- ed0ba496fe01eb8edfa86beade8a37768e7c12ef Updates the API for Exception Safety testing to use build... by Abseil Team <absl-team@google.com>

- c4b7a4e517c9404932c45f2f9f92eb7dc694e45d Internal change by Abseil Team <absl-team@google.com>
  - 76c78ed9385f65d881511645446e0bb8ababf6ec Add missing ABSL_PREDICT_FALSE to one of FixedArray::at()... by Abseil Team <absl-team@google.com>
  - 1204fb1c46f007dd9dfb7d9abf3e96c58835d193 Internal change. by Greg Falcon <gfalcon@google.com>
  - f1f47c98a026bc5e425ae83ff4a2eb391bbd3d9b Add internal-only functionality to examine the stack, to ... by Derek Mauro <dmauro@google.com>
  - 30d63097cd268d912f917526f6511005580465c4 fix typo by Abseil Team <absl-team@google.com>
  - 942d7efa6cf54cd248ca57dcaf3c245188b52a76 Remove unnecessary semicolons from comment examples. by Abseil Team <absl-team@google.com>
  - 7db0669cf23a06d934d3ed8c76aee4e4e23b7e04 Remove malloc_hook and malloc_extension from our internal... by Greg Falcon <gfalcon@google.com>
  - 0190f1063d101b1ded355019df2e1d325931f6c7 Make the maximum length of a string view equal difference... by Abseil Team <absl-team@google.com>
  - c8ae37cbce29449b02115a0ebd435ddc3d7ab062 Add namespace qualification. by Shaindel Schwartz <shaindel@google.com>
  - ff70afe2e6e3dd39f51ce9829e3e1f18231bf4d7 Fix internal/direct_mmap.h for non-linux builds. by Greg Falcon <gfalcon@google.com>

GitOrigin-RevId: ed0ba496fe01eb8edfa86beade8a37768e7c12ef
Change-Id: I7595ee3480d1d6724fd3797c15ba9d9be0d17e62
This commit is contained in:
Abseil Team 2018-04-18 05:56:39 -07:00 committed by Jon Cohen
parent a7e522daf1
commit 5b53540166
35 changed files with 831 additions and 2601 deletions

View file

@ -77,42 +77,16 @@ cc_library(
],
)
cc_library(
name = "malloc_extension",
srcs = ["internal/malloc_extension.cc"],
hdrs = [
"internal/malloc_extension.h",
],
copts = ABSL_DEFAULT_COPTS,
visibility = [
"//absl:__subpackages__",
],
deps = [
":core_headers",
":dynamic_annotations",
],
)
# malloc_extension feels like it wants to be folded into this target, but
# malloc_internal gets special build treatment to compile at -O3, so these
# need to stay separate.
cc_library(
name = "malloc_internal",
srcs = [
"internal/low_level_alloc.cc",
"internal/malloc_hook.cc",
"internal/malloc_hook_mmap_linux.inc",
],
hdrs = [
"internal/direct_mmap.h",
"internal/low_level_alloc.h",
"internal/malloc_hook.h",
"internal/malloc_hook_c.h",
],
copts = ABSL_DEFAULT_COPTS,
textual_hdrs = [
"internal/malloc_hook_invoke.h",
],
visibility = [
"//absl:__subpackages__",
],
@ -419,26 +393,3 @@ cc_test(
"@com_google_googletest//:gtest_main",
],
)
cc_test(
name = "malloc_extension_system_malloc_test",
size = "small",
srcs = ["internal/malloc_extension_test.cc"],
copts = select({
"//absl:windows": [
"/DABSL_MALLOC_EXTENSION_TEST_ALLOW_MISSING_EXTENSION=1",
],
"//conditions:default": [
"-DABSL_MALLOC_EXTENSION_TEST_ALLOW_MISSING_EXTENSION=1",
],
}) + ABSL_TEST_COPTS,
features = [
# This test can't be run under lsan because the test requires system
# malloc, and lsan provides a competing malloc implementation.
"-leak_sanitize",
],
deps = [
":malloc_extension",
"@com_google_googletest//:gtest_main",
],
)

View file

@ -41,10 +41,6 @@ list(APPEND BASE_INTERNAL_HEADERS
"internal/inline_variable.h"
"internal/low_level_alloc.h"
"internal/low_level_scheduling.h"
"internal/malloc_extension.h"
"internal/malloc_hook_c.h"
"internal/malloc_hook.h"
"internal/malloc_hook_invoke.h"
"internal/per_thread_tls.h"
"internal/pretty_function.h"
"internal/raw_logging.h"
@ -69,7 +65,6 @@ list(APPEND BASE_SRC
"internal/thread_identity.cc"
"internal/unscaledcycleclock.cc"
"internal/low_level_alloc.cc"
"internal/malloc_hook.cc"
${BASE_PUBLIC_HEADERS}
${BASE_INTERNAL_HEADERS}
)
@ -86,21 +81,6 @@ absl_library(
base
)
# malloc extension library
set(MALLOC_EXTENSION_SRC "internal/malloc_extension.cc")
set(MALLOC_EXTENSION_PUBLIC_LIBRARIES absl::base)
absl_library(
TARGET
absl_malloc_extension
SOURCES
${MALLOC_EXTENSION_SRC}
PUBLIC_LIBRARIES
${MALLOC_EXTENSION_PUBLIC_LIBRARIES}
EXPORT_NAME
malloc_extension
)
# throw delegate library
set(THROW_DELEGATE_SRC "internal/throw_delegate.cc")
@ -165,8 +145,6 @@ absl_library(
# malloc_internal library
list(APPEND MALLOC_INTERNAL_SRC
"internal/low_level_alloc.cc"
"internal/malloc_hook.cc"
"internal/malloc_hook_mmap_linux.inc"
)
absl_library(
@ -378,23 +356,3 @@ absl_test(
PRIVATE_COMPILE_FLAGS
${ABSL_EXCEPTIONS_FLAG}
)
# test absl_malloc_extension_system_malloc_test
set(MALLOC_EXTENSION_SYSTEM_MALLOC_TEST_SRC "internal/malloc_extension_test.cc")
set(MALLOC_EXTENSION_SYSTEM_MALLOC_TEST_PUBLIC_LIBRARIES absl::base absl_malloc_extension)
set(MALLOC_EXTENSION_SYSTEM_MALLOC_TEST_PRIVATE_COMPILE_FLAGS "-DABSL_MALLOC_EXTENSION_TEST_ALLOW_MISSING_EXTENSION=1")
absl_test(
TARGET
absl_malloc_extension_system_malloc_test
SOURCES
${MALLOC_EXTENSION_SYSTEM_MALLOC_TEST_SRC}
PUBLIC_LIBRARIES
${MALLOC_EXTENSION_SYSTEM_MALLOC_TEST_PUBLIC_LIBRARIES}
PRIVATE_COMPILE_FLAGS
${MALLOC_EXTENSION_SYSTEM_MALLOC_TEST_PRIVATE_COMPILE_FLAGS}
)

View file

@ -20,7 +20,6 @@
// This header file defines casting templates to fit use cases not covered by
// the standard casts provided in the C++ standard. As with all cast operations,
// use these with caution and only if alternatives do not exist.
//
#ifndef ABSL_BASE_CASTS_H_
#define ABSL_BASE_CASTS_H_
@ -122,7 +121,7 @@ inline To implicit_cast(typename absl::internal::identity_t<To> to) {
// object in memory has one type, and a program accesses it with a different
// type, the result is undefined behavior for most values of "different type".
//
// Such casting results is type punning: holding an object in memory of one type
// Such casting results in type punning: holding an object in memory of one type
// and reading its bits back using a different type. A `bit_cast()` avoids this
// issue by implementating its casts using `memcpy()`, which avoids introducing
// this undefined behavior.

View file

@ -402,29 +402,158 @@ TEST_F(ThrowingAllocatorTest, InList) {
for (int i = 0; i < 20; ++i) l.pop_front();
}
struct CallOperator {
template <typename TesterInstance, typename = void>
struct NullaryTestValidator : public std::false_type {};
template <typename TesterInstance>
struct NullaryTestValidator<
TesterInstance,
absl::void_t<decltype(std::declval<TesterInstance>().Test())>>
: public std::true_type {};
template <typename TesterInstance>
bool HasNullaryTest(const TesterInstance&) {
return NullaryTestValidator<TesterInstance>::value;
}
void DummyOp(void*) {}
template <typename TesterInstance, typename = void>
struct UnaryTestValidator : public std::false_type {};
template <typename TesterInstance>
struct UnaryTestValidator<
TesterInstance,
absl::void_t<decltype(std::declval<TesterInstance>().Test(DummyOp))>>
: public std::true_type {};
template <typename TesterInstance>
bool HasUnaryTest(const TesterInstance&) {
return UnaryTestValidator<TesterInstance>::value;
}
TEST(ExceptionSafetyTesterTest, IncompleteTypesAreNotTestable) {
using T = exceptions_internal::UninitializedT;
auto op = [](T* t) {};
auto inv = [](T*) { return testing::AssertionSuccess(); };
auto fac = []() { return absl::make_unique<T>(); };
// Test that providing operation and inveriants still does not allow for the
// the invocation of .Test() and .Test(op) because it lacks a factory
auto without_fac =
absl::MakeExceptionSafetyTester().WithOperation(op).WithInvariants(
inv, absl::strong_guarantee);
EXPECT_FALSE(HasNullaryTest(without_fac));
EXPECT_FALSE(HasUnaryTest(without_fac));
// Test that providing invariants and factory allows the invocation of
// .Test(op) but does not allow for .Test() because it lacks an operation
auto without_op = absl::MakeExceptionSafetyTester()
.WithInvariants(inv, absl::strong_guarantee)
.WithFactory(fac);
EXPECT_FALSE(HasNullaryTest(without_op));
EXPECT_TRUE(HasUnaryTest(without_op));
// Test that providing operation and factory still does not allow for the
// the invocation of .Test() and .Test(op) because it lacks invariants
auto without_inv =
absl::MakeExceptionSafetyTester().WithOperation(op).WithFactory(fac);
EXPECT_FALSE(HasNullaryTest(without_inv));
EXPECT_FALSE(HasUnaryTest(without_inv));
}
struct ExampleStruct {};
std::unique_ptr<ExampleStruct> ExampleFunctionFactory() {
return absl::make_unique<ExampleStruct>();
}
void ExampleFunctionOperation(ExampleStruct*) {}
testing::AssertionResult ExampleFunctionInvariant(ExampleStruct*) {
return testing::AssertionSuccess();
}
struct {
std::unique_ptr<ExampleStruct> operator()() const {
return ExampleFunctionFactory();
}
} example_struct_factory;
struct {
void operator()(ExampleStruct*) const {}
} example_struct_operation;
struct {
testing::AssertionResult operator()(ExampleStruct* example_struct) const {
return ExampleFunctionInvariant(example_struct);
}
} example_struct_invariant;
auto example_lambda_factory = []() { return ExampleFunctionFactory(); };
auto example_lambda_operation = [](ExampleStruct*) {};
auto example_lambda_invariant = [](ExampleStruct* example_struct) {
return ExampleFunctionInvariant(example_struct);
};
// Testing that function references, pointers, structs with operator() and
// lambdas can all be used with ExceptionSafetyTester
TEST(ExceptionSafetyTesterTest, MixedFunctionTypes) {
// function reference
EXPECT_TRUE(absl::MakeExceptionSafetyTester()
.WithFactory(ExampleFunctionFactory)
.WithOperation(ExampleFunctionOperation)
.WithInvariants(ExampleFunctionInvariant)
.Test());
// function pointer
EXPECT_TRUE(absl::MakeExceptionSafetyTester()
.WithFactory(&ExampleFunctionFactory)
.WithOperation(&ExampleFunctionOperation)
.WithInvariants(&ExampleFunctionInvariant)
.Test());
// struct
EXPECT_TRUE(absl::MakeExceptionSafetyTester()
.WithFactory(example_struct_factory)
.WithOperation(example_struct_operation)
.WithInvariants(example_struct_invariant)
.Test());
// lambda
EXPECT_TRUE(absl::MakeExceptionSafetyTester()
.WithFactory(example_lambda_factory)
.WithOperation(example_lambda_operation)
.WithInvariants(example_lambda_invariant)
.Test());
}
struct NonNegative {
bool operator==(const NonNegative& other) const { return i == other.i; }
int i;
};
testing::AssertionResult CheckNonNegativeInvariants(NonNegative* g) {
if (g->i >= 0) {
return testing::AssertionSuccess();
}
return testing::AssertionFailure()
<< "i should be non-negative but is " << g->i;
}
struct {
template <typename T>
void operator()(T* t) const {
(*t)();
}
};
} invoker;
struct NonNegative {
friend testing::AssertionResult AbslCheckInvariants(
NonNegative* g, absl::InternalAbslNamespaceFinder) {
if (g->i >= 0) return testing::AssertionSuccess();
return testing::AssertionFailure()
<< "i should be non-negative but is " << g->i;
}
bool operator==(const NonNegative& other) const { return i == other.i; }
int i;
};
template <typename T>
struct DefaultFactory {
std::unique_ptr<T> operator()() const { return absl::make_unique<T>(); }
};
auto tester =
absl::MakeExceptionSafetyTester().WithOperation(invoker).WithInvariants(
CheckNonNegativeInvariants);
auto strong_tester = tester.WithInvariants(absl::strong_guarantee);
struct FailsBasicGuarantee : public NonNegative {
void operator()() {
@ -435,8 +564,7 @@ struct FailsBasicGuarantee : public NonNegative {
};
TEST(ExceptionCheckTest, BasicGuaranteeFailure) {
EXPECT_FALSE(TestExceptionSafety(DefaultFactory<FailsBasicGuarantee>(),
CallOperator{}));
EXPECT_FALSE(tester.WithInitialValue(FailsBasicGuarantee{}).Test());
}
struct FollowsBasicGuarantee : public NonNegative {
@ -447,22 +575,12 @@ struct FollowsBasicGuarantee : public NonNegative {
};
TEST(ExceptionCheckTest, BasicGuarantee) {
EXPECT_TRUE(TestExceptionSafety(DefaultFactory<FollowsBasicGuarantee>(),
CallOperator{}));
EXPECT_TRUE(tester.WithInitialValue(FollowsBasicGuarantee{}).Test());
}
TEST(ExceptionCheckTest, StrongGuaranteeFailure) {
{
DefaultFactory<FailsBasicGuarantee> factory;
EXPECT_FALSE(
TestExceptionSafety(factory, CallOperator{}, StrongGuarantee(factory)));
}
{
DefaultFactory<FollowsBasicGuarantee> factory;
EXPECT_FALSE(
TestExceptionSafety(factory, CallOperator{}, StrongGuarantee(factory)));
}
EXPECT_FALSE(strong_tester.WithInitialValue(FailsBasicGuarantee{}).Test());
EXPECT_FALSE(strong_tester.WithInitialValue(FollowsBasicGuarantee{}).Test());
}
struct BasicGuaranteeWithExtraInvariants : public NonNegative {
@ -479,20 +597,21 @@ struct BasicGuaranteeWithExtraInvariants : public NonNegative {
constexpr int BasicGuaranteeWithExtraInvariants::kExceptionSentinel;
TEST(ExceptionCheckTest, BasicGuaranteeWithInvariants) {
DefaultFactory<BasicGuaranteeWithExtraInvariants> factory;
EXPECT_TRUE(TestExceptionSafety(factory, CallOperator{}));
EXPECT_TRUE(TestExceptionSafety(
factory, CallOperator{}, [](BasicGuaranteeWithExtraInvariants* w) {
if (w->i == BasicGuaranteeWithExtraInvariants::kExceptionSentinel) {
return testing::AssertionSuccess();
}
return testing::AssertionFailure()
<< "i should be "
<< BasicGuaranteeWithExtraInvariants::kExceptionSentinel
<< ", but is " << w->i;
}));
auto tester_with_val =
tester.WithInitialValue(BasicGuaranteeWithExtraInvariants{});
EXPECT_TRUE(tester_with_val.Test());
EXPECT_TRUE(
tester_with_val
.WithInvariants([](BasicGuaranteeWithExtraInvariants* w) {
if (w->i == BasicGuaranteeWithExtraInvariants::kExceptionSentinel) {
return testing::AssertionSuccess();
}
return testing::AssertionFailure()
<< "i should be "
<< BasicGuaranteeWithExtraInvariants::kExceptionSentinel
<< ", but is " << w->i;
})
.Test());
}
struct FollowsStrongGuarantee : public NonNegative {
@ -500,10 +619,8 @@ struct FollowsStrongGuarantee : public NonNegative {
};
TEST(ExceptionCheckTest, StrongGuarantee) {
DefaultFactory<FollowsStrongGuarantee> factory;
EXPECT_TRUE(TestExceptionSafety(factory, CallOperator{}));
EXPECT_TRUE(
TestExceptionSafety(factory, CallOperator{}, StrongGuarantee(factory)));
EXPECT_TRUE(tester.WithInitialValue(FollowsStrongGuarantee{}).Test());
EXPECT_TRUE(strong_tester.WithInitialValue(FollowsStrongGuarantee{}).Test());
}
struct HasReset : public NonNegative {
@ -514,38 +631,36 @@ struct HasReset : public NonNegative {
}
void reset() { i = 0; }
friend bool AbslCheckInvariants(HasReset* h,
absl::InternalAbslNamespaceFinder) {
h->reset();
return h->i == 0;
}
};
testing::AssertionResult CheckHasResetInvariants(HasReset* h) {
h->reset();
return testing::AssertionResult(h->i == 0);
}
TEST(ExceptionCheckTest, ModifyingChecker) {
{
DefaultFactory<FollowsBasicGuarantee> factory;
EXPECT_FALSE(TestExceptionSafety(
factory, CallOperator{},
[](FollowsBasicGuarantee* g) {
g->i = 1000;
return true;
},
[](FollowsBasicGuarantee* g) { return g->i == 1000; }));
}
{
DefaultFactory<FollowsStrongGuarantee> factory;
EXPECT_TRUE(TestExceptionSafety(factory, CallOperator{},
[](FollowsStrongGuarantee* g) {
++g->i;
return true;
},
StrongGuarantee(factory)));
}
{
DefaultFactory<HasReset> factory;
EXPECT_TRUE(TestExceptionSafety(factory, CallOperator{}));
}
auto set_to_1000 = [](FollowsBasicGuarantee* g) {
g->i = 1000;
return testing::AssertionSuccess();
};
auto is_1000 = [](FollowsBasicGuarantee* g) {
return testing::AssertionResult(g->i == 1000);
};
auto increment = [](FollowsStrongGuarantee* g) {
++g->i;
return testing::AssertionSuccess();
};
EXPECT_FALSE(tester.WithInitialValue(FollowsBasicGuarantee{})
.WithInvariants(set_to_1000, is_1000)
.Test());
EXPECT_TRUE(strong_tester.WithInitialValue(FollowsStrongGuarantee{})
.WithInvariants(increment)
.Test());
EXPECT_TRUE(absl::MakeExceptionSafetyTester()
.WithInitialValue(HasReset{})
.WithInvariants(CheckHasResetInvariants)
.Test(invoker));
}
struct NonCopyable : public NonNegative {
@ -556,10 +671,9 @@ struct NonCopyable : public NonNegative {
};
TEST(ExceptionCheckTest, NonCopyable) {
DefaultFactory<NonCopyable> factory;
EXPECT_TRUE(TestExceptionSafety(factory, CallOperator{}));
EXPECT_TRUE(
TestExceptionSafety(factory, CallOperator{}, StrongGuarantee(factory)));
auto factory = []() { return absl::make_unique<NonCopyable>(); };
EXPECT_TRUE(tester.WithFactory(factory).Test());
EXPECT_TRUE(strong_tester.WithFactory(factory).Test());
}
struct NonEqualityComparable : public NonNegative {
@ -574,15 +688,15 @@ struct NonEqualityComparable : public NonNegative {
};
TEST(ExceptionCheckTest, NonEqualityComparable) {
DefaultFactory<NonEqualityComparable> factory;
auto comp = [](const NonEqualityComparable& a,
const NonEqualityComparable& b) { return a.i == b.i; };
EXPECT_TRUE(TestExceptionSafety(factory, CallOperator{}));
EXPECT_TRUE(TestExceptionSafety(factory, CallOperator{},
absl::StrongGuarantee(factory, comp)));
EXPECT_FALSE(TestExceptionSafety(
factory, [&](NonEqualityComparable* n) { n->ModifyOnThrow(); },
absl::StrongGuarantee(factory, comp)));
auto nec_is_strong = [](NonEqualityComparable* nec) {
return testing::AssertionResult(nec->i == NonEqualityComparable().i);
};
auto strong_nec_tester = tester.WithInitialValue(NonEqualityComparable{})
.WithInvariants(nec_is_strong);
EXPECT_TRUE(strong_nec_tester.Test());
EXPECT_FALSE(strong_nec_tester.Test(
[](NonEqualityComparable* n) { n->ModifyOnThrow(); }));
}
template <typename T>
@ -604,28 +718,32 @@ struct ExhaustivenessTester {
return true;
}
friend testing::AssertionResult AbslCheckInvariants(
ExhaustivenessTester*, absl::InternalAbslNamespaceFinder) {
return testing::AssertionSuccess();
}
static unsigned char successes;
};
struct {
template <typename T>
testing::AssertionResult operator()(ExhaustivenessTester<T>*) const {
return testing::AssertionSuccess();
}
} CheckExhaustivenessTesterInvariants;
template <typename T>
unsigned char ExhaustivenessTester<T>::successes = 0;
TEST(ExceptionCheckTest, Exhaustiveness) {
DefaultFactory<ExhaustivenessTester<int>> int_factory;
EXPECT_TRUE(TestExceptionSafety(int_factory, CallOperator{}));
auto exhaust_tester = absl::MakeExceptionSafetyTester()
.WithInvariants(CheckExhaustivenessTesterInvariants)
.WithOperation(invoker);
EXPECT_TRUE(
exhaust_tester.WithInitialValue(ExhaustivenessTester<int>{}).Test());
EXPECT_EQ(ExhaustivenessTester<int>::successes, 0xF);
DefaultFactory<ExhaustivenessTester<ThrowingValue<>>> bomb_factory;
EXPECT_TRUE(TestExceptionSafety(bomb_factory, CallOperator{}));
EXPECT_EQ(ExhaustivenessTester<ThrowingValue<>>::successes, 0xF);
ExhaustivenessTester<ThrowingValue<>>::successes = 0;
EXPECT_TRUE(TestExceptionSafety(bomb_factory, CallOperator{},
StrongGuarantee(bomb_factory)));
EXPECT_TRUE(
exhaust_tester.WithInitialValue(ExhaustivenessTester<ThrowingValue<>>{})
.WithInvariants(absl::strong_guarantee)
.Test());
EXPECT_EQ(ExhaustivenessTester<ThrowingValue<>>::successes, 0xF);
}

View file

@ -67,7 +67,7 @@ namespace base_internal {
// Platform specific logic extracted from
// https://chromium.googlesource.com/linux-syscall-support/+/master/linux_syscall_support.h
inline void* DirectMmap(void* start, size_t length, int prot, int flags, int fd,
off64_t offset) __THROW {
off64_t offset) noexcept {
#if defined(__i386__) || defined(__ARM_ARCH_3__) || defined(__ARM_EABI__) || \
(defined(__mips__) && _MIPS_SIM == _MIPS_SIM_ABI32) || \
(defined(__PPC__) && !defined(__PPC64__)) || \
@ -129,6 +129,9 @@ inline int DirectMunmap(void* start, size_t length) {
// For non-linux platforms where we have mmap, just dispatch directly to the
// actual mmap()/munmap() methods.
namespace absl {
namespace base_internal {
inline void* DirectMmap(void* start, size_t length, int prot, int flags, int fd,
off_t offset) {
return mmap(start, length, prot, flags, fd, offset);
@ -138,6 +141,9 @@ inline int DirectMunmap(void* start, size_t length) {
return munmap(start, length);
}
} // namespace base_internal
} // namespace absl
#endif // __linux__
#endif // ABSL_HAVE_MMAP

View file

@ -18,7 +18,10 @@
#include "absl/meta/type_traits.h"
namespace absl {
exceptions_internal::NoThrowTag no_throw_ctor;
exceptions_internal::StrongGuaranteeTagType strong_guarantee;
namespace exceptions_internal {
int countdown = -1;

View file

@ -23,6 +23,7 @@
#include <initializer_list>
#include <iosfwd>
#include <string>
#include <tuple>
#include <unordered_map>
#include "gtest/gtest.h"
@ -35,7 +36,6 @@
#include "absl/types/optional.h"
namespace absl {
struct InternalAbslNamespaceFinder {};
struct ConstructorTracker;
@ -63,6 +63,7 @@ constexpr NoThrow operator&(NoThrow a, NoThrow b) {
namespace exceptions_internal {
struct NoThrowTag {};
struct StrongGuaranteeTagType {};
constexpr bool ThrowingAllowed(NoThrow flags, NoThrow flag) {
return !static_cast<bool>(flags & flag);
@ -87,8 +88,7 @@ class TestException {
// bad_alloc exception in TestExceptionSafety.
class TestBadAllocException : public std::bad_alloc, public TestException {
public:
explicit TestBadAllocException(absl::string_view msg)
: TestException(msg) {}
explicit TestBadAllocException(absl::string_view msg) : TestException(msg) {}
using TestException::what;
};
@ -128,75 +128,73 @@ class TrackedObject {
friend struct ::absl::ConstructorTracker;
};
template <typename Factory>
using FactoryType = typename absl::result_of_t<Factory()>::element_type;
// Returns an optional with the result of the check if op fails, or an empty
// optional if op passes
template <typename Factory, typename Op, typename Checker>
absl::optional<testing::AssertionResult> TestCheckerAtCountdown(
Factory factory, const Op& op, int count, const Checker& check) {
template <typename Factory, typename Operation, typename Invariant>
absl::optional<testing::AssertionResult> TestSingleInvariantAtCountdownImpl(
const Factory& factory, const Operation& operation, int count,
const Invariant& invariant) {
auto t_ptr = factory();
absl::optional<testing::AssertionResult> out;
absl::optional<testing::AssertionResult> current_res;
exceptions_internal::countdown = count;
try {
exceptions_internal::countdown = count;
op(t_ptr.get());
operation(t_ptr.get());
} catch (const exceptions_internal::TestException& e) {
out.emplace(check(t_ptr.get()));
if (!*out) {
*out << " caused by exception thrown by " << e.what();
current_res.emplace(invariant(t_ptr.get()));
if (!current_res.value()) {
*current_res << e.what() << " failed invariant check";
}
}
return out;
exceptions_internal::countdown = -1;
return current_res;
}
template <typename Factory, typename Op, typename Checker>
int UpdateOut(Factory factory, const Op& op, int count, const Checker& checker,
testing::AssertionResult* out) {
if (*out) *out = *TestCheckerAtCountdown(factory, op, count, checker);
template <typename Factory, typename Operation>
absl::optional<testing::AssertionResult> TestSingleInvariantAtCountdownImpl(
const Factory& factory, const Operation& operation, int count,
StrongGuaranteeTagType) {
using TPtr = typename decltype(factory())::pointer;
auto t_is_strong = [&](TPtr t) { return *t == *factory(); };
return TestSingleInvariantAtCountdownImpl(factory, operation, count,
t_is_strong);
}
template <typename Factory, typename Operation, typename Invariant>
int TestSingleInvariantAtCountdown(
const Factory& factory, const Operation& operation, int count,
const Invariant& invariant,
absl::optional<testing::AssertionResult>* reduced_res) {
// If reduced_res is empty, it means the current call to
// TestSingleInvariantAtCountdown(...) is the first test being run so we do
// want to run it. Alternatively, if it's not empty (meaning a previous test
// has run) we want to check if it passed. If the previous test did pass, we
// want to contine running tests so we do want to run the current one. If it
// failed, we want to short circuit so as not to overwrite the AssertionResult
// output. If that's the case, we do not run the current test and instead we
// simply return.
if (!reduced_res->has_value() || reduced_res->value()) {
*reduced_res = TestSingleInvariantAtCountdownImpl(factory, operation, count,
invariant);
}
return 0;
}
// Declare AbslCheckInvariants so that it can be found eventually via ADL.
// Taking `...` gives it the lowest possible precedence.
void AbslCheckInvariants(...);
// Returns an optional with the result of the check if op fails, or an empty
// optional if op passes
template <typename Factory, typename Op, typename... Checkers>
absl::optional<testing::AssertionResult> TestAtCountdown(
Factory factory, const Op& op, int count, const Checkers&... checkers) {
// Don't bother with the checkers if the class invariants are already broken.
auto out = TestCheckerAtCountdown(
factory, op, count, [](FactoryType<Factory>* t_ptr) {
return AbslCheckInvariants(t_ptr, InternalAbslNamespaceFinder());
});
if (!out.has_value()) return out;
template <typename Factory, typename Operation, typename... Invariants>
inline absl::optional<testing::AssertionResult> TestAllInvariantsAtCountdown(
const Factory& factory, const Operation& operation, int count,
const Invariants&... invariants) {
absl::optional<testing::AssertionResult> reduced_res;
// Run each checker, short circuiting after the first failure
int dummy[] = {0, (UpdateOut(factory, op, count, checkers, &*out))...};
int dummy[] = {
0, (TestSingleInvariantAtCountdown(factory, operation, count, invariants,
&reduced_res))...};
static_cast<void>(dummy);
return out;
return reduced_res;
}
template <typename T, typename EqualTo>
class StrongGuaranteeTester {
public:
explicit StrongGuaranteeTester(std::unique_ptr<T> t_ptr, EqualTo eq) noexcept
: val_(std::move(t_ptr)), eq_(eq) {}
testing::AssertionResult operator()(T* other) const {
return eq_(*val_, *other) ? testing::AssertionSuccess()
: testing::AssertionFailure() << "State changed";
}
private:
std::unique_ptr<T> val_;
EqualTo eq_;
};
} // namespace exceptions_internal
extern exceptions_internal::NoThrowTag no_throw_ctor;
extern exceptions_internal::StrongGuaranteeTagType strong_guarantee;
// These are useful for tests which just construct objects and make sure there
// are no leaks.
@ -208,7 +206,7 @@ inline void UnsetCountdown() { exceptions_internal::countdown = -1; }
class ThrowingBool {
public:
ThrowingBool(bool b) noexcept : b_(b) {} // NOLINT(runtime/explicit)
operator bool() const { // NOLINT(runtime/explicit)
operator bool() const { // NOLINT
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return b_;
}
@ -734,10 +732,9 @@ template <typename T, typename... Args>
T TestThrowingCtor(Args&&... args) {
struct Cleanup {
~Cleanup() { UnsetCountdown(); }
};
Cleanup c;
for (int countdown = 0;; ++countdown) {
exceptions_internal::countdown = countdown;
} c;
for (int count = 0;; ++count) {
exceptions_internal::countdown = count;
try {
return T(std::forward<Args>(args)...);
} catch (const exceptions_internal::TestException&) {
@ -745,58 +742,237 @@ T TestThrowingCtor(Args&&... args) {
}
}
// Tests that performing operation Op on a T follows exception safety
// guarantees. By default only tests the basic guarantee. There must be a
// function, AbslCheckInvariants(T*, absl::InternalAbslNamespaceFinder) which
// returns anything convertible to bool and which makes sure the invariants of
// the type are upheld. This is called before any of the checkers. The
// InternalAbslNamespaceFinder is unused, and just helps find
// AbslCheckInvariants for absl types which become aliases to std::types in
// C++17.
//
// Parameters:
// * TFactory: operator() returns a unique_ptr to the type under test (T). It
// should always return pointers to values which compare equal.
// * FunctionFromTPtrToVoid: A functor exercising the function under test. It
// should take a T* and return void.
// * Checkers: Any number of functions taking a T* and returning
// anything contextually convertible to bool. If a testing::AssertionResult
// is used then the error message is kept. These test invariants related to
// the operation. To test the strong guarantee, pass
// absl::StrongGuarantee(factory). A checker may freely modify the passed-in
// T, for example to make sure the T can be set to a known state.
template <typename TFactory, typename FunctionFromTPtrToVoid,
typename... Checkers>
testing::AssertionResult TestExceptionSafety(TFactory factory,
FunctionFromTPtrToVoid&& op,
const Checkers&... checkers) {
struct Cleanup {
~Cleanup() { UnsetCountdown(); }
} c;
for (int countdown = 0;; ++countdown) {
auto out = exceptions_internal::TestAtCountdown(factory, op, countdown,
checkers...);
if (!out.has_value()) {
return testing::AssertionSuccess();
}
if (!*out) return *out;
}
}
namespace exceptions_internal {
// Returns a functor to test for the strong exception-safety guarantee.
// Equality comparisons are made against the T provided by the factory and
// default to using operator==.
//
// Parameters:
// * TFactory: operator() returns a unique_ptr to the type under test. It
// should always return pointers to values which compare equal.
template <typename TFactory, typename EqualTo = std::equal_to<
exceptions_internal::FactoryType<TFactory>>>
exceptions_internal::StrongGuaranteeTester<
exceptions_internal::FactoryType<TFactory>, EqualTo>
StrongGuarantee(TFactory factory, EqualTo eq = EqualTo()) {
return exceptions_internal::StrongGuaranteeTester<
exceptions_internal::FactoryType<TFactory>, EqualTo>(factory(), eq);
// Dummy struct for ExceptionSafetyTester<> partial state.
struct UninitializedT {};
template <typename T>
class DefaultFactory {
public:
explicit DefaultFactory(const T& t) : t_(t) {}
std::unique_ptr<T> operator()() const { return absl::make_unique<T>(t_); }
private:
T t_;
};
template <size_t LazyInvariantsCount, typename LazyFactory,
typename LazyOperation>
using EnableIfTestable = typename absl::enable_if_t<
LazyInvariantsCount != 0 &&
!std::is_same<LazyFactory, UninitializedT>::value &&
!std::is_same<LazyOperation, UninitializedT>::value>;
template <typename Factory = UninitializedT,
typename Operation = UninitializedT, typename... Invariants>
class ExceptionSafetyTester;
} // namespace exceptions_internal
exceptions_internal::ExceptionSafetyTester<> MakeExceptionSafetyTester();
namespace exceptions_internal {
/*
* Builds a tester object that tests if performing a operation on a T follows
* exception safety guarantees. Verification is done via invariant assertion
* callbacks applied to T instances post-throw.
*
* Template parameters for ExceptionSafetyTester:
*
* - Factory: The factory object (passed in via tester.WithFactory(...) or
* tester.WithInitialValue(...)) must be invocable with the signature
* `std::unique_ptr<T> operator()() const` where T is the type being tested.
* It is used for reliably creating identical T instances to test on.
*
* - Operation: The operation object (passsed in via tester.WithOperation(...)
* or tester.Test(...)) must be invocable with the signature
* `void operator()(T*) const` where T is the type being tested. It is used
* for performing steps on a T instance that may throw and that need to be
* checked for exception safety. Each call to the operation will receive a
* fresh T instance so it's free to modify and destroy the T instances as it
* pleases.
*
* - Invariants...: The invariant assertion callback objects (passed in via
* tester.WithInvariants(...)) must be invocable with the signature
* `testing::AssertionResult operator()(T*) const` where T is the type being
* tested. Invariant assertion callbacks are provided T instances post-throw.
* They must return testing::AssertionSuccess when the type invariants of the
* provided T instance hold. If the type invariants of the T instance do not
* hold, they must return testing::AssertionFailure. Execution order of
* Invariants... is unspecified. They will each individually get a fresh T
* instance so they are free to modify and destroy the T instances as they
* please.
*/
template <typename Factory, typename Operation, typename... Invariants>
class ExceptionSafetyTester {
public:
/*
* Returns a new ExceptionSafetyTester with an included T factory based on the
* provided T instance. The existing factory will not be included in the newly
* created tester instance. The created factory returns a new T instance by
* copy-constructing the provided const T& t.
*
* Preconditions for tester.WithInitialValue(const T& t):
*
* - The const T& t object must be copy-constructible where T is the type
* being tested. For non-copy-constructible objects, use the method
* tester.WithFactory(...).
*/
template <typename T>
ExceptionSafetyTester<DefaultFactory<T>, Operation, Invariants...>
WithInitialValue(const T& t) const {
return WithFactory(DefaultFactory<T>(t));
}
/*
* Returns a new ExceptionSafetyTester with the provided T factory included.
* The existing factory will not be included in the newly-created tester
* instance. This method is intended for use with types lacking a copy
* constructor. Types that can be copy-constructed should instead use the
* method tester.WithInitialValue(...).
*/
template <typename NewFactory>
ExceptionSafetyTester<absl::decay_t<NewFactory>, Operation, Invariants...>
WithFactory(const NewFactory& new_factory) const {
return {new_factory, operation_, invariants_};
}
/*
* Returns a new ExceptionSafetyTester with the provided testable operation
* included. The existing operation will not be included in the newly created
* tester.
*/
template <typename NewOperation>
ExceptionSafetyTester<Factory, absl::decay_t<NewOperation>, Invariants...>
WithOperation(const NewOperation& new_operation) const {
return {factory_, new_operation, invariants_};
}
/*
* Returns a new ExceptionSafetyTester with the provided MoreInvariants...
* combined with the Invariants... that were already included in the instance
* on which the method was called. Invariants... cannot be removed or replaced
* once added to an ExceptionSafetyTester instance. A fresh object must be
* created in order to get an empty Invariants... list.
*
* In addition to passing in custom invariant assertion callbacks, this method
* accepts `absl::strong_guarantee` as an argument which checks T instances
* post-throw against freshly created T instances via operator== to verify
* that any state changes made during the execution of the operation were
* properly rolled back.
*/
template <typename... MoreInvariants>
ExceptionSafetyTester<Factory, Operation, Invariants...,
absl::decay_t<MoreInvariants>...>
WithInvariants(const MoreInvariants&... more_invariants) const {
return {factory_, operation_,
std::tuple_cat(invariants_,
std::tuple<absl::decay_t<MoreInvariants>...>(
more_invariants...))};
}
/*
* Returns a testing::AssertionResult that is the reduced result of the
* exception safety algorithm. The algorithm short circuits and returns
* AssertionFailure after the first invariant callback returns an
* AssertionFailure. Otherwise, if all invariant callbacks return an
* AssertionSuccess, the reduced result is AssertionSuccess.
*
* The passed-in testable operation will not be saved in a new tester instance
* nor will it modify/replace the existing tester instance. This is useful
* when each operation being tested is unique and does not need to be reused.
*
* Preconditions for tester.Test(const NewOperation& new_operation):
*
* - May only be called after at least one invariant assertion callback and a
* factory or initial value have been provided.
*/
template <
typename NewOperation,
typename = EnableIfTestable<sizeof...(Invariants), Factory, NewOperation>>
testing::AssertionResult Test(const NewOperation& new_operation) const {
return TestImpl(new_operation, absl::index_sequence_for<Invariants...>());
}
/*
* Returns a testing::AssertionResult that is the reduced result of the
* exception safety algorithm. The algorithm short circuits and returns
* AssertionFailure after the first invariant callback returns an
* AssertionFailure. Otherwise, if all invariant callbacks return an
* AssertionSuccess, the reduced result is AssertionSuccess.
*
* Preconditions for tester.Test():
*
* - May only be called after at least one invariant assertion callback, a
* factory or initial value and a testable operation have been provided.
*/
template <typename LazyOperation = Operation,
typename =
EnableIfTestable<sizeof...(Invariants), Factory, LazyOperation>>
testing::AssertionResult Test() const {
return TestImpl(operation_, absl::index_sequence_for<Invariants...>());
}
private:
template <typename, typename, typename...>
friend class ExceptionSafetyTester;
friend ExceptionSafetyTester<> absl::MakeExceptionSafetyTester();
ExceptionSafetyTester() {}
ExceptionSafetyTester(const Factory& f, const Operation& o,
const std::tuple<Invariants...>& i)
: factory_(f), operation_(o), invariants_(i) {}
template <typename SelectedOperation, size_t... Indices>
testing::AssertionResult TestImpl(const SelectedOperation& selected_operation,
absl::index_sequence<Indices...>) const {
// Starting from 0 and counting upwards until one of the exit conditions is
// hit...
for (int count = 0;; ++count) {
// Run the full exception safety test algorithm for the current countdown
auto reduced_res =
TestAllInvariantsAtCountdown(factory_, selected_operation, count,
std::get<Indices>(invariants_)...);
// If there is no value in the optional, no invariants were run because no
// exception was thrown. This means that the test is complete and the loop
// can exit successfully.
if (!reduced_res.has_value()) {
return testing::AssertionSuccess();
}
// If the optional is not empty and the value is falsy, an invariant check
// failed so the test must exit to propegate the failure.
if (!reduced_res.value()) {
return reduced_res.value();
}
// If the optional is not empty and the value is not falsy, it means
// exceptions were thrown but the invariants passed so the test must
// continue to run.
}
}
Factory factory_;
Operation operation_;
std::tuple<Invariants...> invariants_;
};
} // namespace exceptions_internal
/*
* Constructs an empty ExceptionSafetyTester. All ExceptionSafetyTester
* objects are immutable and all With[thing] mutation methods return new
* instances of ExceptionSafetyTester.
*
* In order to test a T for exception safety, a factory for that T, a testable
* operation, and at least one invariant callback returning an assertion
* result must be applied using the respective methods.
*/
inline exceptions_internal::ExceptionSafetyTester<>
MakeExceptionSafetyTester() {
return {};
}
} // namespace absl

View file

@ -23,6 +23,7 @@
#include "absl/base/call_once.h"
#include "absl/base/config.h"
#include "absl/base/internal/direct_mmap.h"
#include "absl/base/internal/scheduling_mode.h"
#include "absl/base/macros.h"
#include "absl/base/thread_annotations.h"
@ -49,8 +50,6 @@
#include <new> // for placement-new
#include "absl/base/dynamic_annotations.h"
#include "absl/base/internal/malloc_hook.h"
#include "absl/base/internal/malloc_hook_invoke.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/internal/spinlock.h"
@ -405,7 +404,7 @@ bool LowLevelAlloc::DeleteArena(Arena *arena) {
if ((arena->flags & LowLevelAlloc::kAsyncSignalSafe) == 0) {
munmap_result = munmap(region, size);
} else {
munmap_result = MallocHook::UnhookedMUnmap(region, size);
munmap_result = base_internal::DirectMunmap(region, size);
}
if (munmap_result != 0) {
ABSL_RAW_LOG(FATAL, "LowLevelAlloc::DeleteArena: munmap failed: %d",
@ -503,9 +502,6 @@ void LowLevelAlloc::Free(void *v) {
ABSL_RAW_CHECK(f->header.magic == Magic(kMagicAllocated, &f->header),
"bad magic number in Free()");
LowLevelAlloc::Arena *arena = f->header.arena;
if ((arena->flags & kCallMallocHook) != 0) {
MallocHook::InvokeDeleteHook(v);
}
ArenaLock section(arena);
AddToFreelist(v, arena);
ABSL_RAW_CHECK(arena->allocation_count > 0, "nothing in arena to free");
@ -550,7 +546,7 @@ static void *DoAllocWithArena(size_t request, LowLevelAlloc::Arena *arena) {
ABSL_RAW_CHECK(new_pages != nullptr, "VirtualAlloc failed");
#else
if ((arena->flags & LowLevelAlloc::kAsyncSignalSafe) != 0) {
new_pages = MallocHook::UnhookedMMap(nullptr, new_pages_size,
new_pages = base_internal::DirectMmap(nullptr, new_pages_size,
PROT_WRITE|PROT_READ, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
} else {
new_pages = mmap(nullptr, new_pages_size, PROT_WRITE | PROT_READ,
@ -593,21 +589,12 @@ static void *DoAllocWithArena(size_t request, LowLevelAlloc::Arena *arena) {
void *LowLevelAlloc::Alloc(size_t request) {
void *result = DoAllocWithArena(request, DefaultArena());
// The default arena always calls the malloc hook.
// This call must be directly in the user-called allocator function
// for MallocHook::GetCallerStackTrace to work properly
MallocHook::InvokeNewHook(result, request);
return result;
}
void *LowLevelAlloc::AllocWithArena(size_t request, Arena *arena) {
ABSL_RAW_CHECK(arena != nullptr, "must pass a valid arena");
void *result = DoAllocWithArena(request, arena);
if ((arena->flags & kCallMallocHook) != 0) {
// this call must be directly in the user-called allocator function
// for MallocHook::GetCallerStackTrace to work properly
MallocHook::InvokeNewHook(result, request);
}
return result;
}

View file

@ -21,8 +21,6 @@
#include <unordered_map>
#include <utility>
#include "absl/base/internal/malloc_hook.h"
namespace absl {
namespace base_internal {
namespace {
@ -139,58 +137,12 @@ static void Test(bool use_new_arena, bool call_malloc_hook, int n) {
TEST_ASSERT(LowLevelAlloc::DeleteArena(arena));
}
}
// used for counting allocates and frees
static int32_t allocates;
static int32_t frees;
// ignore uses of the allocator not triggered by our test
static std::thread::id* test_tid;
// called on each alloc if kCallMallocHook specified
static void AllocHook(const void *p, size_t size) {
if (using_low_level_alloc) {
if (*test_tid == std::this_thread::get_id()) {
allocates++;
}
}
}
// called on each free if kCallMallocHook specified
static void FreeHook(const void *p) {
if (using_low_level_alloc) {
if (*test_tid == std::this_thread::get_id()) {
frees++;
}
}
}
// LowLevelAlloc is designed to be safe to call before main().
static struct BeforeMain {
BeforeMain() {
test_tid = new std::thread::id(std::this_thread::get_id());
TEST_ASSERT(MallocHook::AddNewHook(&AllocHook));
TEST_ASSERT(MallocHook::AddDeleteHook(&FreeHook));
TEST_ASSERT(allocates == 0);
TEST_ASSERT(frees == 0);
Test(false, false, 50000);
TEST_ASSERT(allocates != 0); // default arena calls hooks
TEST_ASSERT(frees != 0);
for (int i = 0; i != 16; i++) {
bool call_hooks = ((i & 1) == 1);
allocates = 0;
frees = 0;
Test(true, call_hooks, 15000);
if (call_hooks) {
TEST_ASSERT(allocates > 5000); // arena calls hooks
TEST_ASSERT(frees > 5000);
} else {
TEST_ASSERT(allocates == 0); // arena doesn't call hooks
TEST_ASSERT(frees == 0);
}
}
TEST_ASSERT(MallocHook::RemoveNewHook(&AllocHook));
TEST_ASSERT(MallocHook::RemoveDeleteHook(&FreeHook));
Test(true, false, 50000);
Test(true, true, 50000);
}
} before_main;

View file

@ -1,162 +0,0 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/base/internal/malloc_extension.h"
#include <assert.h>
#include <string.h>
#include <atomic>
#include <string>
#include "absl/base/dynamic_annotations.h"
namespace absl {
namespace base_internal {
// SysAllocator implementation
SysAllocator::~SysAllocator() {}
void SysAllocator::GetStats(char* buffer, int) { buffer[0] = 0; }
// Dummy key method to avoid weak vtable.
void MallocExtensionWriter::UnusedKeyMethod() {}
void StringMallocExtensionWriter::Write(const char* buf, int len) {
out_->append(buf, len);
}
// Default implementation -- does nothing
MallocExtension::~MallocExtension() { }
bool MallocExtension::VerifyAllMemory() { return true; }
bool MallocExtension::VerifyNewMemory(const void*) { return true; }
bool MallocExtension::VerifyArrayNewMemory(const void*) { return true; }
bool MallocExtension::VerifyMallocMemory(const void*) { return true; }
bool MallocExtension::GetNumericProperty(const char*, size_t*) {
return false;
}
bool MallocExtension::SetNumericProperty(const char*, size_t) {
return false;
}
void MallocExtension::GetStats(char* buffer, int length) {
assert(length > 0);
static_cast<void>(length);
buffer[0] = '\0';
}
bool MallocExtension::MallocMemoryStats(int* blocks, size_t* total,
int histogram[kMallocHistogramSize]) {
*blocks = 0;
*total = 0;
memset(histogram, 0, sizeof(*histogram) * kMallocHistogramSize);
return true;
}
void MallocExtension::MarkThreadIdle() {
// Default implementation does nothing
}
void MallocExtension::MarkThreadBusy() {
// Default implementation does nothing
}
SysAllocator* MallocExtension::GetSystemAllocator() {
return nullptr;
}
void MallocExtension::SetSystemAllocator(SysAllocator*) {
// Default implementation does nothing
}
void MallocExtension::ReleaseToSystem(size_t) {
// Default implementation does nothing
}
void MallocExtension::ReleaseFreeMemory() {
ReleaseToSystem(static_cast<size_t>(-1)); // SIZE_T_MAX
}
void MallocExtension::SetMemoryReleaseRate(double) {
// Default implementation does nothing
}
double MallocExtension::GetMemoryReleaseRate() {
return -1.0;
}
size_t MallocExtension::GetEstimatedAllocatedSize(size_t size) {
return size;
}
size_t MallocExtension::GetAllocatedSize(const void* p) {
assert(GetOwnership(p) != kNotOwned);
static_cast<void>(p);
return 0;
}
MallocExtension::Ownership MallocExtension::GetOwnership(const void*) {
return kUnknownOwnership;
}
void MallocExtension::GetProperties(MallocExtension::StatLevel,
std::map<std::string, Property>* result) {
result->clear();
}
size_t MallocExtension::ReleaseCPUMemory(int) {
return 0;
}
// The current malloc extension object.
std::atomic<MallocExtension*> MallocExtension::current_instance_;
MallocExtension* MallocExtension::InitModule() {
MallocExtension* ext = new MallocExtension;
current_instance_.store(ext, std::memory_order_release);
return ext;
}
void MallocExtension::Register(MallocExtension* implementation) {
InitModuleOnce();
// When running under valgrind, our custom malloc is replaced with
// valgrind's one and malloc extensions will not work. (Note:
// callers should be responsible for checking that they are the
// malloc that is really being run, before calling Register. This
// is just here as an extra sanity check.)
// Under compiler-based ThreadSanitizer RunningOnValgrind() returns true,
// but we still want to use malloc extensions.
#ifndef THREAD_SANITIZER
if (RunningOnValgrind()) {
return;
}
#endif // #ifndef THREAD_SANITIZER
current_instance_.store(implementation, std::memory_order_release);
}
void MallocExtension::GetHeapSample(MallocExtensionWriter*) {}
void MallocExtension::GetHeapGrowthStacks(MallocExtensionWriter*) {}
void MallocExtension::GetFragmentationProfile(MallocExtensionWriter*) {}
} // namespace base_internal
} // namespace absl
// Default implementation just returns size. The expectation is that
// the linked-in malloc implementation might provide an override of
// this weak function with a better implementation.
ABSL_ATTRIBUTE_WEAK ABSL_ATTRIBUTE_NOINLINE size_t nallocx(size_t size, int) {
return size;
}

View file

@ -1,426 +0,0 @@
//
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Extra extensions exported by some malloc implementations. These
// extensions are accessed through a virtual base class so an
// application can link against a malloc that does not implement these
// extensions, and it will get default versions that do nothing.
//
// NOTE FOR C USERS: If you wish to use this functionality from within
// a C program, see malloc_extension_c.h.
#ifndef ABSL_BASE_INTERNAL_MALLOC_EXTENSION_H_
#define ABSL_BASE_INTERNAL_MALLOC_EXTENSION_H_
#include <stddef.h>
#include <stdint.h>
#include <atomic>
#include <map>
#include <memory>
#include <string>
#include <vector>
#include "absl/base/attributes.h"
#include "absl/base/macros.h"
#include "absl/base/port.h"
namespace absl {
namespace base_internal {
class MallocExtensionWriter;
// Interface to a pluggable system allocator.
class SysAllocator {
public:
SysAllocator() {
}
virtual ~SysAllocator();
// Allocates "size"-byte of memory from system aligned with "alignment".
// Returns null if failed. Otherwise, the returned pointer p up to and
// including (p + actual_size -1) have been allocated.
virtual void* Alloc(size_t size, size_t *actual_size, size_t alignment) = 0;
// Get a human-readable description of the current state of the
// allocator. The state is stored as a null-terminated std::string in
// a prefix of buffer.
virtual void GetStats(char* buffer, int length);
};
// The default implementations of the following routines do nothing.
// All implementations should be thread-safe; the current ones
// (DebugMallocImplementation and TCMallocImplementation) are.
class MallocExtension {
public:
virtual ~MallocExtension();
// Verifies that all blocks are valid. Returns true if all are; dumps
// core otherwise. A no-op except in debug mode. Even in debug mode,
// they may not do any checking except with certain malloc
// implementations. Thread-safe.
virtual bool VerifyAllMemory();
// Verifies that p was returned by new, has not been deleted, and is
// valid. Returns true if p is good; dumps core otherwise. A no-op
// except in debug mode. Even in debug mode, may not do any checking
// except with certain malloc implementations. Thread-safe.
virtual bool VerifyNewMemory(const void* p);
// Verifies that p was returned by new[], has not been deleted, and is
// valid. Returns true if p is good; dumps core otherwise. A no-op
// except in debug mode. Even in debug mode, may not do any checking
// except with certain malloc implementations. Thread-safe.
virtual bool VerifyArrayNewMemory(const void* p);
// Verifies that p was returned by malloc, has not been freed, and is
// valid. Returns true if p is good; dumps core otherwise. A no-op
// except in debug mode. Even in debug mode, may not do any checking
// except with certain malloc implementations. Thread-safe.
virtual bool VerifyMallocMemory(const void* p);
// If statistics collection is enabled, sets *blocks to be the number of
// currently allocated blocks, sets *total to be the total size allocated
// over all blocks, sets histogram[n] to be the number of blocks with
// size between 2^n-1 and 2^(n+1), and returns true. Returns false, and
// does not change *blocks, *total, or *histogram, if statistics
// collection is disabled.
//
// Note that these statistics reflect memory allocated by new, new[],
// malloc(), and realloc(), but not mmap(). They may be larger (if not
// all pages have been written to) or smaller (if pages have been
// allocated by mmap()) than the total RSS size. They will always be
// smaller than the total virtual memory size.
static constexpr int kMallocHistogramSize = 64;
virtual bool MallocMemoryStats(int* blocks, size_t* total,
int histogram[kMallocHistogramSize]);
// Get a human readable description of the current state of the malloc
// data structures. The state is stored as a null-terminated std::string
// in a prefix of "buffer[0,buffer_length-1]".
// REQUIRES: buffer_length > 0.
virtual void GetStats(char* buffer, int buffer_length);
// Outputs to "writer" a sample of live objects and the stack traces
// that allocated these objects. The output can be passed to pprof.
virtual void GetHeapSample(MallocExtensionWriter* writer);
// Outputs to "writer" the stack traces that caused growth in the
// address space size. The output can be passed to "pprof".
virtual void GetHeapGrowthStacks(MallocExtensionWriter* writer);
// Outputs to "writer" a fragmentation profile. The output can be
// passed to "pprof". In particular, the result is a list of
// <n,total,stacktrace> tuples that says that "total" bytes in "n"
// objects are currently unusable because of fragmentation caused by
// an allocation with the specified "stacktrace".
virtual void GetFragmentationProfile(MallocExtensionWriter* writer);
// -------------------------------------------------------------------
// Control operations for getting and setting malloc implementation
// specific parameters. Some currently useful properties:
//
// generic
// -------
// "generic.current_allocated_bytes"
// Number of bytes currently allocated by application
// This property is not writable.
//
// "generic.heap_size"
// Number of bytes in the heap ==
// current_allocated_bytes +
// fragmentation +
// freed memory regions
// This property is not writable.
//
// tcmalloc
// --------
// "tcmalloc.max_total_thread_cache_bytes"
// Upper limit on total number of bytes stored across all
// per-thread caches. Default: 16MB.
//
// "tcmalloc.current_total_thread_cache_bytes"
// Number of bytes used across all thread caches.
// This property is not writable.
//
// "tcmalloc.pageheap_free_bytes"
// Number of bytes in free, mapped pages in page heap. These
// bytes can be used to fulfill allocation requests. They
// always count towards virtual memory usage, and unless the
// underlying memory is swapped out by the OS, they also count
// towards physical memory usage. This property is not writable.
//
// "tcmalloc.pageheap_unmapped_bytes"
// Number of bytes in free, unmapped pages in page heap.
// These are bytes that have been released back to the OS,
// possibly by one of the MallocExtension "Release" calls.
// They can be used to fulfill allocation requests, but
// typically incur a page fault. They always count towards
// virtual memory usage, and depending on the OS, typically
// do not count towards physical memory usage. This property
// is not writable.
//
// "tcmalloc.per_cpu_caches_active"
// Whether tcmalloc is using per-CPU caches (1 or 0 respectively).
// This property is not writable.
// -------------------------------------------------------------------
// Get the named "property"'s value. Returns true if the property
// is known. Returns false if the property is not a valid property
// name for the current malloc implementation.
// REQUIRES: property != null; value != null
virtual bool GetNumericProperty(const char* property, size_t* value);
// Set the named "property"'s value. Returns true if the property
// is known and writable. Returns false if the property is not a
// valid property name for the current malloc implementation, or
// is not writable.
// REQUIRES: property != null
virtual bool SetNumericProperty(const char* property, size_t value);
// Mark the current thread as "idle". This routine may optionally
// be called by threads as a hint to the malloc implementation that
// any thread-specific resources should be released. Note: this may
// be an expensive routine, so it should not be called too often.
//
// Also, if the code that calls this routine will go to sleep for
// a while, it should take care to not allocate anything between
// the call to this routine and the beginning of the sleep.
//
// Most malloc implementations ignore this routine.
virtual void MarkThreadIdle();
// Mark the current thread as "busy". This routine should be
// called after MarkThreadIdle() if the thread will now do more
// work. If this method is not called, performance may suffer.
//
// Most malloc implementations ignore this routine.
virtual void MarkThreadBusy();
// Attempt to free any resources associated with cpu <cpu> (in the sense
// of only being usable from that CPU.) Returns the number of bytes
// previously assigned to "cpu" that were freed. Safe to call from
// any processor, not just <cpu>.
//
// Most malloc implementations ignore this routine (known exceptions:
// tcmalloc with --tcmalloc_per_cpu_caches=true.)
virtual size_t ReleaseCPUMemory(int cpu);
// Gets the system allocator used by the malloc extension instance. Returns
// null for malloc implementations that do not support pluggable system
// allocators.
virtual SysAllocator* GetSystemAllocator();
// Sets the system allocator to the specified.
//
// Users could register their own system allocators for malloc implementation
// that supports pluggable system allocators, such as TCMalloc, by doing:
// alloc = new MyOwnSysAllocator();
// MallocExtension::instance()->SetSystemAllocator(alloc);
// It's up to users whether to fall back (recommended) to the default
// system allocator (use GetSystemAllocator() above) or not. The caller is
// responsible to any necessary locking.
// See tcmalloc/system-alloc.h for the interface and
// tcmalloc/memfs_malloc.cc for the examples.
//
// It's a no-op for malloc implementations that do not support pluggable
// system allocators.
virtual void SetSystemAllocator(SysAllocator *a);
// Try to release num_bytes of free memory back to the operating
// system for reuse. Use this extension with caution -- to get this
// memory back may require faulting pages back in by the OS, and
// that may be slow. (Currently only implemented in tcmalloc.)
virtual void ReleaseToSystem(size_t num_bytes);
// Same as ReleaseToSystem() but release as much memory as possible.
virtual void ReleaseFreeMemory();
// Sets the rate at which we release unused memory to the system.
// Zero means we never release memory back to the system. Increase
// this flag to return memory faster; decrease it to return memory
// slower. Reasonable rates are in the range [0,10]. (Currently
// only implemented in tcmalloc).
virtual void SetMemoryReleaseRate(double rate);
// Gets the release rate. Returns a value < 0 if unknown.
virtual double GetMemoryReleaseRate();
// Returns the estimated number of bytes that will be allocated for
// a request of "size" bytes. This is an estimate: an allocation of
// SIZE bytes may reserve more bytes, but will never reserve less.
// (Currently only implemented in tcmalloc, other implementations
// always return SIZE.)
// This is equivalent to malloc_good_size() in OS X.
virtual size_t GetEstimatedAllocatedSize(size_t size);
// Returns the actual number N of bytes reserved by tcmalloc for the
// pointer p. This number may be equal to or greater than the
// number of bytes requested when p was allocated.
//
// This routine is just useful for statistics collection. The
// client must *not* read or write from the extra bytes that are
// indicated by this call.
//
// Example, suppose the client gets memory by calling
// p = malloc(10)
// and GetAllocatedSize(p) returns 16. The client must only use the
// first 10 bytes p[0..9], and not attempt to read or write p[10..15].
//
// p must have been allocated by this malloc implementation, must
// not be an interior pointer -- that is, must be exactly the
// pointer returned to by malloc() et al., not some offset from that
// -- and should not have been freed yet. p may be null.
// (Currently only implemented in tcmalloc; other implementations
// will return 0.)
virtual size_t GetAllocatedSize(const void* p);
// Returns kOwned if this malloc implementation allocated the memory
// pointed to by p, or kNotOwned if some other malloc implementation
// allocated it or p is null. May also return kUnknownOwnership if
// the malloc implementation does not keep track of ownership.
// REQUIRES: p must be a value returned from a previous call to
// malloc(), calloc(), realloc(), memalign(), posix_memalign(),
// valloc(), pvalloc(), new, or new[], and must refer to memory that
// is currently allocated (so, for instance, you should not pass in
// a pointer after having called free() on it).
enum Ownership {
// NOTE: Enum values MUST be kept in sync with the version in
// malloc_extension_c.h
kUnknownOwnership = 0,
kOwned,
kNotOwned
};
virtual Ownership GetOwnership(const void* p);
// The current malloc implementation. Always non-null.
static MallocExtension* instance() {
InitModuleOnce();
return current_instance_.load(std::memory_order_acquire);
}
// Change the malloc implementation. Typically called by the
// malloc implementation during initialization.
static void Register(MallocExtension* implementation);
// Type used by GetProperties. See comment on GetProperties.
struct Property {
size_t value;
// Stores breakdown of the property value bucketed by object size.
struct Bucket {
size_t min_object_size;
size_t max_object_size;
size_t size;
};
// Empty unless detailed info was asked for and this type has buckets
std::vector<Bucket> buckets;
};
// Type used by GetProperties. See comment on GetProperties.
enum StatLevel { kSummary, kDetailed };
// Stores in *result detailed statistics about the malloc
// implementation. *result will be a map keyed by the name of
// the statistic. Each statistic has at least a "value" field.
//
// Some statistics may also contain an array of buckets if
// level==kDetailed and the "value" can be subdivided
// into different buckets for different object sizes. If
// such detailed statistics are not available, Property::buckets
// will be empty. Otherwise Property::buckets will contain
// potentially many entries. For each bucket b, b.value
// will count the value contributed by objects in the range
// [b.min_object_size, b.max_object_size].
//
// Common across malloc implementations:
// generic.bytes_in_use_by_app -- Bytes currently in use by application
// generic.physical_memory_used -- Overall (including malloc internals)
// generic.virtual_memory_used -- Overall (including malloc internals)
//
// Tcmalloc specific properties
// tcmalloc.cpu_free -- Bytes in per-cpu free-lists
// tcmalloc.thread_cache_free -- Bytes in per-thread free-lists
// tcmalloc.transfer_cache -- Bytes in cross-thread transfer caches
// tcmalloc.central_cache_free -- Bytes in central cache
// tcmalloc.page_heap_free -- Bytes in page heap
// tcmalloc.page_heap_unmapped -- Bytes in page heap (no backing phys. mem)
// tcmalloc.metadata_bytes -- Used by internal data structures
// tcmalloc.thread_cache_count -- Number of thread caches in use
//
// Debug allocator
// debug.free_queue -- Recently freed objects
virtual void GetProperties(StatLevel level,
std::map<std::string, Property>* result);
private:
static MallocExtension* InitModule();
static void InitModuleOnce() {
// Pointer stored here so heap leak checker will consider the default
// instance reachable, even if current_instance_ is later overridden by
// MallocExtension::Register().
ABSL_ATTRIBUTE_UNUSED static MallocExtension* default_instance =
InitModule();
}
static std::atomic<MallocExtension*> current_instance_;
};
// Base class than can handle output generated by GetHeapSample() and
// GetHeapGrowthStacks(). Use the available subclass or roll your
// own. Useful if you want explicit control over the type of output
// buffer used (e.g. IOBuffer, Cord, etc.)
class MallocExtensionWriter {
public:
virtual ~MallocExtensionWriter() {}
virtual void Write(const char* buf, int len) = 0;
protected:
MallocExtensionWriter() {}
MallocExtensionWriter(const MallocExtensionWriter&) = delete;
MallocExtensionWriter& operator=(const MallocExtensionWriter&) = delete;
private:
virtual void UnusedKeyMethod(); // Dummy key method to avoid weak vtable.
};
// A subclass that writes to the std::string "out". NOTE: The generated
// data is *appended* to "*out". I.e., the old contents of "*out" are
// preserved.
class StringMallocExtensionWriter : public MallocExtensionWriter {
public:
explicit StringMallocExtensionWriter(std::string* out) : out_(out) {}
void Write(const char* buf, int len) override;
private:
std::string* const out_;
StringMallocExtensionWriter(const StringMallocExtensionWriter&) = delete;
StringMallocExtensionWriter& operator=(const StringMallocExtensionWriter&) =
delete;
};
} // namespace base_internal
} // namespace absl
// The nallocx function allocates no memory, but it performs the same size
// computation as the malloc function, and returns the real size of the
// allocation that would result from the equivalent malloc function call.
// Default weak implementation returns size unchanged, but tcmalloc overrides it
// and returns rounded up size. See the following link for details:
// http://www.unix.com/man-page/freebsd/3/nallocx/
extern "C" size_t nallocx(size_t size, int flags);
#ifndef MALLOCX_LG_ALIGN
#define MALLOCX_LG_ALIGN(la) (la)
#endif
#endif // ABSL_BASE_INTERNAL_MALLOC_EXTENSION_H_

View file

@ -1,75 +0,0 @@
/*
* Copyright 2017 The Abseil Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* C shims for the C++ malloc_extension.h. See malloc_extension.h for
* details. Note these C shims always work on
* MallocExtension::instance(); it is not possible to have more than
* one MallocExtension object in C applications.
*/
#ifndef ABSL_BASE_INTERNAL_MALLOC_EXTENSION_C_H_
#define ABSL_BASE_INTERNAL_MALLOC_EXTENSION_C_H_
#include <stddef.h>
#include <sys/types.h>
#ifdef __cplusplus
extern "C" {
#endif
#define kMallocExtensionHistogramSize 64
int MallocExtension_VerifyAllMemory(void);
int MallocExtension_VerifyNewMemory(const void* p);
int MallocExtension_VerifyArrayNewMemory(const void* p);
int MallocExtension_VerifyMallocMemory(const void* p);
int MallocExtension_MallocMemoryStats(int* blocks, size_t* total,
int histogram[kMallocExtensionHistogramSize]);
void MallocExtension_GetStats(char* buffer, int buffer_length);
/* TODO(csilvers): write a C version of these routines, that perhaps
* takes a function ptr and a void *.
*/
/* void MallocExtension_GetHeapSample(MallocExtensionWriter* result); */
/* void MallocExtension_GetHeapGrowthStacks(MallocExtensionWriter* result); */
int MallocExtension_GetNumericProperty(const char* property, size_t* value);
int MallocExtension_SetNumericProperty(const char* property, size_t value);
void MallocExtension_MarkThreadIdle(void);
void MallocExtension_MarkThreadBusy(void);
void MallocExtension_ReleaseToSystem(size_t num_bytes);
void MallocExtension_ReleaseFreeMemory(void);
size_t MallocExtension_GetEstimatedAllocatedSize(size_t size);
size_t MallocExtension_GetAllocatedSize(const void* p);
/*
* NOTE: These enum values MUST be kept in sync with the version in
* malloc_extension.h
*/
typedef enum {
MallocExtension_kUnknownOwnership = 0,
MallocExtension_kOwned,
MallocExtension_kNotOwned
} MallocExtension_Ownership;
MallocExtension_Ownership MallocExtension_GetOwnership(const void* p);
#ifdef __cplusplus
} // extern "C"
#endif
#endif /* ABSL_BASE_INTERNAL_MALLOC_EXTENSION_C_H_ */

View file

@ -1,79 +0,0 @@
/*
* Copyright 2017 The Abseil Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <algorithm>
#include <cstdlib>
#include "gtest/gtest.h"
#include "absl/base/internal/malloc_extension.h"
namespace absl {
namespace base_internal {
namespace {
TEST(MallocExtension, MallocExtension) {
void* a = malloc(1000);
size_t cxx_bytes_used, c_bytes_used;
if (!MallocExtension::instance()->GetNumericProperty(
"generic.current_allocated_bytes", &cxx_bytes_used)) {
EXPECT_TRUE(ABSL_MALLOC_EXTENSION_TEST_ALLOW_MISSING_EXTENSION);
} else {
ASSERT_TRUE(MallocExtension::instance()->GetNumericProperty(
"generic.current_allocated_bytes", &cxx_bytes_used));
#ifndef MEMORY_SANITIZER
EXPECT_GT(cxx_bytes_used, 1000);
EXPECT_GT(c_bytes_used, 1000);
#endif
EXPECT_TRUE(MallocExtension::instance()->VerifyAllMemory());
EXPECT_EQ(MallocExtension::kOwned,
MallocExtension::instance()->GetOwnership(a));
// TODO(csilvers): this relies on undocumented behavior that
// GetOwnership works on stack-allocated variables. Use a better test.
EXPECT_EQ(MallocExtension::kNotOwned,
MallocExtension::instance()->GetOwnership(&cxx_bytes_used));
EXPECT_EQ(MallocExtension::kNotOwned,
MallocExtension::instance()->GetOwnership(nullptr));
EXPECT_GE(MallocExtension::instance()->GetAllocatedSize(a), 1000);
// This is just a sanity check. If we allocated too much, tcmalloc is
// broken
EXPECT_LE(MallocExtension::instance()->GetAllocatedSize(a), 5000);
EXPECT_GE(MallocExtension::instance()->GetEstimatedAllocatedSize(1000),
1000);
for (int i = 0; i < 10; ++i) {
void* p = malloc(i);
EXPECT_GE(MallocExtension::instance()->GetAllocatedSize(p),
MallocExtension::instance()->GetEstimatedAllocatedSize(i));
free(p);
}
}
free(a);
}
TEST(nallocx, SaneBehavior) {
for (size_t size = 0; size < 64 * 1024; ++size) {
size_t alloc_size = nallocx(size, 0);
EXPECT_LE(size, alloc_size) << "size is " << size;
EXPECT_LE(alloc_size, std::max(size + 100, 2 * size)) << "size is " << size;
}
}
} // namespace
} // namespace base_internal
} // namespace absl

View file

@ -1,574 +0,0 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#if ABSL_HAVE_MMAP
// Disable the glibc prototype of mremap(), as older versions of the
// system headers define this function with only four arguments,
// whereas newer versions allow an optional fifth argument:
#define mremap glibc_mremap
#include <sys/mman.h>
#undef mremap
#endif
#include "absl/base/internal/malloc_hook.h"
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include "absl/base/call_once.h"
#include "absl/base/internal/malloc_hook_invoke.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/internal/spinlock.h"
#include "absl/base/macros.h"
// __THROW is defined in glibc systems. It means, counter-intuitively,
// "This function will never throw an exception." It's an optional
// optimization tool, but we may need to use it to match glibc prototypes.
#ifndef __THROW // I guess we're not on a glibc system
# define __THROW // __THROW is just an optimization, so ok to make it ""
#endif
namespace absl {
namespace base_internal {
namespace {
void RemoveInitialHooksAndCallInitializers(); // below.
absl::once_flag once;
// These hooks are installed in MallocHook as the only initial hooks. The first
// hook that is called will run RemoveInitialHooksAndCallInitializers (see the
// definition below) and then redispatch to any malloc hooks installed by
// RemoveInitialHooksAndCallInitializers.
//
// Note(llib): there is a possibility of a race in the event that there are
// multiple threads running before the first allocation. This is pretty
// difficult to achieve, but if it is then multiple threads may concurrently do
// allocations. The first caller will call
// RemoveInitialHooksAndCallInitializers via one of the initial hooks. A
// concurrent allocation may, depending on timing either:
// * still have its initial malloc hook installed, run that and block on waiting
// for the first caller to finish its call to
// RemoveInitialHooksAndCallInitializers, and proceed normally.
// * occur some time during the RemoveInitialHooksAndCallInitializers call, at
// which point there could be no initial hooks and the subsequent hooks that
// are about to be set up by RemoveInitialHooksAndCallInitializers haven't
// been installed yet. I think the worst we can get is that some allocations
// will not get reported to some hooks set by the initializers called from
// RemoveInitialHooksAndCallInitializers.
void InitialNewHook(const void* ptr, size_t size) {
absl::call_once(once, RemoveInitialHooksAndCallInitializers);
MallocHook::InvokeNewHook(ptr, size);
}
void InitialPreMMapHook(const void* start,
size_t size,
int protection,
int flags,
int fd,
off_t offset) {
absl::call_once(once, RemoveInitialHooksAndCallInitializers);
MallocHook::InvokePreMmapHook(start, size, protection, flags, fd, offset);
}
void InitialPreSbrkHook(ptrdiff_t increment) {
absl::call_once(once, RemoveInitialHooksAndCallInitializers);
MallocHook::InvokePreSbrkHook(increment);
}
// This function is called at most once by one of the above initial malloc
// hooks. It removes all initial hooks and initializes all other clients that
// want to get control at the very first memory allocation. The initializers
// may assume that the initial malloc hooks have been removed. The initializers
// may set up malloc hooks and allocate memory.
void RemoveInitialHooksAndCallInitializers() {
ABSL_RAW_CHECK(MallocHook::RemoveNewHook(&InitialNewHook), "");
ABSL_RAW_CHECK(MallocHook::RemovePreMmapHook(&InitialPreMMapHook), "");
ABSL_RAW_CHECK(MallocHook::RemovePreSbrkHook(&InitialPreSbrkHook), "");
}
} // namespace
} // namespace base_internal
} // namespace absl
namespace absl {
namespace base_internal {
// This lock is shared between all implementations of HookList::Add & Remove.
// The potential for contention is very small. This needs to be a SpinLock and
// not a Mutex since it's possible for Mutex locking to allocate memory (e.g.,
// per-thread allocation in debug builds), which could cause infinite recursion.
static absl::base_internal::SpinLock hooklist_spinlock(
absl::base_internal::kLinkerInitialized);
template <typename T>
bool HookList<T>::Add(T value_as_t) {
if (value_as_t == T()) {
return false;
}
absl::base_internal::SpinLockHolder l(&hooklist_spinlock);
// Find the first slot in data that is 0.
int index = 0;
while ((index < kHookListMaxValues) &&
(priv_data[index].load(std::memory_order_relaxed) != 0)) {
++index;
}
if (index == kHookListMaxValues) {
return false;
}
int prev_num_hooks = priv_end.load(std::memory_order_acquire);
priv_data[index].store(reinterpret_cast<intptr_t>(value_as_t),
std::memory_order_release);
if (prev_num_hooks <= index) {
priv_end.store(index + 1, std::memory_order_release);
}
return true;
}
template <typename T>
bool HookList<T>::Remove(T value_as_t) {
if (value_as_t == T()) {
return false;
}
absl::base_internal::SpinLockHolder l(&hooklist_spinlock);
int hooks_end = priv_end.load(std::memory_order_acquire);
int index = 0;
while (index < hooks_end &&
value_as_t != reinterpret_cast<T>(
priv_data[index].load(std::memory_order_acquire))) {
++index;
}
if (index == hooks_end) {
return false;
}
priv_data[index].store(0, std::memory_order_release);
if (hooks_end == index + 1) {
// Adjust hooks_end down to the lowest possible value.
hooks_end = index;
while ((hooks_end > 0) &&
(priv_data[hooks_end - 1].load(std::memory_order_acquire) == 0)) {
--hooks_end;
}
priv_end.store(hooks_end, std::memory_order_release);
}
return true;
}
template <typename T>
int HookList<T>::Traverse(T* output_array, int n) const {
int hooks_end = priv_end.load(std::memory_order_acquire);
int actual_hooks_end = 0;
for (int i = 0; i < hooks_end && n > 0; ++i) {
T data = reinterpret_cast<T>(priv_data[i].load(std::memory_order_acquire));
if (data != T()) {
*output_array++ = data;
++actual_hooks_end;
--n;
}
}
return actual_hooks_end;
}
// Initialize a HookList (optionally with the given initial_value in index 0).
#define INIT_HOOK_LIST { {0}, {{}} }
#define INIT_HOOK_LIST_WITH_VALUE(initial_value) \
{ {1}, { {reinterpret_cast<intptr_t>(initial_value)} } }
// Explicit instantiation for malloc_hook_test.cc. This ensures all the methods
// are instantiated.
template struct HookList<MallocHook::NewHook>;
HookList<MallocHook::NewHook> new_hooks_ =
INIT_HOOK_LIST_WITH_VALUE(&InitialNewHook);
HookList<MallocHook::DeleteHook> delete_hooks_ = INIT_HOOK_LIST;
HookList<MallocHook::SampledNewHook> sampled_new_hooks_ = INIT_HOOK_LIST;
HookList<MallocHook::SampledDeleteHook> sampled_delete_hooks_ = INIT_HOOK_LIST;
HookList<MallocHook::PreMmapHook> premmap_hooks_ =
INIT_HOOK_LIST_WITH_VALUE(&InitialPreMMapHook);
HookList<MallocHook::MmapHook> mmap_hooks_ = INIT_HOOK_LIST;
HookList<MallocHook::MunmapHook> munmap_hooks_ = INIT_HOOK_LIST;
HookList<MallocHook::MremapHook> mremap_hooks_ = INIT_HOOK_LIST;
HookList<MallocHook::PreSbrkHook> presbrk_hooks_ =
INIT_HOOK_LIST_WITH_VALUE(InitialPreSbrkHook);
HookList<MallocHook::SbrkHook> sbrk_hooks_ = INIT_HOOK_LIST;
// These lists contain either 0 or 1 hooks.
HookList<MallocHook::MmapReplacement> mmap_replacement_ = INIT_HOOK_LIST;
HookList<MallocHook::MunmapReplacement> munmap_replacement_ = INIT_HOOK_LIST;
#undef INIT_HOOK_LIST_WITH_VALUE
#undef INIT_HOOK_LIST
bool MallocHook::AddNewHook(NewHook hook) { return new_hooks_.Add(hook); }
bool MallocHook::RemoveNewHook(NewHook hook) { return new_hooks_.Remove(hook); }
bool MallocHook::AddDeleteHook(DeleteHook hook) {
return delete_hooks_.Add(hook);
}
bool MallocHook::RemoveDeleteHook(DeleteHook hook) {
return delete_hooks_.Remove(hook);
}
bool MallocHook::AddSampledNewHook(SampledNewHook hook) {
return sampled_new_hooks_.Add(hook);
}
bool MallocHook::RemoveSampledNewHook(SampledNewHook hook) {
return sampled_new_hooks_.Remove(hook);
}
bool MallocHook::AddSampledDeleteHook(SampledDeleteHook hook) {
return sampled_delete_hooks_.Add(hook);
}
bool MallocHook::RemoveSampledDeleteHook(SampledDeleteHook hook) {
return sampled_delete_hooks_.Remove(hook);
}
bool MallocHook::AddPreMmapHook(PreMmapHook hook) {
return premmap_hooks_.Add(hook);
}
bool MallocHook::RemovePreMmapHook(PreMmapHook hook) {
return premmap_hooks_.Remove(hook);
}
bool MallocHook::SetMmapReplacement(MmapReplacement hook) {
// NOTE this is a best effort CHECK. Concurrent sets could succeed since
// this test is outside of the Add spin lock.
ABSL_RAW_CHECK(mmap_replacement_.empty(),
"Only one MMapReplacement is allowed.");
return mmap_replacement_.Add(hook);
}
bool MallocHook::RemoveMmapReplacement(MmapReplacement hook) {
return mmap_replacement_.Remove(hook);
}
bool MallocHook::AddMmapHook(MmapHook hook) { return mmap_hooks_.Add(hook); }
bool MallocHook::RemoveMmapHook(MmapHook hook) {
return mmap_hooks_.Remove(hook);
}
bool MallocHook::SetMunmapReplacement(MunmapReplacement hook) {
// NOTE this is a best effort CHECK. Concurrent sets could succeed since
// this test is outside of the Add spin lock.
ABSL_RAW_CHECK(munmap_replacement_.empty(),
"Only one MunmapReplacement is allowed.");
return munmap_replacement_.Add(hook);
}
bool MallocHook::RemoveMunmapReplacement(MunmapReplacement hook) {
return munmap_replacement_.Remove(hook);
}
bool MallocHook::AddMunmapHook(MunmapHook hook) {
return munmap_hooks_.Add(hook);
}
bool MallocHook::RemoveMunmapHook(MunmapHook hook) {
return munmap_hooks_.Remove(hook);
}
bool MallocHook::AddMremapHook(MremapHook hook) {
return mremap_hooks_.Add(hook);
}
bool MallocHook::RemoveMremapHook(MremapHook hook) {
return mremap_hooks_.Remove(hook);
}
bool MallocHook::AddPreSbrkHook(PreSbrkHook hook) {
return presbrk_hooks_.Add(hook);
}
bool MallocHook::RemovePreSbrkHook(PreSbrkHook hook) {
return presbrk_hooks_.Remove(hook);
}
bool MallocHook::AddSbrkHook(SbrkHook hook) { return sbrk_hooks_.Add(hook); }
bool MallocHook::RemoveSbrkHook(SbrkHook hook) {
return sbrk_hooks_.Remove(hook);
}
// Note: embedding the function calls inside the traversal of HookList would be
// very confusing, as it is legal for a hook to remove itself and add other
// hooks. Doing traversal first, and then calling the hooks ensures we only
// call the hooks registered at the start.
#define INVOKE_HOOKS(HookType, hook_list, args) \
do { \
HookType hooks[kHookListMaxValues]; \
int num_hooks = hook_list.Traverse(hooks, kHookListMaxValues); \
for (int i = 0; i < num_hooks; ++i) { \
(*hooks[i]) args; \
} \
} while (0)
// There should only be one replacement. Return the result of the first
// one, or false if there is none.
#define INVOKE_REPLACEMENT(HookType, hook_list, args) \
do { \
HookType hooks[kHookListMaxValues]; \
int num_hooks = hook_list.Traverse(hooks, kHookListMaxValues); \
return (num_hooks > 0 && (*hooks[0])args); \
} while (0)
void MallocHook::InvokeNewHookSlow(const void* ptr, size_t size) {
INVOKE_HOOKS(NewHook, new_hooks_, (ptr, size));
}
void MallocHook::InvokeDeleteHookSlow(const void* ptr) {
INVOKE_HOOKS(DeleteHook, delete_hooks_, (ptr));
}
void MallocHook::InvokeSampledNewHookSlow(const SampledAlloc* sampled_alloc) {
INVOKE_HOOKS(SampledNewHook, sampled_new_hooks_, (sampled_alloc));
}
void MallocHook::InvokeSampledDeleteHookSlow(AllocHandle handle) {
INVOKE_HOOKS(SampledDeleteHook, sampled_delete_hooks_, (handle));
}
void MallocHook::InvokePreMmapHookSlow(const void* start,
size_t size,
int protection,
int flags,
int fd,
off_t offset) {
INVOKE_HOOKS(PreMmapHook, premmap_hooks_, (start, size, protection, flags, fd,
offset));
}
void MallocHook::InvokeMmapHookSlow(const void* result,
const void* start,
size_t size,
int protection,
int flags,
int fd,
off_t offset) {
INVOKE_HOOKS(MmapHook, mmap_hooks_, (result, start, size, protection, flags,
fd, offset));
}
bool MallocHook::InvokeMmapReplacementSlow(const void* start,
size_t size,
int protection,
int flags,
int fd,
off_t offset,
void** result) {
INVOKE_REPLACEMENT(MmapReplacement, mmap_replacement_,
(start, size, protection, flags, fd, offset, result));
}
void MallocHook::InvokeMunmapHookSlow(const void* start, size_t size) {
INVOKE_HOOKS(MunmapHook, munmap_hooks_, (start, size));
}
bool MallocHook::InvokeMunmapReplacementSlow(const void* start,
size_t size,
int* result) {
INVOKE_REPLACEMENT(MunmapReplacement, munmap_replacement_,
(start, size, result));
}
void MallocHook::InvokeMremapHookSlow(const void* result,
const void* old_addr,
size_t old_size,
size_t new_size,
int flags,
const void* new_addr) {
INVOKE_HOOKS(MremapHook, mremap_hooks_, (result, old_addr, old_size, new_size,
flags, new_addr));
}
void MallocHook::InvokePreSbrkHookSlow(ptrdiff_t increment) {
INVOKE_HOOKS(PreSbrkHook, presbrk_hooks_, (increment));
}
void MallocHook::InvokeSbrkHookSlow(const void* result, ptrdiff_t increment) {
INVOKE_HOOKS(SbrkHook, sbrk_hooks_, (result, increment));
}
#undef INVOKE_HOOKS
#undef INVOKE_REPLACEMENT
} // namespace base_internal
} // namespace absl
ABSL_DEFINE_ATTRIBUTE_SECTION_VARS(malloc_hook);
ABSL_DECLARE_ATTRIBUTE_SECTION_VARS(malloc_hook);
// actual functions are in this file, malloc_hook.cc, and low_level_alloc.cc
ABSL_DEFINE_ATTRIBUTE_SECTION_VARS(google_malloc);
ABSL_DECLARE_ATTRIBUTE_SECTION_VARS(google_malloc);
ABSL_DEFINE_ATTRIBUTE_SECTION_VARS(blink_malloc);
ABSL_DECLARE_ATTRIBUTE_SECTION_VARS(blink_malloc);
#define ADDR_IN_ATTRIBUTE_SECTION(addr, name) \
(reinterpret_cast<uintptr_t>(ABSL_ATTRIBUTE_SECTION_START(name)) <= \
reinterpret_cast<uintptr_t>(addr) && \
reinterpret_cast<uintptr_t>(addr) < \
reinterpret_cast<uintptr_t>(ABSL_ATTRIBUTE_SECTION_STOP(name)))
// Return true iff 'caller' is a return address within a function
// that calls one of our hooks via MallocHook:Invoke*.
// A helper for GetCallerStackTrace.
static inline bool InHookCaller(const void* caller) {
return ADDR_IN_ATTRIBUTE_SECTION(caller, google_malloc) ||
ADDR_IN_ATTRIBUTE_SECTION(caller, malloc_hook) ||
ADDR_IN_ATTRIBUTE_SECTION(caller, blink_malloc);
// We can use one section for everything except tcmalloc_or_debug
// due to its special linkage mode, which prevents merging of the sections.
}
#undef ADDR_IN_ATTRIBUTE_SECTION
static absl::once_flag in_hook_caller_once;
static void InitializeInHookCaller() {
ABSL_INIT_ATTRIBUTE_SECTION_VARS(malloc_hook);
if (ABSL_ATTRIBUTE_SECTION_START(malloc_hook) ==
ABSL_ATTRIBUTE_SECTION_STOP(malloc_hook)) {
ABSL_RAW_LOG(ERROR,
"malloc_hook section is missing, "
"thus InHookCaller is broken!");
}
ABSL_INIT_ATTRIBUTE_SECTION_VARS(google_malloc);
if (ABSL_ATTRIBUTE_SECTION_START(google_malloc) ==
ABSL_ATTRIBUTE_SECTION_STOP(google_malloc)) {
ABSL_RAW_LOG(ERROR,
"google_malloc section is missing, "
"thus InHookCaller is broken!");
}
ABSL_INIT_ATTRIBUTE_SECTION_VARS(blink_malloc);
}
namespace absl {
namespace base_internal {
int MallocHook::GetCallerStackTrace(void** result, int max_depth,
int skip_count,
GetStackTraceFn get_stack_trace_fn) {
if (!ABSL_HAVE_ATTRIBUTE_SECTION) {
// Fall back to get_stack_trace_fn and good old but fragile frame skip
// counts.
// Note: this path is inaccurate when a hook is not called directly by an
// allocation function but is daisy-chained through another hook,
// search for MallocHook::(Get|Set|Invoke)* to find such cases.
#ifdef NDEBUG
return get_stack_trace_fn(result, max_depth, skip_count);
#else
return get_stack_trace_fn(result, max_depth, skip_count + 1);
#endif
// due to -foptimize-sibling-calls in opt mode
// there's no need for extra frame skip here then
}
absl::call_once(in_hook_caller_once, InitializeInHookCaller);
// MallocHook caller determination via InHookCaller works, use it:
static const int kMaxSkip = 32 + 6 + 3;
// Constant tuned to do just one get_stack_trace_fn call below in practice
// and not get many frames that we don't actually need:
// currently max passed max_depth is 32,
// max passed/needed skip_count is 6
// and 3 is to account for some hook daisy chaining.
static const int kStackSize = kMaxSkip + 1;
void* stack[kStackSize];
int depth =
get_stack_trace_fn(stack, kStackSize, 1); // skip this function frame
if (depth == 0)
// silently propagate cases when get_stack_trace_fn does not work
return 0;
for (int i = depth - 1; i >= 0; --i) { // stack[0] is our immediate caller
if (InHookCaller(stack[i])) {
i += 1; // skip hook caller frame
depth -= i; // correct depth
if (depth > max_depth) depth = max_depth;
std::copy(stack + i, stack + i + depth, result);
if (depth < max_depth && depth + i == kStackSize) {
// get frames for the missing depth
depth += get_stack_trace_fn(result + depth, max_depth - depth,
1 + kStackSize);
}
return depth;
}
}
ABSL_RAW_LOG(WARNING,
"Hooked allocator frame not found, returning empty trace");
// If this happens try increasing kMaxSkip
// or else something must be wrong with InHookCaller,
// e.g. for every section used in InHookCaller
// all functions in that section must be inside the same library.
return 0;
}
} // namespace base_internal
} // namespace absl
// On systems where we know how, we override mmap/munmap/mremap/sbrk
// to provide support for calling the related hooks (in addition,
// of course, to doing what these functions normally do).
// The ABSL_MALLOC_HOOK_MMAP_DISABLE macro disables mmap/munmap interceptors.
// Dynamic tools that intercept mmap/munmap can't be linked together with
// malloc_hook interceptors. We disable the malloc_hook interceptors for the
// widely-used dynamic tools, i.e. ThreadSanitizer and MemorySanitizer, but
// still allow users to disable this in special cases that can't be easily
// detected during compilation, via -DABSL_MALLOC_HOOK_MMAP_DISABLE or #define
// ABSL_MALLOC_HOOK_MMAP_DISABLE.
//
// TODO(absl-team): Remove MALLOC_HOOK_MMAP_DISABLE in CROSSTOOL for tsan and
// msan config; Replace MALLOC_HOOK_MMAP_DISABLE with
// ABSL_MALLOC_HOOK_MMAP_DISABLE for other special cases.
#if !defined(THREAD_SANITIZER) && !defined(MEMORY_SANITIZER) && \
!defined(ABSL_MALLOC_HOOK_MMAP_DISABLE) && !defined(__ANDROID__) && \
defined(__linux__)
#include "absl/base/internal/malloc_hook_mmap_linux.inc"
#elif ABSL_HAVE_MMAP
namespace absl {
namespace base_internal {
// static
void* MallocHook::UnhookedMMap(void* start, size_t size, int protection,
int flags, int fd, off_t offset) {
void* result;
if (!MallocHook::InvokeMmapReplacement(
start, size, protection, flags, fd, offset, &result)) {
result = mmap(start, size, protection, flags, fd, offset);
}
return result;
}
// static
int MallocHook::UnhookedMUnmap(void* start, size_t size) {
int result;
if (!MallocHook::InvokeMunmapReplacement(start, size, &result)) {
result = munmap(start, size);
}
return result;
}
} // namespace base_internal
} // namespace absl
#endif

View file

@ -1,284 +0,0 @@
//
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Some of our malloc implementations can invoke the following hooks whenever
// memory is allocated or deallocated. MallocHook is thread-safe, and things
// you do before calling AddFooHook(MyHook) are visible to any resulting calls
// to MyHook. Hooks must be thread-safe. If you write:
//
// CHECK(MallocHook::AddNewHook(&MyNewHook));
//
// MyNewHook will be invoked in subsequent calls in the current thread, but
// there are no guarantees on when it might be invoked in other threads.
//
// There are a limited number of slots available for each hook type. Add*Hook
// will return false if there are no slots available. Remove*Hook will return
// false if the given hook was not already installed.
//
// The order in which individual hooks are called in Invoke*Hook is undefined.
//
// It is safe for a hook to remove itself within Invoke*Hook and add other
// hooks. Any hooks added inside a hook invocation (for the same hook type)
// will not be invoked for the current invocation.
//
// One important user of these hooks is the heap profiler.
//
// CAVEAT: If you add new MallocHook::Invoke* calls then those calls must be
// directly in the code of the (de)allocation function that is provided to the
// user and that function must have an ABSL_ATTRIBUTE_SECTION(malloc_hook)
// attribute.
//
// Note: the Invoke*Hook() functions are defined in malloc_hook-inl.h. If you
// need to invoke a hook (which you shouldn't unless you're part of tcmalloc),
// be sure to #include malloc_hook-inl.h in addition to malloc_hook.h.
//
// NOTE FOR C USERS: If you want to use malloc_hook functionality from
// a C program, #include malloc_hook_c.h instead of this file.
//
// IWYU pragma: private, include "base/malloc_hook.h"
#ifndef ABSL_BASE_INTERNAL_MALLOC_HOOK_H_
#define ABSL_BASE_INTERNAL_MALLOC_HOOK_H_
#include <sys/types.h>
#include <cstddef>
#include "absl/base/config.h"
#include "absl/base/internal/malloc_hook_c.h"
#include "absl/base/port.h"
namespace absl {
namespace base_internal {
// Note: malloc_hook_c.h defines MallocHook_*Hook and
// MallocHook_{Add,Remove}*Hook. The version of these inside the MallocHook
// class are defined in terms of the malloc_hook_c version. See malloc_hook_c.h
// for details of these types/functions.
class MallocHook {
public:
// The NewHook is invoked whenever an object is being allocated.
// Object pointer and size are passed in.
// It may be passed null pointer if the allocator returned null.
typedef MallocHook_NewHook NewHook;
static bool AddNewHook(NewHook hook);
static bool RemoveNewHook(NewHook hook);
inline static void InvokeNewHook(const void* ptr, size_t size);
// The DeleteHook is invoked whenever an object is being deallocated.
// Object pointer is passed in.
// It may be passed null pointer if the caller is trying to delete null.
typedef MallocHook_DeleteHook DeleteHook;
static bool AddDeleteHook(DeleteHook hook);
static bool RemoveDeleteHook(DeleteHook hook);
inline static void InvokeDeleteHook(const void* ptr);
// The SampledNewHook is invoked for some subset of object allocations
// according to the sampling policy of an allocator such as tcmalloc.
// SampledAlloc has the following fields:
// * AllocHandle handle: to be set to an effectively unique value (in this
// process) by allocator.
// * size_t allocated_size: space actually used by allocator to host the
// object. Not necessarily equal to the requested size due to alignment
// and other reasons.
// * double weight: the expected number of allocations matching this profile
// that this sample represents.
// * int stack_depth and const void* stack: invocation stack for
// the allocation.
// The allocator invoking the hook should record the handle value and later
// call InvokeSampledDeleteHook() with that value.
typedef MallocHook_SampledNewHook SampledNewHook;
typedef MallocHook_SampledAlloc SampledAlloc;
static bool AddSampledNewHook(SampledNewHook hook);
static bool RemoveSampledNewHook(SampledNewHook hook);
inline static void InvokeSampledNewHook(const SampledAlloc* sampled_alloc);
// The SampledDeleteHook is invoked whenever an object previously chosen
// by an allocator for sampling is being deallocated.
// The handle identifying the object --as previously chosen by
// InvokeSampledNewHook()-- is passed in.
typedef MallocHook_SampledDeleteHook SampledDeleteHook;
typedef MallocHook_AllocHandle AllocHandle;
static bool AddSampledDeleteHook(SampledDeleteHook hook);
static bool RemoveSampledDeleteHook(SampledDeleteHook hook);
inline static void InvokeSampledDeleteHook(AllocHandle handle);
// The PreMmapHook is invoked with mmap's or mmap64's arguments just
// before the mmap/mmap64 call is actually made. Such a hook may be useful
// in memory limited contexts, to catch allocations that will exceed
// a memory limit, and take outside actions to increase that limit.
typedef MallocHook_PreMmapHook PreMmapHook;
static bool AddPreMmapHook(PreMmapHook hook);
static bool RemovePreMmapHook(PreMmapHook hook);
inline static void InvokePreMmapHook(const void* start,
size_t size,
int protection,
int flags,
int fd,
off_t offset);
// The MmapReplacement is invoked with mmap's arguments and place to put the
// result into after the PreMmapHook but before the mmap/mmap64 call is
// actually made.
// The MmapReplacement should return true if it handled the call, or false
// if it is still necessary to call mmap/mmap64.
// This should be used only by experts, and users must be be
// extremely careful to avoid recursive calls to mmap. The replacement
// should be async signal safe.
// Only one MmapReplacement is supported. After setting an MmapReplacement
// you must call RemoveMmapReplacement before calling SetMmapReplacement
// again.
typedef MallocHook_MmapReplacement MmapReplacement;
static bool SetMmapReplacement(MmapReplacement hook);
static bool RemoveMmapReplacement(MmapReplacement hook);
inline static bool InvokeMmapReplacement(const void* start,
size_t size,
int protection,
int flags,
int fd,
off_t offset,
void** result);
// The MmapHook is invoked with mmap's return value and arguments whenever
// a region of memory has been just mapped.
// It may be passed MAP_FAILED if the mmap failed.
typedef MallocHook_MmapHook MmapHook;
static bool AddMmapHook(MmapHook hook);
static bool RemoveMmapHook(MmapHook hook);
inline static void InvokeMmapHook(const void* result,
const void* start,
size_t size,
int protection,
int flags,
int fd,
off_t offset);
// The MunmapReplacement is invoked with munmap's arguments and place to put
// the result into just before the munmap call is actually made.
// The MunmapReplacement should return true if it handled the call, or false
// if it is still necessary to call munmap.
// This should be used only by experts. The replacement should be
// async signal safe.
// Only one MunmapReplacement is supported. After setting an
// MunmapReplacement you must call RemoveMunmapReplacement before
// calling SetMunmapReplacement again.
typedef MallocHook_MunmapReplacement MunmapReplacement;
static bool SetMunmapReplacement(MunmapReplacement hook);
static bool RemoveMunmapReplacement(MunmapReplacement hook);
inline static bool InvokeMunmapReplacement(const void* start,
size_t size,
int* result);
// The MunmapHook is invoked with munmap's arguments just before the munmap
// call is actually made.
// TODO(maxim): Rename this to PreMunmapHook for consistency with PreMmapHook
// and PreSbrkHook.
typedef MallocHook_MunmapHook MunmapHook;
static bool AddMunmapHook(MunmapHook hook);
static bool RemoveMunmapHook(MunmapHook hook);
inline static void InvokeMunmapHook(const void* start, size_t size);
// The MremapHook is invoked with mremap's return value and arguments
// whenever a region of memory has been just remapped.
typedef MallocHook_MremapHook MremapHook;
static bool AddMremapHook(MremapHook hook);
static bool RemoveMremapHook(MremapHook hook);
inline static void InvokeMremapHook(const void* result,
const void* old_addr,
size_t old_size,
size_t new_size,
int flags,
const void* new_addr);
// The PreSbrkHook is invoked with sbrk's argument just before sbrk is called
// -- except when the increment is 0. This is because sbrk(0) is often called
// to get the top of the memory stack, and is not actually a
// memory-allocation call. It may be useful in memory-limited contexts,
// to catch allocations that will exceed the limit and take outside
// actions to increase such a limit.
typedef MallocHook_PreSbrkHook PreSbrkHook;
static bool AddPreSbrkHook(PreSbrkHook hook);
static bool RemovePreSbrkHook(PreSbrkHook hook);
inline static void InvokePreSbrkHook(ptrdiff_t increment);
// The SbrkHook is invoked with sbrk's result and argument whenever sbrk
// has just executed -- except when the increment is 0.
// This is because sbrk(0) is often called to get the top of the memory stack,
// and is not actually a memory-allocation call.
typedef MallocHook_SbrkHook SbrkHook;
static bool AddSbrkHook(SbrkHook hook);
static bool RemoveSbrkHook(SbrkHook hook);
inline static void InvokeSbrkHook(const void* result, ptrdiff_t increment);
// Pointer to a absl::GetStackTrace implementation, following the API in
// base/stacktrace.h.
using GetStackTraceFn = int (*)(void**, int, int);
// Get the current stack trace. Try to skip all routines up to and
// including the caller of MallocHook::Invoke*.
// Use "skip_count" (similarly to absl::GetStackTrace from stacktrace.h)
// as a hint about how many routines to skip if better information
// is not available.
// Stack trace is filled into *result up to the size of max_depth.
// The actual number of stack frames filled is returned.
static int GetCallerStackTrace(void** result, int max_depth, int skip_count,
GetStackTraceFn get_stack_trace_fn);
#if ABSL_HAVE_MMAP
// Unhooked versions of mmap() and munmap(). These should be used
// only by experts, since they bypass heapchecking, etc.
// Note: These do not run hooks, but they still use the MmapReplacement
// and MunmapReplacement.
static void* UnhookedMMap(void* start, size_t size, int protection, int flags,
int fd, off_t offset);
static int UnhookedMUnmap(void* start, size_t size);
#endif
private:
// Slow path versions of Invoke*Hook.
static void InvokeNewHookSlow(const void* ptr,
size_t size) ABSL_ATTRIBUTE_COLD;
static void InvokeDeleteHookSlow(const void* ptr) ABSL_ATTRIBUTE_COLD;
static void InvokeSampledNewHookSlow(const SampledAlloc* sampled_alloc)
ABSL_ATTRIBUTE_COLD;
static void InvokeSampledDeleteHookSlow(AllocHandle handle)
ABSL_ATTRIBUTE_COLD;
static void InvokePreMmapHookSlow(const void* start, size_t size,
int protection, int flags, int fd,
off_t offset) ABSL_ATTRIBUTE_COLD;
static void InvokeMmapHookSlow(const void* result, const void* start,
size_t size, int protection, int flags, int fd,
off_t offset) ABSL_ATTRIBUTE_COLD;
static bool InvokeMmapReplacementSlow(const void* start, size_t size,
int protection, int flags, int fd,
off_t offset,
void** result) ABSL_ATTRIBUTE_COLD;
static void InvokeMunmapHookSlow(const void* ptr,
size_t size) ABSL_ATTRIBUTE_COLD;
static bool InvokeMunmapReplacementSlow(const void* ptr, size_t size,
int* result) ABSL_ATTRIBUTE_COLD;
static void InvokeMremapHookSlow(const void* result, const void* old_addr,
size_t old_size, size_t new_size, int flags,
const void* new_addr) ABSL_ATTRIBUTE_COLD;
static void InvokePreSbrkHookSlow(ptrdiff_t increment) ABSL_ATTRIBUTE_COLD;
static void InvokeSbrkHookSlow(const void* result,
ptrdiff_t increment) ABSL_ATTRIBUTE_COLD;
};
} // namespace base_internal
} // namespace absl
#endif // ABSL_BASE_INTERNAL_MALLOC_HOOK_H_

View file

@ -1,69 +0,0 @@
/*
* Copyright 2017 The Abseil Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* C shims for the C++ malloc_hook.h. See malloc_hook.h for details
* on how to use these.
*/
#ifndef ABSL_BASE_INTERNAL_MALLOC_HOOK_C_H_
#define ABSL_BASE_INTERNAL_MALLOC_HOOK_C_H_
#include <stddef.h>
#include <stdint.h>
#include <sys/types.h>
#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */
typedef int (*MallocHook_GetStackTraceFn)(void**, int, int);
typedef void (*MallocHook_NewHook)(const void* ptr, size_t size);
typedef void (*MallocHook_DeleteHook)(const void* ptr);
typedef int64_t MallocHook_AllocHandle;
typedef struct {
/* See malloc_hook.h for documentation for this struct. */
MallocHook_AllocHandle handle;
size_t allocated_size;
double weight;
int stack_depth;
const void* stack;
} MallocHook_SampledAlloc;
typedef void (*MallocHook_SampledNewHook)(
const MallocHook_SampledAlloc* sampled_alloc);
typedef void (*MallocHook_SampledDeleteHook)(MallocHook_AllocHandle handle);
typedef void (*MallocHook_PreMmapHook)(const void* start, size_t size,
int protection, int flags, int fd,
off_t offset);
typedef void (*MallocHook_MmapHook)(const void* result, const void* start,
size_t size, int protection, int flags,
int fd, off_t offset);
typedef int (*MallocHook_MmapReplacement)(const void* start, size_t size,
int protection, int flags, int fd,
off_t offset, void** result);
typedef void (*MallocHook_MunmapHook)(const void* start, size_t size);
typedef int (*MallocHook_MunmapReplacement)(const void* start, size_t size,
int* result);
typedef void (*MallocHook_MremapHook)(const void* result, const void* old_addr,
size_t old_size, size_t new_size,
int flags, const void* new_addr);
typedef void (*MallocHook_PreSbrkHook)(ptrdiff_t increment);
typedef void (*MallocHook_SbrkHook)(const void* result, ptrdiff_t increment);
#ifdef __cplusplus
} /* extern "C" */
#endif /* __cplusplus */
#endif /* ABSL_BASE_INTERNAL_MALLOC_HOOK_C_H_ */

View file

@ -1,198 +0,0 @@
//
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
///
// This has the implementation details of malloc_hook that are needed
// to use malloc-hook inside the tcmalloc system. It does not hold
// any of the client-facing calls that are used to add new hooks.
//
// IWYU pragma: private, include "base/malloc_hook-inl.h"
#ifndef ABSL_BASE_INTERNAL_MALLOC_HOOK_INVOKE_H_
#define ABSL_BASE_INTERNAL_MALLOC_HOOK_INVOKE_H_
#include <sys/types.h>
#include <atomic>
#include <cstddef>
#include "absl/base/internal/malloc_hook.h"
namespace absl {
namespace base_internal {
// Maximum of 7 hooks means that HookList is 8 words.
static constexpr int kHookListMaxValues = 7;
// HookList: a class that provides synchronized insertions and removals and
// lockless traversal. Most of the implementation is in malloc_hook.cc.
template <typename T>
struct HookList {
static_assert(sizeof(T) <= sizeof(intptr_t), "T_should_fit_in_intptr_t");
// Adds value to the list. Note that duplicates are allowed. Thread-safe and
// blocking (acquires hooklist_spinlock). Returns true on success; false
// otherwise (failures include invalid value and no space left).
bool Add(T value);
// Removes the first entry matching value from the list. Thread-safe and
// blocking (acquires hooklist_spinlock). Returns true on success; false
// otherwise (failures include invalid value and no value found).
bool Remove(T value);
// Store up to n values of the list in output_array, and return the number of
// elements stored. Thread-safe and non-blocking. This is fast (one memory
// access) if the list is empty.
int Traverse(T* output_array, int n) const;
// Fast inline implementation for fast path of Invoke*Hook.
bool empty() const {
// empty() is only used as an optimization to determine if we should call
// Traverse which has proper acquire loads. Memory reordering around a
// call to empty will either lead to an unnecessary Traverse call, or will
// miss invoking hooks, neither of which is a problem.
return priv_end.load(std::memory_order_relaxed) == 0;
}
// This internal data is not private so that the class is an aggregate and can
// be initialized by the linker. Don't access this directly. Use the
// INIT_HOOK_LIST macro in malloc_hook.cc.
// One more than the index of the last valid element in priv_data. During
// 'Remove' this may be past the last valid element in priv_data, but
// subsequent values will be 0.
std::atomic<int> priv_end;
std::atomic<intptr_t> priv_data[kHookListMaxValues];
};
extern template struct HookList<MallocHook::NewHook>;
extern HookList<MallocHook::NewHook> new_hooks_;
extern HookList<MallocHook::DeleteHook> delete_hooks_;
extern HookList<MallocHook::SampledNewHook> sampled_new_hooks_;
extern HookList<MallocHook::SampledDeleteHook> sampled_delete_hooks_;
extern HookList<MallocHook::PreMmapHook> premmap_hooks_;
extern HookList<MallocHook::MmapHook> mmap_hooks_;
extern HookList<MallocHook::MmapReplacement> mmap_replacement_;
extern HookList<MallocHook::MunmapHook> munmap_hooks_;
extern HookList<MallocHook::MunmapReplacement> munmap_replacement_;
extern HookList<MallocHook::MremapHook> mremap_hooks_;
extern HookList<MallocHook::PreSbrkHook> presbrk_hooks_;
extern HookList<MallocHook::SbrkHook> sbrk_hooks_;
inline void MallocHook::InvokeNewHook(const void* ptr, size_t size) {
if (!absl::base_internal::new_hooks_.empty()) {
InvokeNewHookSlow(ptr, size);
}
}
inline void MallocHook::InvokeDeleteHook(const void* ptr) {
if (!absl::base_internal::delete_hooks_.empty()) {
InvokeDeleteHookSlow(ptr);
}
}
inline void MallocHook::InvokeSampledNewHook(
const SampledAlloc* sampled_alloc) {
if (!absl::base_internal::sampled_new_hooks_.empty()) {
InvokeSampledNewHookSlow(sampled_alloc);
}
}
inline void MallocHook::InvokeSampledDeleteHook(AllocHandle handle) {
if (!absl::base_internal::sampled_delete_hooks_.empty()) {
InvokeSampledDeleteHookSlow(handle);
}
}
inline void MallocHook::InvokePreMmapHook(const void* start,
size_t size,
int protection,
int flags,
int fd,
off_t offset) {
if (!absl::base_internal::premmap_hooks_.empty()) {
InvokePreMmapHookSlow(start, size, protection, flags, fd, offset);
}
}
inline void MallocHook::InvokeMmapHook(const void* result,
const void* start,
size_t size,
int protection,
int flags,
int fd,
off_t offset) {
if (!absl::base_internal::mmap_hooks_.empty()) {
InvokeMmapHookSlow(result, start, size, protection, flags, fd, offset);
}
}
inline bool MallocHook::InvokeMmapReplacement(const void* start,
size_t size,
int protection,
int flags,
int fd,
off_t offset,
void** result) {
if (!absl::base_internal::mmap_replacement_.empty()) {
return InvokeMmapReplacementSlow(start, size,
protection, flags,
fd, offset,
result);
}
return false;
}
inline void MallocHook::InvokeMunmapHook(const void* start, size_t size) {
if (!absl::base_internal::munmap_hooks_.empty()) {
InvokeMunmapHookSlow(start, size);
}
}
inline bool MallocHook::InvokeMunmapReplacement(
const void* start, size_t size, int* result) {
if (!absl::base_internal::mmap_replacement_.empty()) {
return InvokeMunmapReplacementSlow(start, size, result);
}
return false;
}
inline void MallocHook::InvokeMremapHook(const void* result,
const void* old_addr,
size_t old_size,
size_t new_size,
int flags,
const void* new_addr) {
if (!absl::base_internal::mremap_hooks_.empty()) {
InvokeMremapHookSlow(result, old_addr, old_size, new_size, flags, new_addr);
}
}
inline void MallocHook::InvokePreSbrkHook(ptrdiff_t increment) {
if (!absl::base_internal::presbrk_hooks_.empty() && increment != 0) {
InvokePreSbrkHookSlow(increment);
}
}
inline void MallocHook::InvokeSbrkHook(const void* result,
ptrdiff_t increment) {
if (!absl::base_internal::sbrk_hooks_.empty() && increment != 0) {
InvokeSbrkHookSlow(result, increment);
}
}
} // namespace base_internal
} // namespace absl
#endif // ABSL_BASE_INTERNAL_MALLOC_HOOK_INVOKE_H_

View file

@ -1,168 +0,0 @@
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// We define mmap() and mmap64(), which somewhat reimplements libc's mmap
// syscall stubs. Unfortunately libc only exports the stubs via weak symbols
// (which we're overriding with our mmap64() and mmap() wrappers) so we can't
// just call through to them.
#ifndef __linux__
# error Should only be including malloc_hook_mmap_linux.h on linux systems.
#endif
#include <sys/mman.h>
#include <sys/types.h>
#ifdef __BIONIC__
#include <sys/syscall.h>
#else
#include <syscall.h>
#endif
#include <linux/unistd.h>
#include <unistd.h>
#include <cerrno>
#include <cstdarg>
#include <cstdint>
#include "absl/base/internal/direct_mmap.h"
// SYS_mremap is not defined in Android.
#ifdef __BIONIC__
#ifndef SYS_mremap
#define SYS_mremap __NR_mremap
#endif
#endif // __BIONIC__
// We put MallocHook::InvokeMmapHook calls right into mmap and mmap64, so that
// the stack frames in the caller's stack are at the same offsets for all the
// calls of memory allocating functions.
// Put all callers of MallocHook::Invoke* in this module into
// malloc_hook section,
// so that MallocHook::GetCallerStackTrace can function accurately:
// Make sure mmap doesn't get #define'd away by <sys/mman.h>
# undef mmap
extern "C" {
ABSL_ATTRIBUTE_SECTION(malloc_hook)
void* mmap64(void* start, size_t length, int prot, int flags, int fd,
off64_t offset) __THROW;
ABSL_ATTRIBUTE_SECTION(malloc_hook)
void* mmap(void* start, size_t length, int prot, int flags, int fd,
off_t offset) __THROW;
ABSL_ATTRIBUTE_SECTION(malloc_hook)
int munmap(void* start, size_t length) __THROW;
ABSL_ATTRIBUTE_SECTION(malloc_hook)
void* mremap(void* old_addr, size_t old_size, size_t new_size, int flags,
...) __THROW;
ABSL_ATTRIBUTE_SECTION(malloc_hook) void* sbrk(ptrdiff_t increment) __THROW;
}
extern "C" void* mmap64(void *start, size_t length, int prot, int flags,
int fd, off64_t offset) __THROW {
absl::base_internal::MallocHook::InvokePreMmapHook(start, length, prot, flags,
fd, offset);
void *result;
if (!absl::base_internal::MallocHook::InvokeMmapReplacement(
start, length, prot, flags, fd, offset, &result)) {
result = absl::base_internal::DirectMmap(start, length, prot, flags, fd,
offset);
}
absl::base_internal::MallocHook::InvokeMmapHook(result, start, length, prot,
flags, fd, offset);
return result;
}
# if !defined(__USE_FILE_OFFSET64) || !defined(__REDIRECT_NTH)
extern "C" void* mmap(void *start, size_t length, int prot, int flags,
int fd, off_t offset) __THROW {
absl::base_internal::MallocHook::InvokePreMmapHook(start, length, prot, flags,
fd, offset);
void *result;
if (!absl::base_internal::MallocHook::InvokeMmapReplacement(
start, length, prot, flags, fd, offset, &result)) {
result = absl::base_internal::DirectMmap(
start, length, prot, flags, fd,
static_cast<size_t>(offset)); // avoid sign extension
}
absl::base_internal::MallocHook::InvokeMmapHook(result, start, length, prot,
flags, fd, offset);
return result;
}
# endif // !defined(__USE_FILE_OFFSET64) || !defined(__REDIRECT_NTH)
extern "C" int munmap(void* start, size_t length) __THROW {
absl::base_internal::MallocHook::InvokeMunmapHook(start, length);
int result;
if (!absl::base_internal::MallocHook::InvokeMunmapReplacement(start, length,
&result)) {
result = absl::base_internal::DirectMunmap(start, length);
}
return result;
}
extern "C" void* mremap(void* old_addr, size_t old_size, size_t new_size,
int flags, ...) __THROW {
va_list ap;
va_start(ap, flags);
void *new_address = va_arg(ap, void *);
va_end(ap);
void* result = reinterpret_cast<void*>(
syscall(SYS_mremap, old_addr, old_size, new_size, flags, new_address));
absl::base_internal::MallocHook::InvokeMremapHook(
result, old_addr, old_size, new_size, flags, new_address);
return result;
}
// sbrk cannot be intercepted on Android as there is no mechanism to
// invoke the original sbrk (since there is no __sbrk as with glibc).
#if !defined(__BIONIC__)
// libc's version:
extern "C" void* __sbrk(ptrdiff_t increment);
extern "C" void* sbrk(ptrdiff_t increment) __THROW {
absl::base_internal::MallocHook::InvokePreSbrkHook(increment);
void *result = __sbrk(increment);
absl::base_internal::MallocHook::InvokeSbrkHook(result, increment);
return result;
}
#endif // !defined(__BIONIC__)
namespace absl {
namespace base_internal {
/*static*/void* MallocHook::UnhookedMMap(void *start, size_t length, int prot,
int flags, int fd, off_t offset) {
void* result;
if (!MallocHook::InvokeMmapReplacement(
start, length, prot, flags, fd, offset, &result)) {
result = absl::base_internal::DirectMmap(start, length, prot, flags, fd,
offset);
}
return result;
}
/*static*/int MallocHook::UnhookedMUnmap(void *start, size_t length) {
int result;
if (!MallocHook::InvokeMunmapReplacement(start, length, &result)) {
result = absl::base_internal::DirectMunmap(start, length);
}
return result;
}
} // namespace base_internal
} // namespace absl

View file

@ -207,7 +207,7 @@ class FixedArray {
// Overload of FixedArray::at() to return a const reference to the ith element
// of the fixed array.
const_reference at(size_type i) const {
if (i >= size()) {
if (ABSL_PREDICT_FALSE(i >= size())) {
base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check");
}
return data()[i];

View file

@ -651,7 +651,7 @@ TEST(IntVec, AliasingCopyAssignment) {
IntVec original;
Fill(&original, len);
IntVec dup = original;
dup = dup;
dup = *&dup;
EXPECT_EQ(dup, original);
}
}

View file

@ -75,6 +75,24 @@ cc_test(
],
)
cc_library(
name = "examine_stack",
srcs = [
"internal/examine_stack.cc",
],
hdrs = [
"internal/examine_stack.h",
],
copts = ABSL_DEFAULT_COPTS,
visibility = ["//visibility:private"],
deps = [
":stacktrace",
":symbolize",
"//absl/base",
"//absl/base:core_headers",
],
)
cc_library(
name = "debugging_internal",
srcs = [
@ -234,11 +252,11 @@ cc_library(
srcs = ["internal/stack_consumption.cc"],
hdrs = ["internal/stack_consumption.h"],
copts = ABSL_DEFAULT_COPTS,
visibility = ["//visibility:private"],
deps = [
"//absl/base",
"//absl/base:core_headers",
],
visibility = ["//visibility:private"],
)
cc_test(

View file

@ -25,6 +25,7 @@ list(APPEND DEBUGGING_INTERNAL_HEADERS
"internal/address_is_readable.h"
"internal/demangle.h"
"internal/elf_mem_image.h"
"internal/examine_stack.h"
"internal/stacktrace_config.h"
"internal/symbolize.h"
"internal/vdso_support.h"
@ -49,6 +50,12 @@ list(APPEND SYMBOLIZE_SRC
${DEBUGGING_INTERNAL_HEADERS}
)
list(APPEND EXAMINE_STACK_SRC
"internal/examine_stack.cc"
${DEBUGGING_PUBLIC_HEADERS}
${DEBUGGING_INTERNAL_HEADERS}
)
absl_library(
TARGET
absl_stacktrace
@ -67,6 +74,17 @@ absl_library(
symbolize
)
# Internal-only. Projects external to Abseil should not depend
# directly on this library.
absl_library(
TARGET
absl_examine_stack
SOURCES
${EXAMINE_STACK_SRC}
EXPORT_NAME
examine_stack
)
list(APPEND LEAK_CHECK_SRC
"leak_check.cc"
)

View file

@ -0,0 +1,147 @@
//
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "absl/debugging/internal/examine_stack.h"
#ifndef _WIN32
#include <unistd.h>
#endif
#include <csignal>
#include <cstdio>
#include "absl/base/attributes.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/macros.h"
#include "absl/debugging/stacktrace.h"
#include "absl/debugging/symbolize.h"
namespace absl {
namespace debugging_internal {
// Returns the program counter from signal context, nullptr if
// unknown. vuc is a ucontext_t*. We use void* to avoid the use of
// ucontext_t on non-POSIX systems.
void* GetProgramCounter(void* vuc) {
#ifdef __linux__
if (vuc != nullptr) {
ucontext_t* context = reinterpret_cast<ucontext_t*>(vuc);
#if defined(__aarch64__)
return reinterpret_cast<void*>(context->uc_mcontext.pc);
#elif defined(__arm__)
return reinterpret_cast<void*>(context->uc_mcontext.arm_pc);
#elif defined(__i386__)
if (14 < ABSL_ARRAYSIZE(context->uc_mcontext.gregs))
return reinterpret_cast<void*>(context->uc_mcontext.gregs[14]);
#elif defined(__powerpc64__)
return reinterpret_cast<void*>(context->uc_mcontext.gp_regs[32]);
#elif defined(__powerpc__)
return reinterpret_cast<void*>(context->uc_mcontext.regs->nip);
#elif defined(__x86_64__)
if (16 < ABSL_ARRAYSIZE(context->uc_mcontext.gregs))
return reinterpret_cast<void*>(context->uc_mcontext.gregs[16]);
#else
#error "Undefined Architecture."
#endif
}
#elif defined(__akaros__)
auto* ctx = reinterpret_cast<struct user_context*>(vuc);
return reinterpret_cast<void*>(get_user_ctx_pc(ctx));
#endif
static_cast<void>(vuc);
return nullptr;
}
// The %p field width for printf() functions is two characters per byte,
// and two extra for the leading "0x".
static constexpr int kPrintfPointerFieldWidth = 2 + 2 * sizeof(void*);
// Print a program counter, its stack frame size, and its symbol name.
// Note that there is a separate symbolize_pc argument. Return addresses may be
// at the end of the function, and this allows the caller to back up from pc if
// appropriate.
static void DumpPCAndFrameSizeAndSymbol(void (*writerfn)(const char*, void*),
void* writerfn_arg, void* pc,
void* symbolize_pc, int framesize,
const char* const prefix) {
char tmp[1024];
const char* symbol = "(unknown)";
if (absl::Symbolize(symbolize_pc, tmp, sizeof(tmp))) {
symbol = tmp;
}
char buf[1024];
if (framesize <= 0) {
snprintf(buf, sizeof(buf), "%s@ %*p (unknown) %s\n", prefix,
kPrintfPointerFieldWidth, pc, symbol);
} else {
snprintf(buf, sizeof(buf), "%s@ %*p %9d %s\n", prefix,
kPrintfPointerFieldWidth, pc, framesize, symbol);
}
writerfn(buf, writerfn_arg);
}
// Print a program counter and the corresponding stack frame size.
static void DumpPCAndFrameSize(void (*writerfn)(const char*, void*),
void* writerfn_arg, void* pc, int framesize,
const char* const prefix) {
char buf[100];
if (framesize <= 0) {
snprintf(buf, sizeof(buf), "%s@ %*p (unknown)\n", prefix,
kPrintfPointerFieldWidth, pc);
} else {
snprintf(buf, sizeof(buf), "%s@ %*p %9d\n", prefix,
kPrintfPointerFieldWidth, pc, framesize);
}
writerfn(buf, writerfn_arg);
}
void DumpPCAndFrameSizesAndStackTrace(
void* pc, void* const stack[], int frame_sizes[], int depth,
int min_dropped_frames, bool symbolize_stacktrace,
void (*writerfn)(const char*, void*), void* writerfn_arg) {
if (pc != nullptr) {
// We don't know the stack frame size for PC, use 0.
if (symbolize_stacktrace) {
DumpPCAndFrameSizeAndSymbol(writerfn, writerfn_arg, pc, pc, 0, "PC: ");
} else {
DumpPCAndFrameSize(writerfn, writerfn_arg, pc, 0, "PC: ");
}
}
for (int i = 0; i < depth; i++) {
if (symbolize_stacktrace) {
// Pass the previous address of pc as the symbol address because pc is a
// return address, and an overrun may occur when the function ends with a
// call to a function annotated noreturn (e.g. CHECK). Note that we don't
// do this for pc above, as the adjustment is only correct for return
// addresses.
DumpPCAndFrameSizeAndSymbol(writerfn, writerfn_arg, stack[i],
reinterpret_cast<char*>(stack[i]) - 1,
frame_sizes[i], " ");
} else {
DumpPCAndFrameSize(writerfn, writerfn_arg, stack[i], frame_sizes[i],
" ");
}
}
if (min_dropped_frames > 0) {
char buf[100];
snprintf(buf, sizeof(buf), " @ ... and at least %d more frames\n",
min_dropped_frames);
writerfn(buf, writerfn_arg);
}
}
} // namespace debugging_internal
} // namespace absl

View file

@ -0,0 +1,38 @@
//
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#ifndef ABSL_DEBUGGING_INTERNAL_EXAMINE_STACK_H_
#define ABSL_DEBUGGING_INTERNAL_EXAMINE_STACK_H_
namespace absl {
namespace debugging_internal {
// Returns the program counter from signal context, or nullptr if
// unknown. `vuc` is a ucontext_t*. We use void* to avoid the use of
// ucontext_t on non-POSIX systems.
void* GetProgramCounter(void* vuc);
// Uses `writerfn` to dump the program counter, stack trace, and stack
// frame sizes.
void DumpPCAndFrameSizesAndStackTrace(
void* pc, void* const stack[], int frame_sizes[], int depth,
int min_dropped_frames, bool symbolize_stacktrace,
void (*writerfn)(const char*, void*), void* writerfn_arg);
} // namespace debugging_internal
} // namespace absl
#endif // ABSL_DEBUGGING_INTERNAL_EXAMINE_STACK_H_

View file

@ -168,13 +168,13 @@ class string_view {
string_view( // NOLINT(runtime/explicit)
const std::basic_string<char, std::char_traits<char>, Allocator>&
str) noexcept
: ptr_(str.data()), length_(str.size()) {}
: ptr_(str.data()), length_(CheckLengthInternal(str.size())) {}
// Implicit constructor of a `string_view` from nul-terminated `str`. When
// accepting possibly null strings, use `absl::NullSafeStringView(str)`
// instead (see below).
constexpr string_view(const char* str) // NOLINT(runtime/explicit)
: ptr_(str), length_(StrLenInternal(str)) {}
: ptr_(str), length_(CheckLengthInternal(StrLenInternal(str))) {}
// Implicit constructor of a `string_view` from a `const char*` and length.
constexpr string_view(const char* data, size_type len)
@ -479,7 +479,7 @@ class string_view {
private:
static constexpr size_type kMaxSize =
std::numeric_limits<size_type>::max() / 2 + 1;
std::numeric_limits<difference_type>::max();
// check whether __builtin_strlen is provided by the compiler.
// GCC doesn't have __has_builtin()

View file

@ -1068,6 +1068,17 @@ TEST(HugeStringView, TwoPointTwoGB) {
TEST(NonNegativeLenTest, NonNegativeLen) {
EXPECT_DEATH_IF_SUPPORTED(absl::string_view("xyz", -1), "len <= kMaxSize");
}
TEST(LenExceedsMaxSizeTest, LenExceedsMaxSize) {
auto max_size = absl::string_view().max_size();
// This should construct ok (although the view itself is obviously invalid).
absl::string_view ok_view("", max_size);
// Adding one to the max should trigger an assertion.
EXPECT_DEATH_IF_SUPPORTED(absl::string_view("", max_size + 1),
"len <= kMaxSize");
}
#endif // !defined(NDEBUG) && !defined(ABSL_HAVE_STD_STRING_VIEW)
class StringViewStreamTest : public ::testing::Test {

View file

@ -75,7 +75,6 @@ cc_library(
"//absl/base:config",
"//absl/base:core_headers",
"//absl/base:dynamic_annotations",
"//absl/base:malloc_extension",
"//absl/base:malloc_internal",
"//absl/debugging:stacktrace",
"//absl/time",
@ -168,7 +167,6 @@ cc_library(
deps = [
":synchronization",
"//absl/base",
"//absl/base:malloc_extension",
"//absl/strings",
"//absl/time",
"@com_google_googletest//:gtest",
@ -184,7 +182,6 @@ cc_test(
":per_thread_sem_test_common",
":synchronization",
"//absl/base",
"//absl/base:malloc_extension",
"//absl/strings",
"//absl/time",
"@com_google_googletest//:gtest_main",

View file

@ -44,7 +44,7 @@ list(APPEND SYNCHRONIZATION_SRC
"notification.cc"
"mutex.cc"
)
set(SYNCHRONIZATION_PUBLIC_LIBRARIES absl::base absl_malloc_extension absl::time)
set(SYNCHRONIZATION_PUBLIC_LIBRARIES absl::base absl::time)
absl_library(
TARGET

View file

@ -21,7 +21,6 @@
#include <atomic>
#include "absl/base/attributes.h"
#include "absl/base/internal/malloc_extension.h"
#include "absl/base/internal/thread_identity.h"
#include "absl/synchronization/internal/waiter.h"
@ -90,12 +89,6 @@ ABSL_ATTRIBUTE_WEAK bool AbslInternalPerThreadSemWait(
if (identity->blocked_count_ptr != nullptr) {
identity->blocked_count_ptr->fetch_sub(1, std::memory_order_relaxed);
}
if (identity->is_idle.load(std::memory_order_relaxed)) {
// We became idle during the wait; become non-idle again so that
// performance of deallocations done from now on does not suffer.
absl::base_internal::MallocExtension::instance()->MarkThreadBusy();
}
identity->is_idle.store(false, std::memory_order_relaxed);
identity->wait_start.store(0, std::memory_order_relaxed);
return !timeout;

View file

@ -24,7 +24,6 @@
#include "gtest/gtest.h"
#include "absl/base/internal/cycleclock.h"
#include "absl/base/internal/malloc_extension.h"
#include "absl/base/internal/thread_identity.h"
#include "absl/strings/str_cat.h"
#include "absl/time/clock.h"
@ -167,79 +166,6 @@ TEST_F(PerThreadSemTest, Timeouts) {
EXPECT_TRUE(Wait(negative_timeout));
}
// Test that idle threads properly register themselves as such with malloc.
TEST_F(PerThreadSemTest, Idle) {
// We can't use gmock because it might use synch calls. So we do it
// by hand, messily. I don't bother hitting every one of the
// MallocExtension calls because most of them won't get made
// anyway--if they do we can add them.
class MockMallocExtension : public base_internal::MallocExtension {
public:
MockMallocExtension(base_internal::MallocExtension *real,
base_internal::ThreadIdentity *id,
std::atomic<int> *idles, std::atomic<int> *busies)
: real_(real), id_(id), idles_(idles), busies_(busies) {}
void MarkThreadIdle() override {
if (base_internal::CurrentThreadIdentityIfPresent() != id_) {
return;
}
idles_->fetch_add(1, std::memory_order_relaxed);
}
void MarkThreadBusy() override {
if (base_internal::CurrentThreadIdentityIfPresent() != id_) {
return;
}
busies_->fetch_add(1, std::memory_order_relaxed);
}
size_t GetAllocatedSize(const void* p) override {
return real_->GetAllocatedSize(p);
}
private:
MallocExtension *real_;
base_internal::ThreadIdentity *id_;
std::atomic<int>* idles_;
std::atomic<int>* busies_;
};
base_internal::ThreadIdentity *id = GetOrCreateCurrentThreadIdentity();
std::atomic<int> idles(0);
std::atomic<int> busies(0);
base_internal::MallocExtension *old =
base_internal::MallocExtension::instance();
MockMallocExtension mock(old, id, &idles, &busies);
base_internal::MallocExtension::Register(&mock);
std::atomic<int> sync(0);
std::thread t([id, &idles, &sync]() {
// Wait for the main thread to begin the wait process
while (0 == sync.load(std::memory_order_relaxed)) {
SleepFor(absl::Milliseconds(1));
}
// Wait for main thread to become idle, then wake it
// pretend time is passing--enough of these should cause an idling.
for (int i = 0; i < 100; ++i) {
Tick(id);
}
while (0 == idles.load(std::memory_order_relaxed)) {
// Keep ticking, just in case.
Tick(id);
SleepFor(absl::Milliseconds(1));
}
Post(id);
});
idles.store(0, std::memory_order_relaxed); // In case we slept earlier.
sync.store(1, std::memory_order_relaxed);
Wait(KernelTimeout::Never());
// t will wake us once we become idle.
EXPECT_LT(0, busies.load(std::memory_order_relaxed));
t.join();
base_internal::MallocExtension::Register(old);
}
} // namespace
} // namespace synchronization_internal

View file

@ -40,8 +40,6 @@
#include <atomic>
#include <cassert>
#include <cstdint>
#include "absl/base/internal/malloc_extension.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/internal/thread_identity.h"
#include "absl/base/optimization.h"
@ -59,7 +57,6 @@ static void MaybeBecomeIdle() {
const int wait_start = identity->wait_start.load(std::memory_order_relaxed);
if (!is_idle && ticker - wait_start > Waiter::kIdlePeriods) {
identity->is_idle.store(true, std::memory_order_relaxed);
base_internal::MallocExtension::instance()->MarkThreadIdle();
}
}

View file

@ -174,8 +174,10 @@ inline Duration MakeDurationFromU128(uint128 u128, bool is_neg) {
// name intN_t designates a signed integer type with width N, no padding
// bits, and a two's complement representation." So, we can convert to
// and from the corresponding uint64_t value using a bit cast.
inline uint64_t EncodeTwosComp(int64_t v) { return bit_cast<uint64_t>(v); }
inline int64_t DecodeTwosComp(uint64_t v) { return bit_cast<int64_t>(v); }
inline uint64_t EncodeTwosComp(int64_t v) {
return absl::bit_cast<uint64_t>(v);
}
inline int64_t DecodeTwosComp(uint64_t v) { return absl::bit_cast<int64_t>(v); }
// Note: The overflow detection in this function is done using greater/less *or
// equal* because kint64max/min is too large to be represented exactly in a

View file

@ -21,15 +21,21 @@
#include "absl/base/internal/exception_safety_testing.h"
using Thrower = absl::ThrowingValue<>;
using NoThrowMoveThrower =
absl::ThrowingValue<absl::NoThrow::kMoveCtor | absl::NoThrow::kMoveAssign>;
using ThrowerList = std::initializer_list<Thrower>;
using ThrowerVec = std::vector<Thrower>;
using ThrowingAlloc = absl::ThrowingAllocator<Thrower>;
using ThrowingThrowerVec = std::vector<Thrower, ThrowingAlloc>;
namespace absl {
namespace {
testing::AssertionResult AbslCheckInvariants(absl::any* a,
InternalAbslNamespaceFinder) {
class AnyExceptionSafety : public ::testing::Test {
private:
absl::ConstructorTracker inspector_;
};
testing::AssertionResult AnyInvariants(absl::any* a) {
using testing::AssertionFailure;
using testing::AssertionSuccess;
@ -69,17 +75,10 @@ testing::AssertionResult AbslCheckInvariants(absl::any* a,
return AssertionSuccess();
}
} // namespace absl
namespace {
class AnyExceptionSafety : public ::testing::Test {
private:
absl::ConstructorTracker inspector_;
};
testing::AssertionResult AnyIsEmpty(absl::any* a) {
if (!a->has_value()) return testing::AssertionSuccess();
if (!a->has_value()) {
return testing::AssertionSuccess();
}
return testing::AssertionFailure()
<< "a should be empty, but instead has value "
<< absl::any_cast<Thrower>(*a).Get();
@ -100,101 +99,70 @@ TEST_F(AnyExceptionSafety, Ctors) {
absl::in_place_type_t<ThrowingThrowerVec>(), {val}, ThrowingAlloc());
}
struct OneFactory {
std::unique_ptr<absl::any> operator()() const {
return absl::make_unique<absl::any>(absl::in_place_type_t<Thrower>(), 1,
absl::no_throw_ctor);
}
};
struct EmptyFactory {
std::unique_ptr<absl::any> operator()() const {
return absl::make_unique<absl::any>();
}
};
TEST_F(AnyExceptionSafety, Assignment) {
auto thrower_comp = [](const absl::any& l, const absl::any& r) {
return absl::any_cast<Thrower>(l) == absl::any_cast<Thrower>(r);
auto original =
absl::any(absl::in_place_type_t<Thrower>(), 1, absl::no_throw_ctor);
auto any_is_strong = [original](absl::any* ap) {
return testing::AssertionResult(ap->has_value() &&
absl::any_cast<Thrower>(original) ==
absl::any_cast<Thrower>(*ap));
};
auto any_strong_tester = absl::MakeExceptionSafetyTester()
.WithInitialValue(original)
.WithInvariants(AnyInvariants, any_is_strong);
OneFactory one_factory;
absl::ThrowingValue<absl::NoThrow::kMoveCtor | absl::NoThrow::kMoveAssign>
moveable_val(2);
Thrower val(2);
absl::any any_val(val);
NoThrowMoveThrower mv_val(2);
EXPECT_TRUE(absl::TestExceptionSafety(
one_factory, [&any_val](absl::any* ap) { *ap = any_val; },
absl::StrongGuarantee(one_factory, thrower_comp)));
auto assign_any = [&any_val](absl::any* ap) { *ap = any_val; };
auto assign_val = [&val](absl::any* ap) { *ap = val; };
auto move = [&val](absl::any* ap) { *ap = std::move(val); };
auto move_movable = [&mv_val](absl::any* ap) { *ap = std::move(mv_val); };
EXPECT_TRUE(absl::TestExceptionSafety(
one_factory, [&val](absl::any* ap) { *ap = val; },
absl::StrongGuarantee(one_factory, thrower_comp)));
EXPECT_TRUE(any_strong_tester.Test(assign_any));
EXPECT_TRUE(any_strong_tester.Test(assign_val));
EXPECT_TRUE(any_strong_tester.Test(move));
EXPECT_TRUE(any_strong_tester.Test(move_movable));
EXPECT_TRUE(absl::TestExceptionSafety(
one_factory, [&val](absl::any* ap) { *ap = std::move(val); },
absl::StrongGuarantee(one_factory, thrower_comp)));
EXPECT_TRUE(absl::TestExceptionSafety(
one_factory,
[&moveable_val](absl::any* ap) { *ap = std::move(moveable_val); },
absl::StrongGuarantee(one_factory, thrower_comp)));
EmptyFactory empty_factory;
auto empty_comp = [](const absl::any& l, const absl::any& r) {
return !(l.has_value() || r.has_value());
auto empty_any_is_strong = [](absl::any* ap) {
return testing::AssertionResult{!ap->has_value()};
};
auto strong_empty_any_tester =
absl::MakeExceptionSafetyTester()
.WithInitialValue(absl::any{})
.WithInvariants(AnyInvariants, empty_any_is_strong);
EXPECT_TRUE(absl::TestExceptionSafety(
empty_factory, [&any_val](absl::any* ap) { *ap = any_val; },
absl::StrongGuarantee(empty_factory, empty_comp)));
EXPECT_TRUE(absl::TestExceptionSafety(
empty_factory, [&val](absl::any* ap) { *ap = val; },
absl::StrongGuarantee(empty_factory, empty_comp)));
EXPECT_TRUE(absl::TestExceptionSafety(
empty_factory, [&val](absl::any* ap) { *ap = std::move(val); },
absl::StrongGuarantee(empty_factory, empty_comp)));
EXPECT_TRUE(strong_empty_any_tester.Test(assign_any));
EXPECT_TRUE(strong_empty_any_tester.Test(assign_val));
EXPECT_TRUE(strong_empty_any_tester.Test(move));
}
// libstdc++ std::any fails this test
#if !defined(ABSL_HAVE_STD_ANY)
TEST_F(AnyExceptionSafety, Emplace) {
OneFactory one_factory;
auto initial_val =
absl::any{absl::in_place_type_t<Thrower>(), 1, absl::no_throw_ctor};
auto one_tester = absl::MakeExceptionSafetyTester()
.WithInitialValue(initial_val)
.WithInvariants(AnyInvariants, AnyIsEmpty);
EXPECT_TRUE(absl::TestExceptionSafety(
one_factory, [](absl::any* ap) { ap->emplace<Thrower>(2); }, AnyIsEmpty));
auto emp_thrower = [](absl::any* ap) { ap->emplace<Thrower>(2); };
auto emp_throwervec = [](absl::any* ap) {
std::initializer_list<Thrower> il{Thrower(2, absl::no_throw_ctor)};
ap->emplace<ThrowerVec>(il);
};
auto emp_movethrower = [](absl::any* ap) {
ap->emplace<NoThrowMoveThrower>(2);
};
EXPECT_TRUE(absl::TestExceptionSafety(
one_factory,
[](absl::any* ap) {
ap->emplace<absl::ThrowingValue<absl::NoThrow::kMoveCtor |
absl::NoThrow::kMoveAssign>>(2);
},
AnyIsEmpty));
EXPECT_TRUE(one_tester.Test(emp_thrower));
EXPECT_TRUE(one_tester.Test(emp_throwervec));
EXPECT_TRUE(one_tester.Test(emp_movethrower));
EXPECT_TRUE(absl::TestExceptionSafety(one_factory,
[](absl::any* ap) {
std::initializer_list<Thrower> il{
Thrower(2, absl::no_throw_ctor)};
ap->emplace<ThrowerVec>(il);
},
AnyIsEmpty));
auto empty_tester = one_tester.WithInitialValue(absl::any{});
EmptyFactory empty_factory;
EXPECT_TRUE(absl::TestExceptionSafety(
empty_factory, [](absl::any* ap) { ap->emplace<Thrower>(2); },
AnyIsEmpty));
EXPECT_TRUE(absl::TestExceptionSafety(empty_factory,
[](absl::any* ap) {
std::initializer_list<Thrower> il{
Thrower(2, absl::no_throw_ctor)};
ap->emplace<ThrowerVec>(il);
},
AnyIsEmpty));
EXPECT_TRUE(empty_tester.Test(emp_thrower));
EXPECT_TRUE(empty_tester.Test(emp_throwervec));
}
#endif // ABSL_HAVE_STD_ANY

View file

@ -553,7 +553,7 @@ TEST(AnyTest, Move) {
absl::any tmp4(4);
absl::any o4(std::move(tmp4)); // move construct
EXPECT_EQ(4, absl::any_cast<int>(o4));
o4 = o4; // self assign
o4 = *&o4; // self assign
EXPECT_EQ(4, absl::any_cast<int>(o4));
EXPECT_TRUE(o4.has_value());

View file

@ -216,7 +216,7 @@ using EnableIfConvertibleToSpanConst =
// // Construct a Span implicitly from a container
// void MyRoutine(absl::Span<const int> a) {
// ...
// };
// }
// std::vector v = {1,2,3,4,5};
// MyRoutine(v) // convert to Span<const T>
//
@ -235,7 +235,7 @@ using EnableIfConvertibleToSpanConst =
//
// void MyRoutine(absl::Span<const int> a) {
// ...
// };
// }
//
// std::vector v = {1,2,3,4,5};
// MyRoutine(v);