improve doc for outputs and hardware

Changed my mind about "installer" as a first-class concept, at least
in the current implementation. Not every documented output is an
installer
This commit is contained in:
Daniel Barlow 2023-11-12 17:15:58 +00:00
parent 262efaabe6
commit f61e737b54
11 changed files with 133 additions and 45 deletions

View file

@ -6,17 +6,31 @@
This device is based on a 64 bit Mediatek MT7622 ARM platform,
and is "work in progress" in Liminix.
The factory flash image contains ECC errors that make it incompatible
with Liminix: you need to use the `OpenWrt UBI Installer <https://github.com/dangowrt/owrt-ubi-installer>`_ to rewrite the partition layout before
you can flash Liminix onto it (or even use it with "tftpboot",
if you want the wireless to work).
.. note:: The factory flash image contains ECC errors that make it
incompatible with Liminix: you need to use the `OpenWrt
UBI Installer <https://github.com/dangowrt/owrt-ubi-installer>`_ to
rewrite the partition layout before you can flash
Liminix onto it (or even use it with
:ref:`system-outputs-tftpboot`, if you want the wireless
to work).
Hardware summary
================
- MediaTek MT7622BV (1350MHz)
- 128MB NAND flash
- 512MB RAM
- b/g/n wireless using MediaTek MT7622BV (MT7615E driver)
- a/n/ac/ax wireless using MediaTek MT7915E
'';
Installation
============
Installation is currently a manual process (you need a :ref:`serial <serial>` conection and
TFTP) following the instructions at :ref:`system-outputs-ubimage`
'';
system = {
crossSystem = {

View file

@ -1,4 +1,4 @@
rec {
{
system = {
crossSystem = {
config = "mips-unknown-linux-musl";
@ -13,6 +13,9 @@ rec {
GL.iNet GL-AR750
****************
Hardware summary
================
The GL-AR750 "Creta" travel router features:
- QCA9531 @650Mhz SoC
@ -22,28 +25,32 @@ rec {
- 16MB NOR Flash
- supported in OpenWrt by the "ath79" SoC family
As with many GL.iNet devices, the stock vendor firmware
is a fork of OpenWrt, meaning that the plain binary
``firmware.bin`` that Liminix builds can be flashed using the
vendor web UI and the U-Boot emergency "unbrick" routine
The GL-AR750 has two distinct sets of wifi hardware. The 2.4GHz
radio is part of the QCA9531 SoC, i.e. it's on the same silicon as
the CPU, the Ethernet, the USB etc. The device is connected to the
host via AHB, the "Advanced High-Performance Bus" and it is
supported in Linux using the ath9k driver. The 5GHz support, on the
other hand, is provided by a QCA9887 PCIe (PCI embedded) WLAN chip:
I haven't looked closely at the router innards to see if this is
actually physically a separate board that could be unplugged, but
as far as Linux is concerned it behaves as one. This is
host via `AHB <https://en.wikipedia.org/wiki/Advanced_Microcontroller_Bus_Architecture>`_ and it is
supported in Linux using the ath9k driver. 5GHz wifi
is provided by a QCA9887 PCIe (PCI embedded) WLAN chip,
supported by the ath10k driver.
Installation
============
As with many GL.iNet devices, the stock vendor firmware
is a fork of OpenWrt, meaning that the binary created by
:ref:`system-outputs-flashimage` can be flashed using the
vendor web UI or the U-Boot emergency "unbrick" routine.
For flashing from an existing Liminix system (we believe that) it
is necessary to first boot into a :ref:`system-outputs-kexecboot`
system, otherwise you'll be overwriting flash partitions while
they're in use - and that might not end well.
Vendor web page: https://www.gl-inet.com/products/gl-ar750/
OpenWrt web page: https://openwrt.org/toh/gl.inet/gl-ar750
'';
installer = "flashimage";
module = {pkgs, config, ... }:
let
@ -95,7 +102,7 @@ rec {
FEATURE_DD_IBS_OBS = "y"; # ath10k_cal_data needs skip_bytes,fullblock
};
hardware = {
defaultOutput = installer;
defaultOutput = "flashimage";
loadAddress = "0x80060000";
entryPoint = "0x80060000";
flash = {
@ -145,9 +152,14 @@ rec {
url = "https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.15.71.tar.gz";
hash = "sha256-yhO2cXIeIgUxkSZf/4aAsF11uxyh+UUZu6D1h92vCD8=";
};
# Mainline linux 5.19 doesn't have device-tree support for
# this device or even for the SoC, so we use the extensive
# OpenWrt kernel patches
extraPatchPhase = ''
${openwrt.applyPatches.ath79}
'';
config = {
ATH79 = "y";
PCI = "y";

View file

@ -25,6 +25,17 @@
- assuming we want to use the wireless - we need to build MTD
support into the kernel even if we're using TFTP root.
Installation
============
The stock vendor firmware is a fork of OpenWrt, meaning that the
binary created by :ref:`system-outputs-flashimage` can be flashed
using the vendor web UI or the U-Boot emergency "unbrick" routine.
For flashing from an existing Liminix system (we think) it
is necessary to first boot into a :ref:`system-outputs-kexecboot`
system, otherwise you'll be overwriting flash partitions while
they're in use - and that might not end well.
Vendor web page: https://www.gl-inet.com/products/gl-mt300a/

View file

@ -13,10 +13,22 @@
GL.iNet GL-MT300N-v2
********************
The GL-MT300N-v2 "Mango" is is very similar to the MT300A, but is
based on MT7628 instead of MT7620. It's also marginally cheaper
and comes in a yellow case not a blue one. It's different again
to the v1, which has only half the RAM.
The GL-MT300N-v2 "Mango" is is very similar to the :ref:`MT300A <GL.iNet GL-MT300A>, but is
based on the MT7628 chipset instead of MT7620. It's also marginally cheaper
and comes in a yellow case not a blue one. Be sure your device is
v2 not v1, which is a different animal and has only half as much RAM.
Installation
============
The stock vendor firmware is a fork of OpenWrt, meaning that the
binary created by :ref:`system-outputs-flashimage` can be flashed
using the vendor web UI or the U-Boot emergency "unbrick" routine.
For flashing from an existing Liminix system (we think) it
is necessary to first boot into a :ref:`system-outputs-kexecboot`
system, otherwise you'll be overwriting flash partitions while
they're in use - and that might not end well.
Vendor web page: https://www.gl-inet.com/products/gl-mt300n-v2/