {
|
|||
Float m = std::frexp(v, &exp);
|
||||
m = std::ldexp(m, std::numeric_limits<Float>::digits);
|
||||
exp -= std::numeric_limits<Float>::digits;
|
||||
|
||||
return {static_cast<typename Decomposed<Float>::MantissaType>(m), exp};
|
||||
return {m, exp};
|
||||
}
|
||||
|
||||
// Print 'digits' as decimal.
|
||||
|
@ -801,7 +334,7 @@ bool FloatToBuffer(Decomposed<Float> decomposed, int precision, Buffer *out,
|
|||
static_cast<std::uint64_t>(decomposed.exponent), precision, out, exp))
|
||||
return true;
|
||||
|
||||
#if defined(ABSL_HAVE_INTRINSIC_INT128)
|
||||
#if defined(__SIZEOF_INT128__)
|
||||
// If that is not enough, try with __uint128_t.
|
||||
return CanFitMantissa<Float, __uint128_t>() &&
|
||||
FloatToBufferImpl<__uint128_t, Float, mode>(
|
||||
|
@ -829,7 +362,7 @@ void WriteBufferToSink(char sign_char, string_view str,
|
|||
}
|
||||
|
||||
sink->Append(left_spaces, ' ');
|
||||
if (sign_char != '\0') sink->Append(1, sign_char);
|
||||
if (sign_char) sink->Append(1, sign_char);
|
||||
sink->Append(zeros, '0');
|
||||
sink->Append(str);
|
||||
sink->Append(right_spaces, ' ');
|
||||
|
@ -866,9 +399,12 @@ bool FloatToSink(const Float v, const ConversionSpec &conv,
|
|||
switch (conv.conv().id()) {
|
||||
case ConversionChar::f:
|
||||
case ConversionChar::F:
|
||||
FormatF(decomposed.mantissa, decomposed.exponent,
|
||||
{sign_char, precision, conv, sink});
|
||||
return true;
|
||||
if (!FloatToBuffer<FormatStyle::Fixed>(decomposed, precision, &buffer,
|
||||
nullptr)) {
|
||||
return FallbackToSnprintf(v, conv, sink);
|
||||
}
|
||||
if (!conv.flags().alt && buffer.back() == '.') buffer.pop_back();
|
||||
break;
|
||||
|
||||
case ConversionChar::e:
|
||||
case ConversionChar::E:
|
||||
|
@ -930,22 +466,11 @@ bool FloatToSink(const Float v, const ConversionSpec &conv,
|
|||
|
||||
bool ConvertFloatImpl(long double v, const ConversionSpec &conv,
|
||||
FormatSinkImpl *sink) {
|
||||
if (std::numeric_limits<long double>::digits ==
|
||||
2 * std::numeric_limits<double>::digits) {
|
||||
// This is the `double-double` representation of `long double`.
|
||||
// We do not handle it natively. Fallback to snprintf.
|
||||
return FallbackToSnprintf(v, conv, sink);
|
||||
}
|
||||
|
||||
return FloatToSink(v, conv, sink);
|
||||
}
|
||||
|
||||
bool ConvertFloatImpl(float v, const ConversionSpec &conv,
|
||||
FormatSinkImpl *sink) {
|
||||
// DivideBy10WithCarry is not actually used in some builds. This here silences
|
||||
// the "unused" warning. We just need to put it in any function that is really
|
||||
// used.
|
||||
(void)&DivideBy10WithCarry;
|
||||
return FloatToSink(v, conv, sink);
|
||||
}
|
||||
|
||||
|
|
|
@ -25,6 +25,34 @@
|
|||
#include "absl/meta/type_traits.h"
|
||||
#include "absl/utility/utility.h"
|
||||
|
||||
// ABSL_OPTIONAL_USE_INHERITING_CONSTRUCTORS
|
||||
//
|
||||
// Inheriting constructors is supported in GCC 4.8+, Clang 3.3+ and MSVC 2015.
|
||||
// __cpp_inheriting_constructors is a predefined macro and a recommended way to
|
||||
// check for this language feature, but GCC doesn't support it until 5.0 and
|
||||
// Clang doesn't support it until 3.6.
|
||||
// Also, MSVC 2015 has a bug: it doesn't inherit the constexpr template
|
||||
// constructor. For example, the following code won't work on MSVC 2015 Update3:
|
||||
// struct Base {
|
||||
// int t;
|
||||
// template <typename T>
|
||||
// constexpr Base(T t_) : t(t_) {}
|
||||
// };
|
||||
// struct Foo : Base {
|
||||
// using Base::Base;
|
||||
// }
|
||||
// constexpr Foo foo(0); // doesn't work on MSVC 2015
|
||||
#if defined(__clang__)
|
||||
#if __has_feature(cxx_inheriting_constructors)
|
||||
#define ABSL_OPTIONAL_USE_INHERITING_CONSTRUCTORS 1
|
||||
#endif
|
||||
#elif (defined(__GNUC__) && \
|
||||
(__GNUC__ > 4 || __GNUC__ == 4 && __GNUC_MINOR__ >= 8)) || \
|
||||
(__cpp_inheriting_constructors >= 200802) || \
|
||||
(defined(_MSC_VER) && _MSC_VER >= 1910)
|
||||
#define ABSL_OPTIONAL_USE_INHERITING_CONSTRUCTORS 1
|
||||
#endif
|
||||
|
||||
namespace absl {
|
||||
|
||||
// Forward declaration
|
||||
|
@ -108,7 +136,7 @@ template <typename T>
|
|||
class optional_data_base : public optional_data_dtor_base<T> {
|
||||
protected:
|
||||
using base = optional_data_dtor_base<T>;
|
||||
#if ABSL_OPTIONAL_USE_INHERITING_CONSTRUCTORS
|
||||
#ifdef ABSL_OPTIONAL_USE_INHERITING_CONSTRUCTORS
|
||||
using base::base;
|
||||
#else
|
||||
optional_data_base() = default;
|
||||
|
@ -151,7 +179,7 @@ class optional_data;
|
|||
template <typename T>
|
||||
class optional_data<T, true> : public optional_data_base<T> {
|
||||
protected:
|
||||
#if ABSL_OPTIONAL_USE_INHERITING_CONSTRUCTORS
|
||||
#ifdef ABSL_OPTIONAL_USE_INHERITING_CONSTRUCTORS
|
||||
using optional_data_base<T>::optional_data_base;
|
||||
#else
|
||||
optional_data() = default;
|
||||
|
@ -165,7 +193,7 @@ class optional_data<T, true> : public optional_data_base<T> {
|
|||
template <typename T>
|
||||
class optional_data<T, false> : public optional_data_base<T> {
|
||||
protected:
|
||||
#if ABSL_OPTIONAL_USE_INHERITING_CONSTRUCTORS
|
||||
#ifdef ABSL_OPTIONAL_USE_INHERITING_CONSTRUCTORS
|
||||
using optional_data_base<T>::optional_data_base;
|
||||
#else
|
||||
template <typename... Args>
|
||||
|
@ -361,4 +389,6 @@ struct optional_hash_base<T, decltype(std::hash<absl::remove_const_t<T> >()(
|
|||
} // namespace optional_internal
|
||||
} // namespace absl
|
||||
|
||||
#undef ABSL_OPTIONAL_USE_INHERITING_CONSTRUCTORS
|
||||
|
||||
#endif // ABSL_TYPES_INTERNAL_OPTIONAL_H_
|
||||
|
|
|
@ -64,34 +64,6 @@ using std::nullopt;
|
|||
#include "absl/types/bad_optional_access.h"
|
||||
#include "absl/types/internal/optional.h"
|
||||
|
||||
// ABSL_OPTIONAL_USE_INHERITING_CONSTRUCTORS
|
||||
//
|
||||
// Inheriting constructors is supported in GCC 4.8+, Clang 3.3+ and MSVC 2015.
|
||||
// __cpp_inheriting_constructors is a predefined macro and a recommended way to
|
||||
// check for this language feature, but GCC doesn't support it until 5.0 and
|
||||
// Clang doesn't support it until 3.6.
|
||||
// Also, MSVC 2015 has a bug: it doesn't inherit the constexpr template
|
||||
// constructor. For example, the following code won't work on MSVC 2015 Update3:
|
||||
// struct Base {
|
||||
// int t;
|
||||
// template <typename T>
|
||||
// constexpr Base(T t_) : t(t_) {}
|
||||
// };
|
||||
// struct Foo : Base {
|
||||
// using Base::Base;
|
||||
// }
|
||||
// constexpr Foo foo(0); // doesn't work on MSVC 2015
|
||||
#if defined(__clang__)
|
||||
#if __has_feature(cxx_inheriting_constructors)
|
||||
#define ABSL_OPTIONAL_USE_INHERITING_CONSTRUCTORS 1
|
||||
#endif
|
||||
#elif (defined(__GNUC__) && \
|
||||
(__GNUC__ > 4 || __GNUC__ == 4 && __GNUC_MINOR__ >= 8)) || \
|
||||
(__cpp_inheriting_constructors >= 200802) || \
|
||||
(defined(_MSC_VER) && _MSC_VER >= 1910)
|
||||
#define ABSL_OPTIONAL_USE_INHERITING_CONSTRUCTORS 1
|
||||
#endif
|
||||
|
||||
namespace absl {
|
||||
|
||||
// nullopt_t
|
||||
|
@ -791,7 +763,6 @@ struct hash<absl::optional<T> >
|
|||
|
||||
} // namespace std
|
||||
|
||||
#undef ABSL_OPTIONAL_USE_INHERITING_CONSTRUCTORS
|
||||
#undef ABSL_MSVC_CONSTEXPR_BUG_IN_UNION_LIKE_CLASS
|
||||
|
||||
#endif // ABSL_HAVE_STD_OPTIONAL
|
||||
|
|
Loading…
Reference in a new issue