GCode-Generator/simulator.py

168 lines
5 KiB
Python
Raw Normal View History

2025-01-13 18:09:02 +01:00
import socket
import os
2025-01-13 19:53:15 +01:00
import time
2025-01-13 19:50:47 +01:00
import numpy as np
import matplotlib.pyplot as plt
2025-01-13 19:50:47 +01:00
def parse_speed(text):
tl = text.split(b' ')
2025-01-14 18:23:55 +01:00
return (2 * int(tl[0]) - 1) * float(tl[1])
2025-01-13 17:42:12 +01:00
class Simulator:
2025-01-13 19:50:47 +01:00
# X_STEPS_PER_INCH = 4800
X_STEPS_PER_MM: float = 188.97
X_MOTOR_STEPS: float = 200
# Y_STEPS_PER_INCH = 4800
Y_STEPS_PER_MM: int = 188.97
Y_MOTOR_STEPS: int = 200
# Z_STEPS_PER_INCH = 4800
Z_STEPS_PER_MM: float = 188.97
Z_MOTOR_STEPS: int = 200
pos = np.array([0., 0., 0.])
speed = np.array([0., 0., 0.])
2025-01-13 19:50:47 +01:00
def __init__(self, bind):
self.s = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
try:
os.remove(bind)
except FileNotFoundError:
pass
self.s.bind(bind)
self.s.setblocking(False)
self.s.listen()
2025-01-13 18:09:02 +01:00
while True:
try:
self.s, _ = self.s.accept()
self.s.setblocking(False)
break
except BlockingIOError:
print("Waiting for connection")
time.sleep(1)
try:
self.loop()
except KeyboardInterrupt: # Just so everything is fine when quitting
self.s.close()
plt.ioff()
try:
os.remove(bind)
except FileNotFoundError:
pass
2025-01-13 18:09:02 +01:00
2025-01-13 19:50:47 +01:00
def loop(self):
2025-01-15 00:07:34 +01:00
while True:
with socket.SocketIO(self.s, 'r') as buffer:
try:
time.sleep(1e-5)
self.simulate()
req = buffer.readline()
self.s.setblocking(True)
match req:
case b'request\n':
self.request() # These are the functions that need to be implemented
case b'realize\n':
self.realize()
case b'':
break
self.s.setblocking(False)
except BlockingIOError:
pass
except OSError:
pass
2025-01-13 18:09:02 +01:00
def simulate(self):
pass
def realize(self):
pass
def request(self):
pass
class Douche:
def __init__(self):
# We will assume no points are `really` in 3D.
plt.ion()
2025-01-15 00:07:34 +01:00
self.fig = plt.figure()
ax = self.fig.add_subplot(111)
self.xs = []
self.ys = []
2025-01-15 00:17:06 +01:00
ax.set_xlim([0, 300])
ax.set_ylim([0, 300])
2025-01-15 08:37:07 +01:00
self.line, = ax.plot(self.xs, self.ys, c="#7d1dd3")
def add_point(self, x, y):
self.xs.append(x)
self.ys.append(y)
self.line.set_data(self.xs, self.ys)
2025-01-15 00:07:34 +01:00
self.fig.canvas.draw()
self.fig.canvas.flush_events()
class NaiveSimulator(Simulator, Douche):
steps = [0, 0, 0]
time_step = 0
2025-01-15 00:18:43 +01:00
last_update = np.nan
2025-01-15 00:18:43 +01:00
# We have on each axis
# Jw' = Gamma(motor) - f0*w
# which can be expressed as
# Jv' = (R*Gamma)(motor) - f0*v
2025-02-05 13:07:49 +01:00
J = np.array([.1, .1, .1]) # Moment of inertia vector
f = np.array([0., 0., 0.]) # viscous friction coefficient
2025-01-15 00:18:43 +01:00
G = np.array([1., 1., 1.]) # Motor gain : Gamma*R = G * delta_v
# FIXME: this is not very realistic, this looks like a model of
# an asynchronous motor, not a stepper.
command_spd = [0., 0., 0.]
def __init__(self, bind):
self.last_update = time.time() # Custom Simulation
Douche.__init__(self) # Prepare to show the simulation
self.add_point(self.pos[0], self.pos[1])
Simulator.__init__(self, bind) # Simulator loop
def simulate(self):
lt = time.time()
self.time_step = lt - self.last_update
2025-01-15 00:18:43 +01:00
if(self.time_step == np.nan):
return
self.last_update = lt
gamma = self.G*(self.command_spd - self.speed)
2025-01-15 08:37:07 +01:00
self.pos += self.speed * self.time_step
2025-01-15 00:18:43 +01:00
self.speed += 1./self.J * (gamma - self.f*self.speed) * self.time_step
#print("timestep ", self.time_step)
#print("gamma ", gamma)
#print("speed ", self.speed)
2025-01-15 09:53:30 +01:00
print("position ", self.pos)
self.steps = np.ceil(self.pos * np.array([self.X_STEPS_PER_MM,
self.Y_STEPS_PER_MM,
self.Z_STEPS_PER_MM]))
self.add_point(self.pos[0], self.pos[1])
2025-01-13 19:50:47 +01:00
def request(self):
2025-01-15 09:53:30 +01:00
self.s.send(f"{int(self.steps[0] % self.X_MOTOR_STEPS)}\n".encode())
self.s.send(f"{int(self.steps[1] % self.Y_MOTOR_STEPS)}\n".encode())
self.s.send(f"{int(self.steps[2] % self.Z_MOTOR_STEPS)}\n".encode())
2025-01-13 17:42:12 +01:00
2025-01-13 19:50:47 +01:00
def realize(self):
x_v = parse_speed(socket.SocketIO(self.s, 'r').readline())
y_v = parse_speed(socket.SocketIO(self.s, 'r').readline())
z_v = parse_speed(socket.SocketIO(self.s, 'r').readline())
self.command_spd = np.array([x_v, y_v, z_v])
print("New speeds : ", self.command_spd)
#self.s.send("Realized\n".encode())
simu = NaiveSimulator("socket.sock")