tvl-depot/absl/base/internal/exception_safety_testing.h

981 lines
35 KiB
C
Raw Normal View History

// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Utilities for testing exception-safety
#ifndef ABSL_BASE_INTERNAL_EXCEPTION_SAFETY_TESTING_H_
#define ABSL_BASE_INTERNAL_EXCEPTION_SAFETY_TESTING_H_
#include <cstddef>
#include <cstdint>
#include <functional>
#include <initializer_list>
#include <iosfwd>
#include <string>
2018-04-18 14:56:39 +02:00
#include <tuple>
#include <unordered_map>
#include "gtest/gtest.h"
#include "absl/base/config.h"
#include "absl/base/internal/pretty_function.h"
#include "absl/memory/memory.h"
#include "absl/meta/type_traits.h"
#include "absl/strings/string_view.h"
#include "absl/strings/substitute.h"
#include "absl/types/optional.h"
namespace absl {
struct ConstructorTracker;
// A configuration enum for Throwing*. Operations whose flags are set will
// throw, everything else won't. This isn't meant to be exhaustive, more flags
// can always be made in the future.
enum class NoThrow : uint8_t {
kNone = 0,
kMoveCtor = 1,
kMoveAssign = 1 << 1,
kAllocation = 1 << 2,
kIntCtor = 1 << 3,
kNoThrow = static_cast<uint8_t>(-1)
};
constexpr NoThrow operator|(NoThrow a, NoThrow b) {
using T = absl::underlying_type_t<NoThrow>;
return static_cast<NoThrow>(static_cast<T>(a) | static_cast<T>(b));
}
constexpr NoThrow operator&(NoThrow a, NoThrow b) {
using T = absl::underlying_type_t<NoThrow>;
return static_cast<NoThrow>(static_cast<T>(a) & static_cast<T>(b));
}
namespace exceptions_internal {
struct NoThrowTag {};
2018-04-18 14:56:39 +02:00
struct StrongGuaranteeTagType {};
constexpr bool ThrowingAllowed(NoThrow flags, NoThrow flag) {
return !static_cast<bool>(flags & flag);
}
// A simple exception class. We throw this so that test code can catch
// exceptions specifically thrown by ThrowingValue.
class TestException {
public:
explicit TestException(absl::string_view msg) : msg_(msg) {}
virtual ~TestException() {}
virtual const char* what() const noexcept { return msg_.c_str(); }
private:
std::string msg_;
};
// TestBadAllocException exists because allocation functions must throw an
// exception which can be caught by a handler of std::bad_alloc. We use a child
// class of std::bad_alloc so we can customise the error message, and also
// derive from TestException so we don't accidentally end up catching an actual
// bad_alloc exception in TestExceptionSafety.
class TestBadAllocException : public std::bad_alloc, public TestException {
public:
2018-04-18 14:56:39 +02:00
explicit TestBadAllocException(absl::string_view msg) : TestException(msg) {}
using TestException::what;
};
extern int countdown;
void MaybeThrow(absl::string_view msg, bool throw_bad_alloc = false);
testing::AssertionResult FailureMessage(const TestException& e,
int countdown) noexcept;
class TrackedObject {
public:
TrackedObject(const TrackedObject&) = delete;
TrackedObject(TrackedObject&&) = delete;
protected:
explicit TrackedObject(const char* child_ctor) {
if (!GetAllocs().emplace(this, child_ctor).second) {
ADD_FAILURE() << "Object at address " << static_cast<void*>(this)
<< " re-constructed in ctor " << child_ctor;
}
}
static std::unordered_map<TrackedObject*, absl::string_view>& GetAllocs() {
static auto* m =
new std::unordered_map<TrackedObject*, absl::string_view>();
return *m;
}
~TrackedObject() noexcept {
if (GetAllocs().erase(this) == 0) {
ADD_FAILURE() << "Object at address " << static_cast<void*>(this)
<< " destroyed improperly";
}
}
friend struct ::absl::ConstructorTracker;
};
2018-04-18 14:56:39 +02:00
template <typename Factory, typename Operation, typename Invariant>
absl::optional<testing::AssertionResult> TestSingleInvariantAtCountdownImpl(
const Factory& factory, const Operation& operation, int count,
const Invariant& invariant) {
auto t_ptr = factory();
2018-04-18 14:56:39 +02:00
absl::optional<testing::AssertionResult> current_res;
exceptions_internal::countdown = count;
try {
2018-04-18 14:56:39 +02:00
operation(t_ptr.get());
} catch (const exceptions_internal::TestException& e) {
2018-04-18 14:56:39 +02:00
current_res.emplace(invariant(t_ptr.get()));
if (!current_res.value()) {
*current_res << e.what() << " failed invariant check";
}
}
2018-04-18 14:56:39 +02:00
exceptions_internal::countdown = -1;
return current_res;
}
template <typename Factory, typename Operation>
absl::optional<testing::AssertionResult> TestSingleInvariantAtCountdownImpl(
const Factory& factory, const Operation& operation, int count,
StrongGuaranteeTagType) {
using TPtr = typename decltype(factory())::pointer;
auto t_is_strong = [&](TPtr t) { return *t == *factory(); };
return TestSingleInvariantAtCountdownImpl(factory, operation, count,
t_is_strong);
}
2018-04-18 14:56:39 +02:00
template <typename Factory, typename Operation, typename Invariant>
int TestSingleInvariantAtCountdown(
const Factory& factory, const Operation& operation, int count,
const Invariant& invariant,
absl::optional<testing::AssertionResult>* reduced_res) {
// If reduced_res is empty, it means the current call to
// TestSingleInvariantAtCountdown(...) is the first test being run so we do
// want to run it. Alternatively, if it's not empty (meaning a previous test
// has run) we want to check if it passed. If the previous test did pass, we
// want to contine running tests so we do want to run the current one. If it
// failed, we want to short circuit so as not to overwrite the AssertionResult
// output. If that's the case, we do not run the current test and instead we
// simply return.
if (!reduced_res->has_value() || reduced_res->value()) {
*reduced_res = TestSingleInvariantAtCountdownImpl(factory, operation, count,
invariant);
}
return 0;
}
2018-04-18 14:56:39 +02:00
template <typename Factory, typename Operation, typename... Invariants>
inline absl::optional<testing::AssertionResult> TestAllInvariantsAtCountdown(
const Factory& factory, const Operation& operation, int count,
const Invariants&... invariants) {
absl::optional<testing::AssertionResult> reduced_res;
// Run each checker, short circuiting after the first failure
2018-04-18 14:56:39 +02:00
int dummy[] = {
0, (TestSingleInvariantAtCountdown(factory, operation, count, invariants,
&reduced_res))...};
static_cast<void>(dummy);
2018-04-18 14:56:39 +02:00
return reduced_res;
}
} // namespace exceptions_internal
extern exceptions_internal::NoThrowTag no_throw_ctor;
2018-04-18 14:56:39 +02:00
extern exceptions_internal::StrongGuaranteeTagType strong_guarantee;
// These are useful for tests which just construct objects and make sure there
// are no leaks.
inline void SetCountdown() { exceptions_internal::countdown = 0; }
inline void UnsetCountdown() { exceptions_internal::countdown = -1; }
// A test class which is convertible to bool. The conversion can be
// instrumented to throw at a controlled time.
class ThrowingBool {
public:
ThrowingBool(bool b) noexcept : b_(b) {} // NOLINT(runtime/explicit)
2018-04-18 14:56:39 +02:00
operator bool() const { // NOLINT
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return b_;
}
private:
bool b_;
};
// A testing class instrumented to throw an exception at a controlled time.
//
// ThrowingValue implements a slightly relaxed version of the Regular concept --
// that is it's a value type with the expected semantics. It also implements
// arithmetic operations. It doesn't implement member and pointer operators
// like operator-> or operator[].
//
// ThrowingValue can be instrumented to have certain operations be noexcept by
// using compile-time bitfield flag template arguments. That is, to make an
// ThrowingValue which has a noexcept move constructor and noexcept move
// assignment, use
// ThrowingValue<absl::NoThrow::kMoveCtor | absl::NoThrow::kMoveAssign>.
template <NoThrow Flags = NoThrow::kNone>
class ThrowingValue : private exceptions_internal::TrackedObject {
public:
ThrowingValue() : TrackedObject(ABSL_PRETTY_FUNCTION) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ = 0;
}
ThrowingValue(const ThrowingValue& other)
: TrackedObject(ABSL_PRETTY_FUNCTION) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ = other.dummy_;
}
ThrowingValue(ThrowingValue&& other) noexcept(
!exceptions_internal::ThrowingAllowed(Flags, NoThrow::kMoveCtor))
: TrackedObject(ABSL_PRETTY_FUNCTION) {
if (exceptions_internal::ThrowingAllowed(Flags, NoThrow::kMoveCtor)) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
}
dummy_ = other.dummy_;
}
explicit ThrowingValue(int i) noexcept(
!exceptions_internal::ThrowingAllowed(Flags, NoThrow::kIntCtor))
: TrackedObject(ABSL_PRETTY_FUNCTION) {
if (exceptions_internal::ThrowingAllowed(Flags, NoThrow::kIntCtor)) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
}
dummy_ = i;
}
ThrowingValue(int i, exceptions_internal::NoThrowTag) noexcept
: TrackedObject(ABSL_PRETTY_FUNCTION), dummy_(i) {}
// absl expects nothrow destructors
~ThrowingValue() noexcept = default;
ThrowingValue& operator=(const ThrowingValue& other) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ = other.dummy_;
return *this;
}
ThrowingValue& operator=(ThrowingValue&& other) noexcept(
!exceptions_internal::ThrowingAllowed(Flags, NoThrow::kMoveAssign)) {
if (exceptions_internal::ThrowingAllowed(Flags, NoThrow::kMoveAssign)) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
}
dummy_ = other.dummy_;
return *this;
}
// Arithmetic Operators
ThrowingValue operator+(const ThrowingValue& other) const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return ThrowingValue(dummy_ + other.dummy_, no_throw_ctor);
}
ThrowingValue operator+() const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return ThrowingValue(dummy_, no_throw_ctor);
}
ThrowingValue operator-(const ThrowingValue& other) const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return ThrowingValue(dummy_ - other.dummy_, no_throw_ctor);
}
ThrowingValue operator-() const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return ThrowingValue(-dummy_, no_throw_ctor);
}
ThrowingValue& operator++() {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
++dummy_;
return *this;
}
ThrowingValue operator++(int) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
auto out = ThrowingValue(dummy_, no_throw_ctor);
++dummy_;
return out;
}
ThrowingValue& operator--() {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
--dummy_;
return *this;
}
ThrowingValue operator--(int) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
auto out = ThrowingValue(dummy_, no_throw_ctor);
--dummy_;
return out;
}
ThrowingValue operator*(const ThrowingValue& other) const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return ThrowingValue(dummy_ * other.dummy_, no_throw_ctor);
}
ThrowingValue operator/(const ThrowingValue& other) const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return ThrowingValue(dummy_ / other.dummy_, no_throw_ctor);
}
ThrowingValue operator%(const ThrowingValue& other) const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return ThrowingValue(dummy_ % other.dummy_, no_throw_ctor);
}
ThrowingValue operator<<(int shift) const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return ThrowingValue(dummy_ << shift, no_throw_ctor);
}
ThrowingValue operator>>(int shift) const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return ThrowingValue(dummy_ >> shift, no_throw_ctor);
}
// Comparison Operators
// NOTE: We use `ThrowingBool` instead of `bool` because most STL
// types/containers requires T to be convertible to bool.
friend ThrowingBool operator==(const ThrowingValue& a,
const ThrowingValue& b) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return a.dummy_ == b.dummy_;
}
friend ThrowingBool operator!=(const ThrowingValue& a,
const ThrowingValue& b) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return a.dummy_ != b.dummy_;
}
friend ThrowingBool operator<(const ThrowingValue& a,
const ThrowingValue& b) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return a.dummy_ < b.dummy_;
}
friend ThrowingBool operator<=(const ThrowingValue& a,
const ThrowingValue& b) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return a.dummy_ <= b.dummy_;
}
friend ThrowingBool operator>(const ThrowingValue& a,
const ThrowingValue& b) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return a.dummy_ > b.dummy_;
}
friend ThrowingBool operator>=(const ThrowingValue& a,
const ThrowingValue& b) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return a.dummy_ >= b.dummy_;
}
// Logical Operators
ThrowingBool operator!() const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return !dummy_;
}
ThrowingBool operator&&(const ThrowingValue& other) const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return dummy_ && other.dummy_;
}
ThrowingBool operator||(const ThrowingValue& other) const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return dummy_ || other.dummy_;
}
// Bitwise Logical Operators
ThrowingValue operator~() const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return ThrowingValue(~dummy_, no_throw_ctor);
}
ThrowingValue operator&(const ThrowingValue& other) const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return ThrowingValue(dummy_ & other.dummy_, no_throw_ctor);
}
ThrowingValue operator|(const ThrowingValue& other) const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return ThrowingValue(dummy_ | other.dummy_, no_throw_ctor);
}
ThrowingValue operator^(const ThrowingValue& other) const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return ThrowingValue(dummy_ ^ other.dummy_, no_throw_ctor);
}
// Compound Assignment operators
ThrowingValue& operator+=(const ThrowingValue& other) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ += other.dummy_;
return *this;
}
ThrowingValue& operator-=(const ThrowingValue& other) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ -= other.dummy_;
return *this;
}
ThrowingValue& operator*=(const ThrowingValue& other) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ *= other.dummy_;
return *this;
}
ThrowingValue& operator/=(const ThrowingValue& other) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ /= other.dummy_;
return *this;
}
ThrowingValue& operator%=(const ThrowingValue& other) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ %= other.dummy_;
return *this;
}
ThrowingValue& operator&=(const ThrowingValue& other) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ &= other.dummy_;
return *this;
}
ThrowingValue& operator|=(const ThrowingValue& other) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ |= other.dummy_;
return *this;
}
ThrowingValue& operator^=(const ThrowingValue& other) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ ^= other.dummy_;
return *this;
}
ThrowingValue& operator<<=(int shift) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ <<= shift;
return *this;
}
ThrowingValue& operator>>=(int shift) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ >>= shift;
return *this;
}
// Pointer operators
void operator&() const = delete; // NOLINT(runtime/operator)
// Stream operators
friend std::ostream& operator<<(std::ostream& os, const ThrowingValue&) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return os;
}
friend std::istream& operator>>(std::istream& is, const ThrowingValue&) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return is;
}
// Memory management operators
// Args.. allows us to overload regular and placement new in one shot
template <typename... Args>
static void* operator new(size_t s, Args&&... args) noexcept(
!exceptions_internal::ThrowingAllowed(Flags, NoThrow::kAllocation)) {
if (exceptions_internal::ThrowingAllowed(Flags, NoThrow::kAllocation)) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION, true);
}
return ::operator new(s, std::forward<Args>(args)...);
}
template <typename... Args>
static void* operator new[](size_t s, Args&&... args) noexcept(
!exceptions_internal::ThrowingAllowed(Flags, NoThrow::kAllocation)) {
if (exceptions_internal::ThrowingAllowed(Flags, NoThrow::kAllocation)) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION, true);
}
return ::operator new[](s, std::forward<Args>(args)...);
}
// Abseil doesn't support throwing overloaded operator delete. These are
// provided so a throwing operator-new can clean up after itself.
//
// We provide both regular and templated operator delete because if only the
// templated version is provided as we did with operator new, the compiler has
// no way of knowing which overload of operator delete to call. See
// http://en.cppreference.com/w/cpp/memory/new/operator_delete and
// http://en.cppreference.com/w/cpp/language/delete for the gory details.
void operator delete(void* p) noexcept { ::operator delete(p); }
template <typename... Args>
void operator delete(void* p, Args&&... args) noexcept {
::operator delete(p, std::forward<Args>(args)...);
}
void operator delete[](void* p) noexcept { return ::operator delete[](p); }
template <typename... Args>
void operator delete[](void* p, Args&&... args) noexcept {
return ::operator delete[](p, std::forward<Args>(args)...);
}
// Non-standard access to the actual contained value. No need for this to
// throw.
int& Get() noexcept { return dummy_; }
const int& Get() const noexcept { return dummy_; }
private:
int dummy_;
};
// While not having to do with exceptions, explicitly delete comma operator, to
// make sure we don't use it on user-supplied types.
template <NoThrow N, typename T>
void operator,(const ThrowingValue<N>& ef, T&& t) = delete;
template <NoThrow N, typename T>
void operator,(T&& t, const ThrowingValue<N>& ef) = delete;
// An allocator type which is instrumented to throw at a controlled time, or not
// to throw, using NoThrow. The supported settings are the default of every
// function which is allowed to throw in a conforming allocator possibly
// throwing, or nothing throws, in line with the ABSL_ALLOCATOR_THROWS
// configuration macro.
template <typename T, NoThrow Flags = NoThrow::kNone>
class ThrowingAllocator : private exceptions_internal::TrackedObject {
static_assert(Flags == NoThrow::kNone || Flags == NoThrow::kNoThrow,
"Invalid flag");
public:
using pointer = T*;
using const_pointer = const T*;
using reference = T&;
using const_reference = const T&;
using void_pointer = void*;
using const_void_pointer = const void*;
using value_type = T;
using size_type = size_t;
using difference_type = ptrdiff_t;
using is_nothrow = std::integral_constant<bool, Flags == NoThrow::kNoThrow>;
using propagate_on_container_copy_assignment = std::true_type;
using propagate_on_container_move_assignment = std::true_type;
using propagate_on_container_swap = std::true_type;
using is_always_equal = std::false_type;
ThrowingAllocator() : TrackedObject(ABSL_PRETTY_FUNCTION) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ = std::make_shared<const int>(next_id_++);
}
template <typename U>
ThrowingAllocator( // NOLINT
const ThrowingAllocator<U, Flags>& other) noexcept
: TrackedObject(ABSL_PRETTY_FUNCTION), dummy_(other.State()) {}
// According to C++11 standard [17.6.3.5], Table 28, the move/copy ctors of
// allocator shall not exit via an exception, thus they are marked noexcept.
ThrowingAllocator(const ThrowingAllocator& other) noexcept
: TrackedObject(ABSL_PRETTY_FUNCTION), dummy_(other.State()) {}
template <typename U>
ThrowingAllocator( // NOLINT
ThrowingAllocator<U, Flags>&& other) noexcept
: TrackedObject(ABSL_PRETTY_FUNCTION), dummy_(std::move(other.State())) {}
ThrowingAllocator(ThrowingAllocator&& other) noexcept
: TrackedObject(ABSL_PRETTY_FUNCTION), dummy_(std::move(other.State())) {}
~ThrowingAllocator() noexcept = default;
ThrowingAllocator& operator=(const ThrowingAllocator& other) noexcept {
dummy_ = other.State();
return *this;
}
template <typename U>
ThrowingAllocator& operator=(
const ThrowingAllocator<U, Flags>& other) noexcept {
dummy_ = other.State();
return *this;
}
template <typename U>
ThrowingAllocator& operator=(ThrowingAllocator<U, Flags>&& other) noexcept {
dummy_ = std::move(other.State());
return *this;
}
template <typename U>
struct rebind {
using other = ThrowingAllocator<U, Flags>;
};
pointer allocate(size_type n) noexcept(
!exceptions_internal::ThrowingAllowed(Flags, NoThrow::kNoThrow)) {
ReadStateAndMaybeThrow(ABSL_PRETTY_FUNCTION);
return static_cast<pointer>(::operator new(n * sizeof(T)));
}
pointer allocate(size_type n, const_void_pointer) noexcept(
!exceptions_internal::ThrowingAllowed(Flags, NoThrow::kNoThrow)) {
return allocate(n);
}
void deallocate(pointer ptr, size_type) noexcept {
ReadState();
::operator delete(static_cast<void*>(ptr));
}
template <typename U, typename... Args>
void construct(U* ptr, Args&&... args) noexcept(
!exceptions_internal::ThrowingAllowed(Flags, NoThrow::kNoThrow)) {
ReadStateAndMaybeThrow(ABSL_PRETTY_FUNCTION);
::new (static_cast<void*>(ptr)) U(std::forward<Args>(args)...);
}
template <typename U>
void destroy(U* p) noexcept {
ReadState();
p->~U();
}
size_type max_size() const noexcept {
return std::numeric_limits<difference_type>::max() / sizeof(value_type);
}
ThrowingAllocator select_on_container_copy_construction() noexcept(
!exceptions_internal::ThrowingAllowed(Flags, NoThrow::kNoThrow)) {
auto& out = *this;
ReadStateAndMaybeThrow(ABSL_PRETTY_FUNCTION);
return out;
}
template <typename U>
bool operator==(const ThrowingAllocator<U, Flags>& other) const noexcept {
return dummy_ == other.dummy_;
}
template <typename U>
bool operator!=(const ThrowingAllocator<U, Flags>& other) const noexcept {
return dummy_ != other.dummy_;
}
template <typename U, NoThrow B>
friend class ThrowingAllocator;
private:
const std::shared_ptr<const int>& State() const { return dummy_; }
std::shared_ptr<const int>& State() { return dummy_; }
void ReadState() {
// we know that this will never be true, but the compiler doesn't, so this
// should safely force a read of the value.
if (*dummy_ < 0) std::abort();
}
void ReadStateAndMaybeThrow(absl::string_view msg) const {
if (exceptions_internal::ThrowingAllowed(Flags, NoThrow::kNoThrow)) {
exceptions_internal::MaybeThrow(
absl::Substitute("Allocator id $0 threw from $1", *dummy_, msg));
}
}
static int next_id_;
std::shared_ptr<const int> dummy_;
};
template <typename T, NoThrow Throws>
int ThrowingAllocator<T, Throws>::next_id_ = 0;
// Inspects the constructions and destructions of anything inheriting from
// TrackedObject. Place this as a member variable in a test fixture to ensure
// that every ThrowingValue was constructed and destroyed correctly. This also
// allows us to safely "leak" TrackedObjects, as ConstructorTracker will destroy
// everything left over in its destructor.
struct ConstructorTracker {
ConstructorTracker() = default;
~ConstructorTracker() {
auto& allocs = exceptions_internal::TrackedObject::GetAllocs();
for (const auto& kv : allocs) {
ADD_FAILURE() << "Object at address " << static_cast<void*>(kv.first)
<< " constructed from " << kv.second << " not destroyed";
}
allocs.clear();
}
};
// Tests for resource leaks by attempting to construct a T using args repeatedly
// until successful, using the countdown method. Side effects can then be
// tested for resource leaks. If a ConstructorTracker is present in the test
// fixture, then this will also test that memory resources are not leaked as
// long as T allocates TrackedObjects.
template <typename T, typename... Args>
T TestThrowingCtor(Args&&... args) {
struct Cleanup {
~Cleanup() { UnsetCountdown(); }
2018-04-18 14:56:39 +02:00
} c;
for (int count = 0;; ++count) {
exceptions_internal::countdown = count;
try {
return T(std::forward<Args>(args)...);
} catch (const exceptions_internal::TestException&) {
}
}
}
2018-04-18 14:56:39 +02:00
namespace exceptions_internal {
// Dummy struct for ExceptionSafetyTester<> partial state.
struct UninitializedT {};
template <typename T>
class DefaultFactory {
public:
explicit DefaultFactory(const T& t) : t_(t) {}
std::unique_ptr<T> operator()() const { return absl::make_unique<T>(t_); }
private:
T t_;
};
template <size_t LazyInvariantsCount, typename LazyFactory,
typename LazyOperation>
using EnableIfTestable = typename absl::enable_if_t<
LazyInvariantsCount != 0 &&
!std::is_same<LazyFactory, UninitializedT>::value &&
!std::is_same<LazyOperation, UninitializedT>::value>;
template <typename Factory = UninitializedT,
typename Operation = UninitializedT, typename... Invariants>
class ExceptionSafetyTester;
} // namespace exceptions_internal
exceptions_internal::ExceptionSafetyTester<> MakeExceptionSafetyTester();
namespace exceptions_internal {
/*
* Builds a tester object that tests if performing a operation on a T follows
* exception safety guarantees. Verification is done via invariant assertion
* callbacks applied to T instances post-throw.
*
* Template parameters for ExceptionSafetyTester:
*
* - Factory: The factory object (passed in via tester.WithFactory(...) or
* tester.WithInitialValue(...)) must be invocable with the signature
* `std::unique_ptr<T> operator()() const` where T is the type being tested.
* It is used for reliably creating identical T instances to test on.
*
* - Operation: The operation object (passsed in via tester.WithOperation(...)
* or tester.Test(...)) must be invocable with the signature
* `void operator()(T*) const` where T is the type being tested. It is used
* for performing steps on a T instance that may throw and that need to be
* checked for exception safety. Each call to the operation will receive a
* fresh T instance so it's free to modify and destroy the T instances as it
* pleases.
*
* - Invariants...: The invariant assertion callback objects (passed in via
* tester.WithInvariants(...)) must be invocable with the signature
* `testing::AssertionResult operator()(T*) const` where T is the type being
* tested. Invariant assertion callbacks are provided T instances post-throw.
* They must return testing::AssertionSuccess when the type invariants of the
* provided T instance hold. If the type invariants of the T instance do not
* hold, they must return testing::AssertionFailure. Execution order of
* Invariants... is unspecified. They will each individually get a fresh T
* instance so they are free to modify and destroy the T instances as they
* please.
*/
template <typename Factory, typename Operation, typename... Invariants>
class ExceptionSafetyTester {
public:
/*
* Returns a new ExceptionSafetyTester with an included T factory based on the
* provided T instance. The existing factory will not be included in the newly
* created tester instance. The created factory returns a new T instance by
* copy-constructing the provided const T& t.
*
* Preconditions for tester.WithInitialValue(const T& t):
*
* - The const T& t object must be copy-constructible where T is the type
* being tested. For non-copy-constructible objects, use the method
* tester.WithFactory(...).
*/
template <typename T>
ExceptionSafetyTester<DefaultFactory<T>, Operation, Invariants...>
WithInitialValue(const T& t) const {
return WithFactory(DefaultFactory<T>(t));
}
/*
* Returns a new ExceptionSafetyTester with the provided T factory included.
* The existing factory will not be included in the newly-created tester
* instance. This method is intended for use with types lacking a copy
* constructor. Types that can be copy-constructed should instead use the
* method tester.WithInitialValue(...).
*/
template <typename NewFactory>
ExceptionSafetyTester<absl::decay_t<NewFactory>, Operation, Invariants...>
WithFactory(const NewFactory& new_factory) const {
return {new_factory, operation_, invariants_};
}
/*
* Returns a new ExceptionSafetyTester with the provided testable operation
* included. The existing operation will not be included in the newly created
* tester.
*/
template <typename NewOperation>
ExceptionSafetyTester<Factory, absl::decay_t<NewOperation>, Invariants...>
WithOperation(const NewOperation& new_operation) const {
return {factory_, new_operation, invariants_};
}
/*
* Returns a new ExceptionSafetyTester with the provided MoreInvariants...
* combined with the Invariants... that were already included in the instance
* on which the method was called. Invariants... cannot be removed or replaced
* once added to an ExceptionSafetyTester instance. A fresh object must be
* created in order to get an empty Invariants... list.
*
* In addition to passing in custom invariant assertion callbacks, this method
* accepts `absl::strong_guarantee` as an argument which checks T instances
* post-throw against freshly created T instances via operator== to verify
* that any state changes made during the execution of the operation were
* properly rolled back.
*/
template <typename... MoreInvariants>
ExceptionSafetyTester<Factory, Operation, Invariants...,
absl::decay_t<MoreInvariants>...>
WithInvariants(const MoreInvariants&... more_invariants) const {
return {factory_, operation_,
std::tuple_cat(invariants_,
std::tuple<absl::decay_t<MoreInvariants>...>(
more_invariants...))};
}
/*
* Returns a testing::AssertionResult that is the reduced result of the
* exception safety algorithm. The algorithm short circuits and returns
* AssertionFailure after the first invariant callback returns an
* AssertionFailure. Otherwise, if all invariant callbacks return an
* AssertionSuccess, the reduced result is AssertionSuccess.
*
* The passed-in testable operation will not be saved in a new tester instance
* nor will it modify/replace the existing tester instance. This is useful
* when each operation being tested is unique and does not need to be reused.
*
* Preconditions for tester.Test(const NewOperation& new_operation):
*
* - May only be called after at least one invariant assertion callback and a
* factory or initial value have been provided.
*/
template <
typename NewOperation,
typename = EnableIfTestable<sizeof...(Invariants), Factory, NewOperation>>
testing::AssertionResult Test(const NewOperation& new_operation) const {
return TestImpl(new_operation, absl::index_sequence_for<Invariants...>());
}
/*
* Returns a testing::AssertionResult that is the reduced result of the
* exception safety algorithm. The algorithm short circuits and returns
* AssertionFailure after the first invariant callback returns an
* AssertionFailure. Otherwise, if all invariant callbacks return an
* AssertionSuccess, the reduced result is AssertionSuccess.
*
* Preconditions for tester.Test():
*
* - May only be called after at least one invariant assertion callback, a
* factory or initial value and a testable operation have been provided.
*/
template <typename LazyOperation = Operation,
typename =
EnableIfTestable<sizeof...(Invariants), Factory, LazyOperation>>
testing::AssertionResult Test() const {
return TestImpl(operation_, absl::index_sequence_for<Invariants...>());
}
private:
template <typename, typename, typename...>
friend class ExceptionSafetyTester;
friend ExceptionSafetyTester<> absl::MakeExceptionSafetyTester();
ExceptionSafetyTester() {}
ExceptionSafetyTester(const Factory& f, const Operation& o,
const std::tuple<Invariants...>& i)
: factory_(f), operation_(o), invariants_(i) {}
template <typename SelectedOperation, size_t... Indices>
testing::AssertionResult TestImpl(const SelectedOperation& selected_operation,
absl::index_sequence<Indices...>) const {
// Starting from 0 and counting upwards until one of the exit conditions is
// hit...
for (int count = 0;; ++count) {
// Run the full exception safety test algorithm for the current countdown
auto reduced_res =
TestAllInvariantsAtCountdown(factory_, selected_operation, count,
std::get<Indices>(invariants_)...);
// If there is no value in the optional, no invariants were run because no
// exception was thrown. This means that the test is complete and the loop
// can exit successfully.
if (!reduced_res.has_value()) {
return testing::AssertionSuccess();
}
// If the optional is not empty and the value is falsy, an invariant check
// failed so the test must exit to propegate the failure.
if (!reduced_res.value()) {
return reduced_res.value();
}
// If the optional is not empty and the value is not falsy, it means
// exceptions were thrown but the invariants passed so the test must
// continue to run.
}
}
2018-04-18 14:56:39 +02:00
Factory factory_;
Operation operation_;
std::tuple<Invariants...> invariants_;
};
} // namespace exceptions_internal
/*
* Constructs an empty ExceptionSafetyTester. All ExceptionSafetyTester
* objects are immutable and all With[thing] mutation methods return new
* instances of ExceptionSafetyTester.
*
* In order to test a T for exception safety, a factory for that T, a testable
* operation, and at least one invariant callback returning an assertion
* result must be applied using the respective methods.
*/
inline exceptions_internal::ExceptionSafetyTester<>
MakeExceptionSafetyTester() {
return {};
}
} // namespace absl
#endif // ABSL_BASE_INTERNAL_EXCEPTION_SAFETY_TESTING_H_