167 lines
5 KiB
Python
167 lines
5 KiB
Python
import socket
|
|
import os
|
|
import time
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
def parse_speed(text):
|
|
tl = text.split(b' ')
|
|
return (2 * int(tl[0]) - 1) * float(tl[1])
|
|
|
|
|
|
class Simulator:
|
|
# X_STEPS_PER_INCH = 4800
|
|
X_STEPS_PER_MM: float = 188.97
|
|
X_MOTOR_STEPS: float = 200
|
|
|
|
# Y_STEPS_PER_INCH = 4800
|
|
Y_STEPS_PER_MM: int = 188.97
|
|
Y_MOTOR_STEPS: int = 200
|
|
|
|
# Z_STEPS_PER_INCH = 4800
|
|
Z_STEPS_PER_MM: float = 188.97
|
|
Z_MOTOR_STEPS: int = 200
|
|
|
|
pos = np.array([0., 0., 0.])
|
|
speed = np.array([0., 0., 0.])
|
|
|
|
def __init__(self, bind):
|
|
self.s = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
|
|
try:
|
|
os.remove(bind)
|
|
except FileNotFoundError:
|
|
pass
|
|
self.s.bind(bind)
|
|
self.s.setblocking(False)
|
|
self.s.listen()
|
|
while True:
|
|
try:
|
|
self.s, _ = self.s.accept()
|
|
self.s.setblocking(False)
|
|
break
|
|
except BlockingIOError:
|
|
print("Waiting for connection")
|
|
time.sleep(1)
|
|
|
|
try:
|
|
self.loop()
|
|
except KeyboardInterrupt: # Just so everything is fine when quitting
|
|
self.s.close()
|
|
plt.ioff()
|
|
try:
|
|
os.remove(bind)
|
|
except FileNotFoundError:
|
|
pass
|
|
|
|
def loop(self):
|
|
while True:
|
|
with socket.SocketIO(self.s, 'r') as buffer:
|
|
try:
|
|
time.sleep(1e-5)
|
|
self.simulate()
|
|
req = buffer.readline()
|
|
self.s.setblocking(True)
|
|
match req:
|
|
case b'request\n':
|
|
self.request() # These are the functions that need to be implemented
|
|
case b'realize\n':
|
|
self.realize()
|
|
case b'':
|
|
break
|
|
self.s.setblocking(False)
|
|
except BlockingIOError:
|
|
pass
|
|
except OSError:
|
|
pass
|
|
|
|
def simulate(self):
|
|
pass
|
|
|
|
def realize(self):
|
|
pass
|
|
|
|
def request(self):
|
|
pass
|
|
|
|
|
|
class Douche:
|
|
def __init__(self):
|
|
# We will assume no points are `really` in 3D.
|
|
plt.ion()
|
|
self.fig = plt.figure()
|
|
ax = self.fig.add_subplot(111)
|
|
self.xs = []
|
|
self.ys = []
|
|
ax.set_xlim([0, 300])
|
|
ax.set_ylim([0, 300])
|
|
self.line, = ax.plot(self.xs, self.ys, c="#7d1dd3")
|
|
|
|
def add_point(self, x, y):
|
|
self.xs.append(x)
|
|
self.ys.append(y)
|
|
self.line.set_data(self.xs, self.ys)
|
|
self.fig.canvas.draw()
|
|
self.fig.canvas.flush_events()
|
|
|
|
|
|
class NaiveSimulator(Simulator, Douche):
|
|
steps = [0, 0, 0]
|
|
|
|
time_step = 0
|
|
last_update = np.nan
|
|
|
|
# We have on each axis
|
|
# Jw' = Gamma(motor) - f0*w
|
|
# which can be expressed as
|
|
# Jv' = (R*Gamma)(motor) - f0*v
|
|
|
|
J = np.array([.1, .1, .1]) # Moment of inertia vector
|
|
f = np.array([0., 0., 0.]) # viscous friction coefficient
|
|
G = np.array([1., 1., 1.]) # Motor gain : Gamma*R = G * delta_v
|
|
# FIXME: this is not very realistic, this looks like a model of
|
|
# an asynchronous motor, not a stepper.
|
|
|
|
command_spd = [0., 0., 0.]
|
|
|
|
def __init__(self, bind):
|
|
self.last_update = time.time() # Custom Simulation
|
|
|
|
Douche.__init__(self) # Prepare to show the simulation
|
|
self.add_point(self.pos[0], self.pos[1])
|
|
Simulator.__init__(self, bind) # Simulator loop
|
|
|
|
def simulate(self):
|
|
lt = time.time()
|
|
self.time_step = lt - self.last_update
|
|
if(self.time_step == np.nan):
|
|
return
|
|
self.last_update = lt
|
|
gamma = self.G*(self.command_spd - self.speed)
|
|
|
|
self.pos += self.speed * self.time_step
|
|
self.speed += 1./self.J * (gamma - self.f*self.speed) * self.time_step
|
|
#print("timestep ", self.time_step)
|
|
#print("gamma ", gamma)
|
|
#print("speed ", self.speed)
|
|
print("position ", self.pos)
|
|
|
|
self.steps = np.ceil(self.pos * np.array([self.X_STEPS_PER_MM,
|
|
self.Y_STEPS_PER_MM,
|
|
self.Z_STEPS_PER_MM]))
|
|
self.add_point(self.pos[0], self.pos[1])
|
|
|
|
def request(self):
|
|
self.s.send(f"{int(self.steps[0] % self.X_MOTOR_STEPS)}\n".encode())
|
|
self.s.send(f"{int(self.steps[1] % self.Y_MOTOR_STEPS)}\n".encode())
|
|
self.s.send(f"{int(self.steps[2] % self.Z_MOTOR_STEPS)}\n".encode())
|
|
|
|
def realize(self):
|
|
x_v = parse_speed(socket.SocketIO(self.s, 'r').readline())
|
|
y_v = parse_speed(socket.SocketIO(self.s, 'r').readline())
|
|
z_v = parse_speed(socket.SocketIO(self.s, 'r').readline())
|
|
self.command_spd = np.array([x_v, y_v, z_v])
|
|
print("New speeds : ", self.command_spd)
|
|
#self.s.send("Realized\n".encode())
|
|
|
|
simu = NaiveSimulator("socket.sock")
|