febc5ee6a9
-- f9f068aa8a260dc576398e47b8e4540902e41358 by Derek Mauro <dmauro@google.com>: Fix test string with embedded NUL. Currently parses as octal. PiperOrigin-RevId: 237088193 -- d271ffdd3f450f817f6d30e98ff39d439aaf3a98 by Abseil Team <absl-team@google.com>: Make symbolizer examine any mapping with read+exec permission regardless of 'w' bit. PiperOrigin-RevId: 237056461 -- af315f8306d36a7367a452fd0b58cafdbf20719d by Abseil Team <absl-team@google.com>: Switch comments referencing base:: CondVar and Mutex to absl::. PiperOrigin-RevId: 236917884 -- c624d5d1c0bdb917bff5e651ba40599472f84e0e by Gennadiy Rozental <rogeeff@google.com>: Internal change PiperOrigin-RevId: 236898300 -- 3cdc82429af964846d1152f49148abc61d196a4b by Samuel Benzaquen <sbenza@google.com>: Make the `long double` overload if AbslHashValue a template to avoid invalid conversions with implicit operators. This overload was never meant to capture anything other than `long double` and any current caller to it that wasn't a `long double` is potentially a bug. In particular, any type with an implicit `bool` conversion is calling this overload instead of trying to find a hash<> specialization, thus causing pretty bad hash behavior. PiperOrigin-RevId: 236877073 GitOrigin-RevId: f9f068aa8a260dc576398e47b8e4540902e41358 Change-Id: If9cc008dd814f0ca06ed881f612c06575f1f7137
1884 lines
56 KiB
C++
1884 lines
56 KiB
C++
// Copyright 2018 The Abseil Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "absl/container/internal/raw_hash_set.h"
|
|
|
|
#include <cmath>
|
|
#include <cstdint>
|
|
#include <deque>
|
|
#include <functional>
|
|
#include <memory>
|
|
#include <numeric>
|
|
#include <random>
|
|
#include <string>
|
|
|
|
#include "gmock/gmock.h"
|
|
#include "gtest/gtest.h"
|
|
#include "absl/base/attributes.h"
|
|
#include "absl/base/internal/cycleclock.h"
|
|
#include "absl/base/internal/raw_logging.h"
|
|
#include "absl/container/internal/container_memory.h"
|
|
#include "absl/container/internal/hash_function_defaults.h"
|
|
#include "absl/container/internal/hash_policy_testing.h"
|
|
#include "absl/container/internal/hashtable_debug.h"
|
|
#include "absl/strings/string_view.h"
|
|
|
|
namespace absl {
|
|
namespace container_internal {
|
|
|
|
struct RawHashSetTestOnlyAccess {
|
|
template <typename C>
|
|
static auto GetSlots(const C& c) -> decltype(c.slots_) {
|
|
return c.slots_;
|
|
}
|
|
};
|
|
|
|
namespace {
|
|
|
|
using ::testing::DoubleNear;
|
|
using ::testing::ElementsAre;
|
|
using ::testing::Ge;
|
|
using ::testing::Lt;
|
|
using ::testing::Optional;
|
|
using ::testing::Pair;
|
|
using ::testing::UnorderedElementsAre;
|
|
|
|
TEST(Util, NormalizeCapacity) {
|
|
constexpr size_t kMinCapacity = Group::kWidth - 1;
|
|
EXPECT_EQ(kMinCapacity, NormalizeCapacity(0));
|
|
EXPECT_EQ(kMinCapacity, NormalizeCapacity(1));
|
|
EXPECT_EQ(kMinCapacity, NormalizeCapacity(2));
|
|
EXPECT_EQ(kMinCapacity, NormalizeCapacity(kMinCapacity));
|
|
EXPECT_EQ(kMinCapacity * 2 + 1, NormalizeCapacity(kMinCapacity + 1));
|
|
EXPECT_EQ(kMinCapacity * 2 + 1, NormalizeCapacity(kMinCapacity + 2));
|
|
}
|
|
|
|
TEST(Util, GrowthAndCapacity) {
|
|
// Verify that GrowthToCapacity gives the minimum capacity that has enough
|
|
// growth.
|
|
for (size_t growth = 0; growth < 10000; ++growth) {
|
|
SCOPED_TRACE(growth);
|
|
size_t capacity = NormalizeCapacity(GrowthToLowerboundCapacity(growth));
|
|
// The capacity is large enough for `growth`
|
|
EXPECT_THAT(CapacityToGrowth(capacity), Ge(growth));
|
|
if (growth < Group::kWidth - 1) {
|
|
// Fits in one group, that is the minimum capacity.
|
|
EXPECT_EQ(capacity, Group::kWidth - 1);
|
|
} else {
|
|
// There is no smaller capacity that works.
|
|
EXPECT_THAT(CapacityToGrowth(capacity / 2), Lt(growth));
|
|
}
|
|
}
|
|
|
|
for (size_t capacity = Group::kWidth - 1; capacity < 10000;
|
|
capacity = 2 * capacity + 1) {
|
|
SCOPED_TRACE(capacity);
|
|
size_t growth = CapacityToGrowth(capacity);
|
|
EXPECT_THAT(growth, Lt(capacity));
|
|
EXPECT_LE(GrowthToLowerboundCapacity(growth), capacity);
|
|
EXPECT_EQ(NormalizeCapacity(GrowthToLowerboundCapacity(growth)), capacity);
|
|
}
|
|
}
|
|
|
|
TEST(Util, probe_seq) {
|
|
probe_seq<16> seq(0, 127);
|
|
auto gen = [&]() {
|
|
size_t res = seq.offset();
|
|
seq.next();
|
|
return res;
|
|
};
|
|
std::vector<size_t> offsets(8);
|
|
std::generate_n(offsets.begin(), 8, gen);
|
|
EXPECT_THAT(offsets, ElementsAre(0, 16, 48, 96, 32, 112, 80, 64));
|
|
seq = probe_seq<16>(128, 127);
|
|
std::generate_n(offsets.begin(), 8, gen);
|
|
EXPECT_THAT(offsets, ElementsAre(0, 16, 48, 96, 32, 112, 80, 64));
|
|
}
|
|
|
|
TEST(BitMask, Smoke) {
|
|
EXPECT_FALSE((BitMask<uint8_t, 8>(0)));
|
|
EXPECT_TRUE((BitMask<uint8_t, 8>(5)));
|
|
|
|
EXPECT_THAT((BitMask<uint8_t, 8>(0)), ElementsAre());
|
|
EXPECT_THAT((BitMask<uint8_t, 8>(0x1)), ElementsAre(0));
|
|
EXPECT_THAT((BitMask<uint8_t, 8>(0x2)), ElementsAre(1));
|
|
EXPECT_THAT((BitMask<uint8_t, 8>(0x3)), ElementsAre(0, 1));
|
|
EXPECT_THAT((BitMask<uint8_t, 8>(0x4)), ElementsAre(2));
|
|
EXPECT_THAT((BitMask<uint8_t, 8>(0x5)), ElementsAre(0, 2));
|
|
EXPECT_THAT((BitMask<uint8_t, 8>(0x55)), ElementsAre(0, 2, 4, 6));
|
|
EXPECT_THAT((BitMask<uint8_t, 8>(0xAA)), ElementsAre(1, 3, 5, 7));
|
|
}
|
|
|
|
TEST(BitMask, WithShift) {
|
|
// See the non-SSE version of Group for details on what this math is for.
|
|
uint64_t ctrl = 0x1716151413121110;
|
|
uint64_t hash = 0x12;
|
|
constexpr uint64_t msbs = 0x8080808080808080ULL;
|
|
constexpr uint64_t lsbs = 0x0101010101010101ULL;
|
|
auto x = ctrl ^ (lsbs * hash);
|
|
uint64_t mask = (x - lsbs) & ~x & msbs;
|
|
EXPECT_EQ(0x0000000080800000, mask);
|
|
|
|
BitMask<uint64_t, 8, 3> b(mask);
|
|
EXPECT_EQ(*b, 2);
|
|
}
|
|
|
|
TEST(BitMask, LeadingTrailing) {
|
|
EXPECT_EQ((BitMask<uint32_t, 16>(0b0001101001000000).LeadingZeros()), 3);
|
|
EXPECT_EQ((BitMask<uint32_t, 16>(0b0001101001000000).TrailingZeros()), 6);
|
|
|
|
EXPECT_EQ((BitMask<uint32_t, 16>(0b0000000000000001).LeadingZeros()), 15);
|
|
EXPECT_EQ((BitMask<uint32_t, 16>(0b0000000000000001).TrailingZeros()), 0);
|
|
|
|
EXPECT_EQ((BitMask<uint32_t, 16>(0b1000000000000000).LeadingZeros()), 0);
|
|
EXPECT_EQ((BitMask<uint32_t, 16>(0b1000000000000000).TrailingZeros()), 15);
|
|
|
|
EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x0000008080808000).LeadingZeros()), 3);
|
|
EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x0000008080808000).TrailingZeros()), 1);
|
|
|
|
EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x0000000000000080).LeadingZeros()), 7);
|
|
EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x0000000000000080).TrailingZeros()), 0);
|
|
|
|
EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x8000000000000000).LeadingZeros()), 0);
|
|
EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x8000000000000000).TrailingZeros()), 7);
|
|
}
|
|
|
|
TEST(Group, EmptyGroup) {
|
|
for (h2_t h = 0; h != 128; ++h) EXPECT_FALSE(Group{EmptyGroup()}.Match(h));
|
|
}
|
|
|
|
TEST(Group, Match) {
|
|
if (Group::kWidth == 16) {
|
|
ctrl_t group[] = {kEmpty, 1, kDeleted, 3, kEmpty, 5, kSentinel, 7,
|
|
7, 5, 3, 1, 1, 1, 1, 1};
|
|
EXPECT_THAT(Group{group}.Match(0), ElementsAre());
|
|
EXPECT_THAT(Group{group}.Match(1), ElementsAre(1, 11, 12, 13, 14, 15));
|
|
EXPECT_THAT(Group{group}.Match(3), ElementsAre(3, 10));
|
|
EXPECT_THAT(Group{group}.Match(5), ElementsAre(5, 9));
|
|
EXPECT_THAT(Group{group}.Match(7), ElementsAre(7, 8));
|
|
} else if (Group::kWidth == 8) {
|
|
ctrl_t group[] = {kEmpty, 1, 2, kDeleted, 2, 1, kSentinel, 1};
|
|
EXPECT_THAT(Group{group}.Match(0), ElementsAre());
|
|
EXPECT_THAT(Group{group}.Match(1), ElementsAre(1, 5, 7));
|
|
EXPECT_THAT(Group{group}.Match(2), ElementsAre(2, 4));
|
|
} else {
|
|
FAIL() << "No test coverage for Group::kWidth==" << Group::kWidth;
|
|
}
|
|
}
|
|
|
|
TEST(Group, MatchEmpty) {
|
|
if (Group::kWidth == 16) {
|
|
ctrl_t group[] = {kEmpty, 1, kDeleted, 3, kEmpty, 5, kSentinel, 7,
|
|
7, 5, 3, 1, 1, 1, 1, 1};
|
|
EXPECT_THAT(Group{group}.MatchEmpty(), ElementsAre(0, 4));
|
|
} else if (Group::kWidth == 8) {
|
|
ctrl_t group[] = {kEmpty, 1, 2, kDeleted, 2, 1, kSentinel, 1};
|
|
EXPECT_THAT(Group{group}.MatchEmpty(), ElementsAre(0));
|
|
} else {
|
|
FAIL() << "No test coverage for Group::kWidth==" << Group::kWidth;
|
|
}
|
|
}
|
|
|
|
TEST(Group, MatchEmptyOrDeleted) {
|
|
if (Group::kWidth == 16) {
|
|
ctrl_t group[] = {kEmpty, 1, kDeleted, 3, kEmpty, 5, kSentinel, 7,
|
|
7, 5, 3, 1, 1, 1, 1, 1};
|
|
EXPECT_THAT(Group{group}.MatchEmptyOrDeleted(), ElementsAre(0, 2, 4));
|
|
} else if (Group::kWidth == 8) {
|
|
ctrl_t group[] = {kEmpty, 1, 2, kDeleted, 2, 1, kSentinel, 1};
|
|
EXPECT_THAT(Group{group}.MatchEmptyOrDeleted(), ElementsAre(0, 3));
|
|
} else {
|
|
FAIL() << "No test coverage for Group::kWidth==" << Group::kWidth;
|
|
}
|
|
}
|
|
|
|
TEST(Batch, DropDeletes) {
|
|
constexpr size_t kCapacity = 63;
|
|
constexpr size_t kGroupWidth = container_internal::Group::kWidth;
|
|
std::vector<ctrl_t> ctrl(kCapacity + 1 + kGroupWidth);
|
|
ctrl[kCapacity] = kSentinel;
|
|
std::vector<ctrl_t> pattern = {kEmpty, 2, kDeleted, 2, kEmpty, 1, kDeleted};
|
|
for (size_t i = 0; i != kCapacity; ++i) {
|
|
ctrl[i] = pattern[i % pattern.size()];
|
|
if (i < kGroupWidth - 1)
|
|
ctrl[i + kCapacity + 1] = pattern[i % pattern.size()];
|
|
}
|
|
ConvertDeletedToEmptyAndFullToDeleted(ctrl.data(), kCapacity);
|
|
ASSERT_EQ(ctrl[kCapacity], kSentinel);
|
|
for (size_t i = 0; i < kCapacity + 1 + kGroupWidth; ++i) {
|
|
ctrl_t expected = pattern[i % (kCapacity + 1) % pattern.size()];
|
|
if (i == kCapacity) expected = kSentinel;
|
|
if (expected == kDeleted) expected = kEmpty;
|
|
if (IsFull(expected)) expected = kDeleted;
|
|
EXPECT_EQ(ctrl[i], expected)
|
|
<< i << " " << int{pattern[i % pattern.size()]};
|
|
}
|
|
}
|
|
|
|
TEST(Group, CountLeadingEmptyOrDeleted) {
|
|
const std::vector<ctrl_t> empty_examples = {kEmpty, kDeleted};
|
|
const std::vector<ctrl_t> full_examples = {0, 1, 2, 3, 5, 9, 127, kSentinel};
|
|
|
|
for (ctrl_t empty : empty_examples) {
|
|
std::vector<ctrl_t> e(Group::kWidth, empty);
|
|
EXPECT_EQ(Group::kWidth, Group{e.data()}.CountLeadingEmptyOrDeleted());
|
|
for (ctrl_t full : full_examples) {
|
|
for (size_t i = 0; i != Group::kWidth; ++i) {
|
|
std::vector<ctrl_t> f(Group::kWidth, empty);
|
|
f[i] = full;
|
|
EXPECT_EQ(i, Group{f.data()}.CountLeadingEmptyOrDeleted());
|
|
}
|
|
std::vector<ctrl_t> f(Group::kWidth, empty);
|
|
f[Group::kWidth * 2 / 3] = full;
|
|
f[Group::kWidth / 2] = full;
|
|
EXPECT_EQ(
|
|
Group::kWidth / 2, Group{f.data()}.CountLeadingEmptyOrDeleted());
|
|
}
|
|
}
|
|
}
|
|
|
|
struct IntPolicy {
|
|
using slot_type = int64_t;
|
|
using key_type = int64_t;
|
|
using init_type = int64_t;
|
|
|
|
static void construct(void*, int64_t* slot, int64_t v) { *slot = v; }
|
|
static void destroy(void*, int64_t*) {}
|
|
static void transfer(void*, int64_t* new_slot, int64_t* old_slot) {
|
|
*new_slot = *old_slot;
|
|
}
|
|
|
|
static int64_t& element(slot_type* slot) { return *slot; }
|
|
|
|
template <class F>
|
|
static auto apply(F&& f, int64_t x) -> decltype(std::forward<F>(f)(x, x)) {
|
|
return std::forward<F>(f)(x, x);
|
|
}
|
|
};
|
|
|
|
class StringPolicy {
|
|
template <class F, class K, class V,
|
|
class = typename std::enable_if<
|
|
std::is_convertible<const K&, absl::string_view>::value>::type>
|
|
decltype(std::declval<F>()(
|
|
std::declval<const absl::string_view&>(), std::piecewise_construct,
|
|
std::declval<std::tuple<K>>(),
|
|
std::declval<V>())) static apply_impl(F&& f,
|
|
std::pair<std::tuple<K>, V> p) {
|
|
const absl::string_view& key = std::get<0>(p.first);
|
|
return std::forward<F>(f)(key, std::piecewise_construct, std::move(p.first),
|
|
std::move(p.second));
|
|
}
|
|
|
|
public:
|
|
struct slot_type {
|
|
struct ctor {};
|
|
|
|
template <class... Ts>
|
|
slot_type(ctor, Ts&&... ts) : pair(std::forward<Ts>(ts)...) {}
|
|
|
|
std::pair<std::string, std::string> pair;
|
|
};
|
|
|
|
using key_type = std::string;
|
|
using init_type = std::pair<std::string, std::string>;
|
|
|
|
template <class allocator_type, class... Args>
|
|
static void construct(allocator_type* alloc, slot_type* slot, Args... args) {
|
|
std::allocator_traits<allocator_type>::construct(
|
|
*alloc, slot, typename slot_type::ctor(), std::forward<Args>(args)...);
|
|
}
|
|
|
|
template <class allocator_type>
|
|
static void destroy(allocator_type* alloc, slot_type* slot) {
|
|
std::allocator_traits<allocator_type>::destroy(*alloc, slot);
|
|
}
|
|
|
|
template <class allocator_type>
|
|
static void transfer(allocator_type* alloc, slot_type* new_slot,
|
|
slot_type* old_slot) {
|
|
construct(alloc, new_slot, std::move(old_slot->pair));
|
|
destroy(alloc, old_slot);
|
|
}
|
|
|
|
static std::pair<std::string, std::string>& element(slot_type* slot) {
|
|
return slot->pair;
|
|
}
|
|
|
|
template <class F, class... Args>
|
|
static auto apply(F&& f, Args&&... args)
|
|
-> decltype(apply_impl(std::forward<F>(f),
|
|
PairArgs(std::forward<Args>(args)...))) {
|
|
return apply_impl(std::forward<F>(f),
|
|
PairArgs(std::forward<Args>(args)...));
|
|
}
|
|
};
|
|
|
|
struct StringHash : absl::Hash<absl::string_view> {
|
|
using is_transparent = void;
|
|
};
|
|
struct StringEq : std::equal_to<absl::string_view> {
|
|
using is_transparent = void;
|
|
};
|
|
|
|
struct StringTable
|
|
: raw_hash_set<StringPolicy, StringHash, StringEq, std::allocator<int>> {
|
|
using Base = typename StringTable::raw_hash_set;
|
|
StringTable() {}
|
|
using Base::Base;
|
|
};
|
|
|
|
struct IntTable
|
|
: raw_hash_set<IntPolicy, container_internal::hash_default_hash<int64_t>,
|
|
std::equal_to<int64_t>, std::allocator<int64_t>> {
|
|
using Base = typename IntTable::raw_hash_set;
|
|
IntTable() {}
|
|
using Base::Base;
|
|
};
|
|
|
|
struct BadFastHash {
|
|
template <class T>
|
|
size_t operator()(const T&) const {
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
struct BadTable : raw_hash_set<IntPolicy, BadFastHash, std::equal_to<int>,
|
|
std::allocator<int>> {
|
|
using Base = typename BadTable::raw_hash_set;
|
|
BadTable() {}
|
|
using Base::Base;
|
|
};
|
|
|
|
TEST(Table, EmptyFunctorOptimization) {
|
|
static_assert(std::is_empty<std::equal_to<absl::string_view>>::value, "");
|
|
static_assert(std::is_empty<std::allocator<int>>::value, "");
|
|
|
|
struct MockTable {
|
|
void* ctrl;
|
|
void* slots;
|
|
size_t size;
|
|
size_t capacity;
|
|
size_t growth_left;
|
|
void* infoz;
|
|
};
|
|
struct StatelessHash {
|
|
size_t operator()(absl::string_view) const { return 0; }
|
|
};
|
|
struct StatefulHash : StatelessHash {
|
|
size_t dummy;
|
|
};
|
|
|
|
EXPECT_EQ(
|
|
sizeof(MockTable),
|
|
sizeof(
|
|
raw_hash_set<StringPolicy, StatelessHash,
|
|
std::equal_to<absl::string_view>, std::allocator<int>>));
|
|
|
|
EXPECT_EQ(
|
|
sizeof(MockTable) + sizeof(StatefulHash),
|
|
sizeof(
|
|
raw_hash_set<StringPolicy, StatefulHash,
|
|
std::equal_to<absl::string_view>, std::allocator<int>>));
|
|
}
|
|
|
|
TEST(Table, Empty) {
|
|
IntTable t;
|
|
EXPECT_EQ(0, t.size());
|
|
EXPECT_TRUE(t.empty());
|
|
}
|
|
|
|
#ifdef __GNUC__
|
|
template <class T>
|
|
ABSL_ATTRIBUTE_ALWAYS_INLINE inline void DoNotOptimize(const T& v) {
|
|
asm volatile("" : : "r,m"(v) : "memory");
|
|
}
|
|
#endif
|
|
|
|
TEST(Table, Prefetch) {
|
|
IntTable t;
|
|
t.emplace(1);
|
|
// Works for both present and absent keys.
|
|
t.prefetch(1);
|
|
t.prefetch(2);
|
|
|
|
// Do not run in debug mode, when prefetch is not implemented, or when
|
|
// sanitizers are enabled.
|
|
#if defined(NDEBUG) && defined(__GNUC__) && !defined(ADDRESS_SANITIZER) && \
|
|
!defined(MEMORY_SANITIZER) && !defined(THREAD_SANITIZER) && \
|
|
!defined(UNDEFINED_BEHAVIOR_SANITIZER)
|
|
const auto now = [] { return absl::base_internal::CycleClock::Now(); };
|
|
|
|
// Make size enough to not fit in L2 cache (16.7 Mb)
|
|
static constexpr int size = 1 << 22;
|
|
for (int i = 0; i < size; ++i) t.insert(i);
|
|
|
|
int64_t no_prefetch = 0, prefetch = 0;
|
|
for (int iter = 0; iter < 10; ++iter) {
|
|
int64_t time = now();
|
|
for (int i = 0; i < size; ++i) {
|
|
DoNotOptimize(t.find(i));
|
|
}
|
|
no_prefetch += now() - time;
|
|
|
|
time = now();
|
|
for (int i = 0; i < size; ++i) {
|
|
t.prefetch(i + 20);
|
|
DoNotOptimize(t.find(i));
|
|
}
|
|
prefetch += now() - time;
|
|
}
|
|
|
|
// no_prefetch is at least 30% slower.
|
|
EXPECT_GE(1.0 * no_prefetch / prefetch, 1.3);
|
|
#endif
|
|
}
|
|
|
|
TEST(Table, LookupEmpty) {
|
|
IntTable t;
|
|
auto it = t.find(0);
|
|
EXPECT_TRUE(it == t.end());
|
|
}
|
|
|
|
TEST(Table, Insert1) {
|
|
IntTable t;
|
|
EXPECT_TRUE(t.find(0) == t.end());
|
|
auto res = t.emplace(0);
|
|
EXPECT_TRUE(res.second);
|
|
EXPECT_THAT(*res.first, 0);
|
|
EXPECT_EQ(1, t.size());
|
|
EXPECT_THAT(*t.find(0), 0);
|
|
}
|
|
|
|
TEST(Table, Insert2) {
|
|
IntTable t;
|
|
EXPECT_TRUE(t.find(0) == t.end());
|
|
auto res = t.emplace(0);
|
|
EXPECT_TRUE(res.second);
|
|
EXPECT_THAT(*res.first, 0);
|
|
EXPECT_EQ(1, t.size());
|
|
EXPECT_TRUE(t.find(1) == t.end());
|
|
res = t.emplace(1);
|
|
EXPECT_TRUE(res.second);
|
|
EXPECT_THAT(*res.first, 1);
|
|
EXPECT_EQ(2, t.size());
|
|
EXPECT_THAT(*t.find(0), 0);
|
|
EXPECT_THAT(*t.find(1), 1);
|
|
}
|
|
|
|
TEST(Table, InsertCollision) {
|
|
BadTable t;
|
|
EXPECT_TRUE(t.find(1) == t.end());
|
|
auto res = t.emplace(1);
|
|
EXPECT_TRUE(res.second);
|
|
EXPECT_THAT(*res.first, 1);
|
|
EXPECT_EQ(1, t.size());
|
|
|
|
EXPECT_TRUE(t.find(2) == t.end());
|
|
res = t.emplace(2);
|
|
EXPECT_THAT(*res.first, 2);
|
|
EXPECT_TRUE(res.second);
|
|
EXPECT_EQ(2, t.size());
|
|
|
|
EXPECT_THAT(*t.find(1), 1);
|
|
EXPECT_THAT(*t.find(2), 2);
|
|
}
|
|
|
|
// Test that we do not add existent element in case we need to search through
|
|
// many groups with deleted elements
|
|
TEST(Table, InsertCollisionAndFindAfterDelete) {
|
|
BadTable t; // all elements go to the same group.
|
|
// Have at least 2 groups with Group::kWidth collisions
|
|
// plus some extra collisions in the last group.
|
|
constexpr size_t kNumInserts = Group::kWidth * 2 + 5;
|
|
for (size_t i = 0; i < kNumInserts; ++i) {
|
|
auto res = t.emplace(i);
|
|
EXPECT_TRUE(res.second);
|
|
EXPECT_THAT(*res.first, i);
|
|
EXPECT_EQ(i + 1, t.size());
|
|
}
|
|
|
|
// Remove elements one by one and check
|
|
// that we still can find all other elements.
|
|
for (size_t i = 0; i < kNumInserts; ++i) {
|
|
EXPECT_EQ(1, t.erase(i)) << i;
|
|
for (size_t j = i + 1; j < kNumInserts; ++j) {
|
|
EXPECT_THAT(*t.find(j), j);
|
|
auto res = t.emplace(j);
|
|
EXPECT_FALSE(res.second) << i << " " << j;
|
|
EXPECT_THAT(*res.first, j);
|
|
EXPECT_EQ(kNumInserts - i - 1, t.size());
|
|
}
|
|
}
|
|
EXPECT_TRUE(t.empty());
|
|
}
|
|
|
|
TEST(Table, LazyEmplace) {
|
|
StringTable t;
|
|
bool called = false;
|
|
auto it = t.lazy_emplace("abc", [&](const StringTable::constructor& f) {
|
|
called = true;
|
|
f("abc", "ABC");
|
|
});
|
|
EXPECT_TRUE(called);
|
|
EXPECT_THAT(*it, Pair("abc", "ABC"));
|
|
called = false;
|
|
it = t.lazy_emplace("abc", [&](const StringTable::constructor& f) {
|
|
called = true;
|
|
f("abc", "DEF");
|
|
});
|
|
EXPECT_FALSE(called);
|
|
EXPECT_THAT(*it, Pair("abc", "ABC"));
|
|
}
|
|
|
|
TEST(Table, ContainsEmpty) {
|
|
IntTable t;
|
|
|
|
EXPECT_FALSE(t.contains(0));
|
|
}
|
|
|
|
TEST(Table, Contains1) {
|
|
IntTable t;
|
|
|
|
EXPECT_TRUE(t.insert(0).second);
|
|
EXPECT_TRUE(t.contains(0));
|
|
EXPECT_FALSE(t.contains(1));
|
|
|
|
EXPECT_EQ(1, t.erase(0));
|
|
EXPECT_FALSE(t.contains(0));
|
|
}
|
|
|
|
TEST(Table, Contains2) {
|
|
IntTable t;
|
|
|
|
EXPECT_TRUE(t.insert(0).second);
|
|
EXPECT_TRUE(t.contains(0));
|
|
EXPECT_FALSE(t.contains(1));
|
|
|
|
t.clear();
|
|
EXPECT_FALSE(t.contains(0));
|
|
}
|
|
|
|
int decompose_constructed;
|
|
struct DecomposeType {
|
|
DecomposeType(int i) : i(i) { // NOLINT
|
|
++decompose_constructed;
|
|
}
|
|
|
|
explicit DecomposeType(const char* d) : DecomposeType(*d) {}
|
|
|
|
int i;
|
|
};
|
|
|
|
struct DecomposeHash {
|
|
using is_transparent = void;
|
|
size_t operator()(DecomposeType a) const { return a.i; }
|
|
size_t operator()(int a) const { return a; }
|
|
size_t operator()(const char* a) const { return *a; }
|
|
};
|
|
|
|
struct DecomposeEq {
|
|
using is_transparent = void;
|
|
bool operator()(DecomposeType a, DecomposeType b) const { return a.i == b.i; }
|
|
bool operator()(DecomposeType a, int b) const { return a.i == b; }
|
|
bool operator()(DecomposeType a, const char* b) const { return a.i == *b; }
|
|
};
|
|
|
|
struct DecomposePolicy {
|
|
using slot_type = DecomposeType;
|
|
using key_type = DecomposeType;
|
|
using init_type = DecomposeType;
|
|
|
|
template <typename T>
|
|
static void construct(void*, DecomposeType* slot, T&& v) {
|
|
*slot = DecomposeType(std::forward<T>(v));
|
|
}
|
|
static void destroy(void*, DecomposeType*) {}
|
|
static DecomposeType& element(slot_type* slot) { return *slot; }
|
|
|
|
template <class F, class T>
|
|
static auto apply(F&& f, const T& x) -> decltype(std::forward<F>(f)(x, x)) {
|
|
return std::forward<F>(f)(x, x);
|
|
}
|
|
};
|
|
|
|
template <typename Hash, typename Eq>
|
|
void TestDecompose(bool construct_three) {
|
|
DecomposeType elem{0};
|
|
const int one = 1;
|
|
const char* three_p = "3";
|
|
const auto& three = three_p;
|
|
|
|
raw_hash_set<DecomposePolicy, Hash, Eq, std::allocator<int>> set1;
|
|
|
|
decompose_constructed = 0;
|
|
int expected_constructed = 0;
|
|
EXPECT_EQ(expected_constructed, decompose_constructed);
|
|
set1.insert(elem);
|
|
EXPECT_EQ(expected_constructed, decompose_constructed);
|
|
set1.insert(1);
|
|
EXPECT_EQ(++expected_constructed, decompose_constructed);
|
|
set1.emplace("3");
|
|
EXPECT_EQ(++expected_constructed, decompose_constructed);
|
|
EXPECT_EQ(expected_constructed, decompose_constructed);
|
|
|
|
{ // insert(T&&)
|
|
set1.insert(1);
|
|
EXPECT_EQ(expected_constructed, decompose_constructed);
|
|
}
|
|
|
|
{ // insert(const T&)
|
|
set1.insert(one);
|
|
EXPECT_EQ(expected_constructed, decompose_constructed);
|
|
}
|
|
|
|
{ // insert(hint, T&&)
|
|
set1.insert(set1.begin(), 1);
|
|
EXPECT_EQ(expected_constructed, decompose_constructed);
|
|
}
|
|
|
|
{ // insert(hint, const T&)
|
|
set1.insert(set1.begin(), one);
|
|
EXPECT_EQ(expected_constructed, decompose_constructed);
|
|
}
|
|
|
|
{ // emplace(...)
|
|
set1.emplace(1);
|
|
EXPECT_EQ(expected_constructed, decompose_constructed);
|
|
set1.emplace("3");
|
|
expected_constructed += construct_three;
|
|
EXPECT_EQ(expected_constructed, decompose_constructed);
|
|
set1.emplace(one);
|
|
EXPECT_EQ(expected_constructed, decompose_constructed);
|
|
set1.emplace(three);
|
|
expected_constructed += construct_three;
|
|
EXPECT_EQ(expected_constructed, decompose_constructed);
|
|
}
|
|
|
|
{ // emplace_hint(...)
|
|
set1.emplace_hint(set1.begin(), 1);
|
|
EXPECT_EQ(expected_constructed, decompose_constructed);
|
|
set1.emplace_hint(set1.begin(), "3");
|
|
expected_constructed += construct_three;
|
|
EXPECT_EQ(expected_constructed, decompose_constructed);
|
|
set1.emplace_hint(set1.begin(), one);
|
|
EXPECT_EQ(expected_constructed, decompose_constructed);
|
|
set1.emplace_hint(set1.begin(), three);
|
|
expected_constructed += construct_three;
|
|
EXPECT_EQ(expected_constructed, decompose_constructed);
|
|
}
|
|
}
|
|
|
|
TEST(Table, Decompose) {
|
|
TestDecompose<DecomposeHash, DecomposeEq>(false);
|
|
|
|
struct TransparentHashIntOverload {
|
|
size_t operator()(DecomposeType a) const { return a.i; }
|
|
size_t operator()(int a) const { return a; }
|
|
};
|
|
struct TransparentEqIntOverload {
|
|
bool operator()(DecomposeType a, DecomposeType b) const {
|
|
return a.i == b.i;
|
|
}
|
|
bool operator()(DecomposeType a, int b) const { return a.i == b; }
|
|
};
|
|
TestDecompose<TransparentHashIntOverload, DecomposeEq>(true);
|
|
TestDecompose<TransparentHashIntOverload, TransparentEqIntOverload>(true);
|
|
TestDecompose<DecomposeHash, TransparentEqIntOverload>(true);
|
|
}
|
|
|
|
// Returns the largest m such that a table with m elements has the same number
|
|
// of buckets as a table with n elements.
|
|
size_t MaxDensitySize(size_t n) {
|
|
IntTable t;
|
|
t.reserve(n);
|
|
for (size_t i = 0; i != n; ++i) t.emplace(i);
|
|
const size_t c = t.bucket_count();
|
|
while (c == t.bucket_count()) t.emplace(n++);
|
|
return t.size() - 1;
|
|
}
|
|
|
|
struct Modulo1000Hash {
|
|
size_t operator()(int x) const { return x % 1000; }
|
|
};
|
|
|
|
struct Modulo1000HashTable
|
|
: public raw_hash_set<IntPolicy, Modulo1000Hash, std::equal_to<int>,
|
|
std::allocator<int>> {};
|
|
|
|
// Test that rehash with no resize happen in case of many deleted slots.
|
|
TEST(Table, RehashWithNoResize) {
|
|
Modulo1000HashTable t;
|
|
// Adding the same length (and the same hash) strings
|
|
// to have at least kMinFullGroups groups
|
|
// with Group::kWidth collisions. Then fill up to MaxDensitySize;
|
|
const size_t kMinFullGroups = 7;
|
|
std::vector<int> keys;
|
|
for (size_t i = 0; i < MaxDensitySize(Group::kWidth * kMinFullGroups); ++i) {
|
|
int k = i * 1000;
|
|
t.emplace(k);
|
|
keys.push_back(k);
|
|
}
|
|
const size_t capacity = t.capacity();
|
|
|
|
// Remove elements from all groups except the first and the last one.
|
|
// All elements removed from full groups will be marked as kDeleted.
|
|
const size_t erase_begin = Group::kWidth / 2;
|
|
const size_t erase_end = (t.size() / Group::kWidth - 1) * Group::kWidth;
|
|
for (size_t i = erase_begin; i < erase_end; ++i) {
|
|
EXPECT_EQ(1, t.erase(keys[i])) << i;
|
|
}
|
|
keys.erase(keys.begin() + erase_begin, keys.begin() + erase_end);
|
|
|
|
auto last_key = keys.back();
|
|
size_t last_key_num_probes = GetHashtableDebugNumProbes(t, last_key);
|
|
|
|
// Make sure that we have to make a lot of probes for last key.
|
|
ASSERT_GT(last_key_num_probes, kMinFullGroups);
|
|
|
|
int x = 1;
|
|
// Insert and erase one element, before inplace rehash happen.
|
|
while (last_key_num_probes == GetHashtableDebugNumProbes(t, last_key)) {
|
|
t.emplace(x);
|
|
ASSERT_EQ(capacity, t.capacity());
|
|
// All elements should be there.
|
|
ASSERT_TRUE(t.find(x) != t.end()) << x;
|
|
for (const auto& k : keys) {
|
|
ASSERT_TRUE(t.find(k) != t.end()) << k;
|
|
}
|
|
t.erase(x);
|
|
++x;
|
|
}
|
|
}
|
|
|
|
TEST(Table, InsertEraseStressTest) {
|
|
IntTable t;
|
|
const size_t kMinElementCount = 250;
|
|
std::deque<int> keys;
|
|
size_t i = 0;
|
|
for (; i < MaxDensitySize(kMinElementCount); ++i) {
|
|
t.emplace(i);
|
|
keys.push_back(i);
|
|
}
|
|
const size_t kNumIterations = 1000000;
|
|
for (; i < kNumIterations; ++i) {
|
|
ASSERT_EQ(1, t.erase(keys.front()));
|
|
keys.pop_front();
|
|
t.emplace(i);
|
|
keys.push_back(i);
|
|
}
|
|
}
|
|
|
|
TEST(Table, InsertOverloads) {
|
|
StringTable t;
|
|
// These should all trigger the insert(init_type) overload.
|
|
t.insert({{}, {}});
|
|
t.insert({"ABC", {}});
|
|
t.insert({"DEF", "!!!"});
|
|
|
|
EXPECT_THAT(t, UnorderedElementsAre(Pair("", ""), Pair("ABC", ""),
|
|
Pair("DEF", "!!!")));
|
|
}
|
|
|
|
TEST(Table, LargeTable) {
|
|
IntTable t;
|
|
for (int64_t i = 0; i != 100000; ++i) t.emplace(i << 40);
|
|
for (int64_t i = 0; i != 100000; ++i) ASSERT_EQ(i << 40, *t.find(i << 40));
|
|
}
|
|
|
|
// Timeout if copy is quadratic as it was in Rust.
|
|
TEST(Table, EnsureNonQuadraticAsInRust) {
|
|
static const size_t kLargeSize = 1 << 15;
|
|
|
|
IntTable t;
|
|
for (size_t i = 0; i != kLargeSize; ++i) {
|
|
t.insert(i);
|
|
}
|
|
|
|
// If this is quadratic, the test will timeout.
|
|
IntTable t2;
|
|
for (const auto& entry : t) t2.insert(entry);
|
|
}
|
|
|
|
TEST(Table, ClearBug) {
|
|
IntTable t;
|
|
constexpr size_t capacity = container_internal::Group::kWidth - 1;
|
|
constexpr size_t max_size = capacity / 2;
|
|
for (size_t i = 0; i < max_size; ++i) {
|
|
t.insert(i);
|
|
}
|
|
ASSERT_EQ(capacity, t.capacity());
|
|
intptr_t original = reinterpret_cast<intptr_t>(&*t.find(2));
|
|
t.clear();
|
|
ASSERT_EQ(capacity, t.capacity());
|
|
for (size_t i = 0; i < max_size; ++i) {
|
|
t.insert(i);
|
|
}
|
|
ASSERT_EQ(capacity, t.capacity());
|
|
intptr_t second = reinterpret_cast<intptr_t>(&*t.find(2));
|
|
// We are checking that original and second are close enough to each other
|
|
// that they are probably still in the same group. This is not strictly
|
|
// guaranteed.
|
|
EXPECT_LT(std::abs(original - second),
|
|
capacity * sizeof(IntTable::value_type));
|
|
}
|
|
|
|
TEST(Table, Erase) {
|
|
IntTable t;
|
|
EXPECT_TRUE(t.find(0) == t.end());
|
|
auto res = t.emplace(0);
|
|
EXPECT_TRUE(res.second);
|
|
EXPECT_EQ(1, t.size());
|
|
t.erase(res.first);
|
|
EXPECT_EQ(0, t.size());
|
|
EXPECT_TRUE(t.find(0) == t.end());
|
|
}
|
|
|
|
// Collect N bad keys by following algorithm:
|
|
// 1. Create an empty table and reserve it to 2 * N.
|
|
// 2. Insert N random elements.
|
|
// 3. Take first Group::kWidth - 1 to bad_keys array.
|
|
// 4. Clear the table without resize.
|
|
// 5. Go to point 2 while N keys not collected
|
|
std::vector<int64_t> CollectBadMergeKeys(size_t N) {
|
|
static constexpr int kGroupSize = Group::kWidth - 1;
|
|
|
|
auto topk_range = [](size_t b, size_t e, IntTable* t) -> std::vector<int64_t> {
|
|
for (size_t i = b; i != e; ++i) {
|
|
t->emplace(i);
|
|
}
|
|
std::vector<int64_t> res;
|
|
res.reserve(kGroupSize);
|
|
auto it = t->begin();
|
|
for (size_t i = b; i != e && i != b + kGroupSize; ++i, ++it) {
|
|
res.push_back(*it);
|
|
}
|
|
return res;
|
|
};
|
|
|
|
std::vector<int64_t> bad_keys;
|
|
bad_keys.reserve(N);
|
|
IntTable t;
|
|
t.reserve(N * 2);
|
|
|
|
for (size_t b = 0; bad_keys.size() < N; b += N) {
|
|
auto keys = topk_range(b, b + N, &t);
|
|
bad_keys.insert(bad_keys.end(), keys.begin(), keys.end());
|
|
t.erase(t.begin(), t.end());
|
|
EXPECT_TRUE(t.empty());
|
|
}
|
|
return bad_keys;
|
|
}
|
|
|
|
struct ProbeStats {
|
|
// Number of elements with specific probe length over all tested tables.
|
|
std::vector<size_t> all_probes_histogram;
|
|
// Ratios total_probe_length/size for every tested table.
|
|
std::vector<double> single_table_ratios;
|
|
|
|
friend ProbeStats operator+(const ProbeStats& a, const ProbeStats& b) {
|
|
ProbeStats res = a;
|
|
res.all_probes_histogram.resize(std::max(res.all_probes_histogram.size(),
|
|
b.all_probes_histogram.size()));
|
|
std::transform(b.all_probes_histogram.begin(), b.all_probes_histogram.end(),
|
|
res.all_probes_histogram.begin(),
|
|
res.all_probes_histogram.begin(), std::plus<size_t>());
|
|
res.single_table_ratios.insert(res.single_table_ratios.end(),
|
|
b.single_table_ratios.begin(),
|
|
b.single_table_ratios.end());
|
|
return res;
|
|
}
|
|
|
|
// Average ratio total_probe_length/size over tables.
|
|
double AvgRatio() const {
|
|
return std::accumulate(single_table_ratios.begin(),
|
|
single_table_ratios.end(), 0.0) /
|
|
single_table_ratios.size();
|
|
}
|
|
|
|
// Maximum ratio total_probe_length/size over tables.
|
|
double MaxRatio() const {
|
|
return *std::max_element(single_table_ratios.begin(),
|
|
single_table_ratios.end());
|
|
}
|
|
|
|
// Percentile ratio total_probe_length/size over tables.
|
|
double PercentileRatio(double Percentile = 0.95) const {
|
|
auto r = single_table_ratios;
|
|
auto mid = r.begin() + static_cast<size_t>(r.size() * Percentile);
|
|
if (mid != r.end()) {
|
|
std::nth_element(r.begin(), mid, r.end());
|
|
return *mid;
|
|
} else {
|
|
return MaxRatio();
|
|
}
|
|
}
|
|
|
|
// Maximum probe length over all elements and all tables.
|
|
size_t MaxProbe() const { return all_probes_histogram.size(); }
|
|
|
|
// Fraction of elements with specified probe length.
|
|
std::vector<double> ProbeNormalizedHistogram() const {
|
|
double total_elements = std::accumulate(all_probes_histogram.begin(),
|
|
all_probes_histogram.end(), 0ull);
|
|
std::vector<double> res;
|
|
for (size_t p : all_probes_histogram) {
|
|
res.push_back(p / total_elements);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
size_t PercentileProbe(double Percentile = 0.99) const {
|
|
size_t idx = 0;
|
|
for (double p : ProbeNormalizedHistogram()) {
|
|
if (Percentile > p) {
|
|
Percentile -= p;
|
|
++idx;
|
|
} else {
|
|
return idx;
|
|
}
|
|
}
|
|
return idx;
|
|
}
|
|
|
|
friend std::ostream& operator<<(std::ostream& out, const ProbeStats& s) {
|
|
out << "{AvgRatio:" << s.AvgRatio() << ", MaxRatio:" << s.MaxRatio()
|
|
<< ", PercentileRatio:" << s.PercentileRatio()
|
|
<< ", MaxProbe:" << s.MaxProbe() << ", Probes=[";
|
|
for (double p : s.ProbeNormalizedHistogram()) {
|
|
out << p << ",";
|
|
}
|
|
out << "]}";
|
|
|
|
return out;
|
|
}
|
|
};
|
|
|
|
struct ExpectedStats {
|
|
double avg_ratio;
|
|
double max_ratio;
|
|
std::vector<std::pair<double, double>> pecentile_ratios;
|
|
std::vector<std::pair<double, double>> pecentile_probes;
|
|
|
|
friend std::ostream& operator<<(std::ostream& out, const ExpectedStats& s) {
|
|
out << "{AvgRatio:" << s.avg_ratio << ", MaxRatio:" << s.max_ratio
|
|
<< ", PercentileRatios: [";
|
|
for (auto el : s.pecentile_ratios) {
|
|
out << el.first << ":" << el.second << ", ";
|
|
}
|
|
out << "], PercentileProbes: [";
|
|
for (auto el : s.pecentile_probes) {
|
|
out << el.first << ":" << el.second << ", ";
|
|
}
|
|
out << "]}";
|
|
|
|
return out;
|
|
}
|
|
};
|
|
|
|
void VerifyStats(size_t size, const ExpectedStats& exp,
|
|
const ProbeStats& stats) {
|
|
EXPECT_LT(stats.AvgRatio(), exp.avg_ratio) << size << " " << stats;
|
|
EXPECT_LT(stats.MaxRatio(), exp.max_ratio) << size << " " << stats;
|
|
for (auto pr : exp.pecentile_ratios) {
|
|
EXPECT_LE(stats.PercentileRatio(pr.first), pr.second)
|
|
<< size << " " << pr.first << " " << stats;
|
|
}
|
|
|
|
for (auto pr : exp.pecentile_probes) {
|
|
EXPECT_LE(stats.PercentileProbe(pr.first), pr.second)
|
|
<< size << " " << pr.first << " " << stats;
|
|
}
|
|
}
|
|
|
|
using ProbeStatsPerSize = std::map<size_t, ProbeStats>;
|
|
|
|
// Collect total ProbeStats on num_iters iterations of the following algorithm:
|
|
// 1. Create new table and reserve it to keys.size() * 2
|
|
// 2. Insert all keys xored with seed
|
|
// 3. Collect ProbeStats from final table.
|
|
ProbeStats CollectProbeStatsOnKeysXoredWithSeed(const std::vector<int64_t>& keys,
|
|
size_t num_iters) {
|
|
const size_t reserve_size = keys.size() * 2;
|
|
|
|
ProbeStats stats;
|
|
|
|
int64_t seed = 0x71b1a19b907d6e33;
|
|
while (num_iters--) {
|
|
seed = static_cast<int64_t>(static_cast<uint64_t>(seed) * 17 + 13);
|
|
IntTable t1;
|
|
t1.reserve(reserve_size);
|
|
for (const auto& key : keys) {
|
|
t1.emplace(key ^ seed);
|
|
}
|
|
|
|
auto probe_histogram = GetHashtableDebugNumProbesHistogram(t1);
|
|
stats.all_probes_histogram.resize(
|
|
std::max(stats.all_probes_histogram.size(), probe_histogram.size()));
|
|
std::transform(probe_histogram.begin(), probe_histogram.end(),
|
|
stats.all_probes_histogram.begin(),
|
|
stats.all_probes_histogram.begin(), std::plus<size_t>());
|
|
|
|
size_t total_probe_seq_length = 0;
|
|
for (size_t i = 0; i < probe_histogram.size(); ++i) {
|
|
total_probe_seq_length += i * probe_histogram[i];
|
|
}
|
|
stats.single_table_ratios.push_back(total_probe_seq_length * 1.0 /
|
|
keys.size());
|
|
t1.erase(t1.begin(), t1.end());
|
|
}
|
|
return stats;
|
|
}
|
|
|
|
ExpectedStats XorSeedExpectedStats() {
|
|
constexpr bool kRandomizesInserts =
|
|
#if NDEBUG
|
|
false;
|
|
#else // NDEBUG
|
|
true;
|
|
#endif // NDEBUG
|
|
|
|
// The effective load factor is larger in non-opt mode because we insert
|
|
// elements out of order.
|
|
switch (container_internal::Group::kWidth) {
|
|
case 8:
|
|
if (kRandomizesInserts) {
|
|
return {0.05,
|
|
1.0,
|
|
{{0.95, 0.5}},
|
|
{{0.95, 0}, {0.99, 2}, {0.999, 4}, {0.9999, 10}}};
|
|
} else {
|
|
return {0.05,
|
|
2.0,
|
|
{{0.95, 0.1}},
|
|
{{0.95, 0}, {0.99, 2}, {0.999, 4}, {0.9999, 10}}};
|
|
}
|
|
case 16:
|
|
if (kRandomizesInserts) {
|
|
return {0.1,
|
|
1.0,
|
|
{{0.95, 0.1}},
|
|
{{0.95, 0}, {0.99, 1}, {0.999, 8}, {0.9999, 15}}};
|
|
} else {
|
|
return {0.05,
|
|
1.0,
|
|
{{0.95, 0.05}},
|
|
{{0.95, 0}, {0.99, 1}, {0.999, 4}, {0.9999, 10}}};
|
|
}
|
|
}
|
|
ABSL_RAW_LOG(FATAL, "%s", "Unknown Group width");
|
|
return {};
|
|
}
|
|
TEST(Table, DISABLED_EnsureNonQuadraticTopNXorSeedByProbeSeqLength) {
|
|
ProbeStatsPerSize stats;
|
|
std::vector<size_t> sizes = {Group::kWidth << 5, Group::kWidth << 10};
|
|
for (size_t size : sizes) {
|
|
stats[size] =
|
|
CollectProbeStatsOnKeysXoredWithSeed(CollectBadMergeKeys(size), 200);
|
|
}
|
|
auto expected = XorSeedExpectedStats();
|
|
for (size_t size : sizes) {
|
|
auto& stat = stats[size];
|
|
VerifyStats(size, expected, stat);
|
|
}
|
|
}
|
|
|
|
// Collect total ProbeStats on num_iters iterations of the following algorithm:
|
|
// 1. Create new table
|
|
// 2. Select 10% of keys and insert 10 elements key * 17 + j * 13
|
|
// 3. Collect ProbeStats from final table
|
|
ProbeStats CollectProbeStatsOnLinearlyTransformedKeys(
|
|
const std::vector<int64_t>& keys, size_t num_iters) {
|
|
ProbeStats stats;
|
|
|
|
std::random_device rd;
|
|
std::mt19937 rng(rd());
|
|
auto linear_transform = [](size_t x, size_t y) { return x * 17 + y * 13; };
|
|
std::uniform_int_distribution<size_t> dist(0, keys.size()-1);
|
|
while (num_iters--) {
|
|
IntTable t1;
|
|
size_t num_keys = keys.size() / 10;
|
|
size_t start = dist(rng);
|
|
for (size_t i = 0; i != num_keys; ++i) {
|
|
for (size_t j = 0; j != 10; ++j) {
|
|
t1.emplace(linear_transform(keys[(i + start) % keys.size()], j));
|
|
}
|
|
}
|
|
|
|
auto probe_histogram = GetHashtableDebugNumProbesHistogram(t1);
|
|
stats.all_probes_histogram.resize(
|
|
std::max(stats.all_probes_histogram.size(), probe_histogram.size()));
|
|
std::transform(probe_histogram.begin(), probe_histogram.end(),
|
|
stats.all_probes_histogram.begin(),
|
|
stats.all_probes_histogram.begin(), std::plus<size_t>());
|
|
|
|
size_t total_probe_seq_length = 0;
|
|
for (size_t i = 0; i < probe_histogram.size(); ++i) {
|
|
total_probe_seq_length += i * probe_histogram[i];
|
|
}
|
|
stats.single_table_ratios.push_back(total_probe_seq_length * 1.0 /
|
|
t1.size());
|
|
t1.erase(t1.begin(), t1.end());
|
|
}
|
|
return stats;
|
|
}
|
|
|
|
ExpectedStats LinearTransformExpectedStats() {
|
|
constexpr bool kRandomizesInserts =
|
|
#if NDEBUG
|
|
false;
|
|
#else // NDEBUG
|
|
true;
|
|
#endif // NDEBUG
|
|
|
|
// The effective load factor is larger in non-opt mode because we insert
|
|
// elements out of order.
|
|
switch (container_internal::Group::kWidth) {
|
|
case 8:
|
|
if (kRandomizesInserts) {
|
|
return {0.1,
|
|
0.5,
|
|
{{0.95, 0.3}},
|
|
{{0.95, 0}, {0.99, 1}, {0.999, 8}, {0.9999, 15}}};
|
|
} else {
|
|
return {0.15,
|
|
0.5,
|
|
{{0.95, 0.3}},
|
|
{{0.95, 0}, {0.99, 3}, {0.999, 15}, {0.9999, 25}}};
|
|
}
|
|
case 16:
|
|
if (kRandomizesInserts) {
|
|
return {0.1,
|
|
0.4,
|
|
{{0.95, 0.3}},
|
|
{{0.95, 0}, {0.99, 1}, {0.999, 8}, {0.9999, 15}}};
|
|
} else {
|
|
return {0.05,
|
|
0.2,
|
|
{{0.95, 0.1}},
|
|
{{0.95, 0}, {0.99, 1}, {0.999, 6}, {0.9999, 10}}};
|
|
}
|
|
}
|
|
ABSL_RAW_LOG(FATAL, "%s", "Unknown Group width");
|
|
return {};
|
|
}
|
|
TEST(Table, DISABLED_EnsureNonQuadraticTopNLinearTransformByProbeSeqLength) {
|
|
ProbeStatsPerSize stats;
|
|
std::vector<size_t> sizes = {Group::kWidth << 5, Group::kWidth << 10};
|
|
for (size_t size : sizes) {
|
|
stats[size] = CollectProbeStatsOnLinearlyTransformedKeys(
|
|
CollectBadMergeKeys(size), 300);
|
|
}
|
|
auto expected = LinearTransformExpectedStats();
|
|
for (size_t size : sizes) {
|
|
auto& stat = stats[size];
|
|
VerifyStats(size, expected, stat);
|
|
}
|
|
}
|
|
|
|
TEST(Table, EraseCollision) {
|
|
BadTable t;
|
|
|
|
// 1 2 3
|
|
t.emplace(1);
|
|
t.emplace(2);
|
|
t.emplace(3);
|
|
EXPECT_THAT(*t.find(1), 1);
|
|
EXPECT_THAT(*t.find(2), 2);
|
|
EXPECT_THAT(*t.find(3), 3);
|
|
EXPECT_EQ(3, t.size());
|
|
|
|
// 1 DELETED 3
|
|
t.erase(t.find(2));
|
|
EXPECT_THAT(*t.find(1), 1);
|
|
EXPECT_TRUE(t.find(2) == t.end());
|
|
EXPECT_THAT(*t.find(3), 3);
|
|
EXPECT_EQ(2, t.size());
|
|
|
|
// DELETED DELETED 3
|
|
t.erase(t.find(1));
|
|
EXPECT_TRUE(t.find(1) == t.end());
|
|
EXPECT_TRUE(t.find(2) == t.end());
|
|
EXPECT_THAT(*t.find(3), 3);
|
|
EXPECT_EQ(1, t.size());
|
|
|
|
// DELETED DELETED DELETED
|
|
t.erase(t.find(3));
|
|
EXPECT_TRUE(t.find(1) == t.end());
|
|
EXPECT_TRUE(t.find(2) == t.end());
|
|
EXPECT_TRUE(t.find(3) == t.end());
|
|
EXPECT_EQ(0, t.size());
|
|
}
|
|
|
|
TEST(Table, EraseInsertProbing) {
|
|
BadTable t(100);
|
|
|
|
// 1 2 3 4
|
|
t.emplace(1);
|
|
t.emplace(2);
|
|
t.emplace(3);
|
|
t.emplace(4);
|
|
|
|
// 1 DELETED 3 DELETED
|
|
t.erase(t.find(2));
|
|
t.erase(t.find(4));
|
|
|
|
// 1 10 3 11 12
|
|
t.emplace(10);
|
|
t.emplace(11);
|
|
t.emplace(12);
|
|
|
|
EXPECT_EQ(5, t.size());
|
|
EXPECT_THAT(t, UnorderedElementsAre(1, 10, 3, 11, 12));
|
|
}
|
|
|
|
TEST(Table, Clear) {
|
|
IntTable t;
|
|
EXPECT_TRUE(t.find(0) == t.end());
|
|
t.clear();
|
|
EXPECT_TRUE(t.find(0) == t.end());
|
|
auto res = t.emplace(0);
|
|
EXPECT_TRUE(res.second);
|
|
EXPECT_EQ(1, t.size());
|
|
t.clear();
|
|
EXPECT_EQ(0, t.size());
|
|
EXPECT_TRUE(t.find(0) == t.end());
|
|
}
|
|
|
|
TEST(Table, Swap) {
|
|
IntTable t;
|
|
EXPECT_TRUE(t.find(0) == t.end());
|
|
auto res = t.emplace(0);
|
|
EXPECT_TRUE(res.second);
|
|
EXPECT_EQ(1, t.size());
|
|
IntTable u;
|
|
t.swap(u);
|
|
EXPECT_EQ(0, t.size());
|
|
EXPECT_EQ(1, u.size());
|
|
EXPECT_TRUE(t.find(0) == t.end());
|
|
EXPECT_THAT(*u.find(0), 0);
|
|
}
|
|
|
|
TEST(Table, Rehash) {
|
|
IntTable t;
|
|
EXPECT_TRUE(t.find(0) == t.end());
|
|
t.emplace(0);
|
|
t.emplace(1);
|
|
EXPECT_EQ(2, t.size());
|
|
t.rehash(128);
|
|
EXPECT_EQ(2, t.size());
|
|
EXPECT_THAT(*t.find(0), 0);
|
|
EXPECT_THAT(*t.find(1), 1);
|
|
}
|
|
|
|
TEST(Table, RehashDoesNotRehashWhenNotNecessary) {
|
|
IntTable t;
|
|
t.emplace(0);
|
|
t.emplace(1);
|
|
auto* p = &*t.find(0);
|
|
t.rehash(1);
|
|
EXPECT_EQ(p, &*t.find(0));
|
|
}
|
|
|
|
TEST(Table, RehashZeroDoesNotAllocateOnEmptyTable) {
|
|
IntTable t;
|
|
t.rehash(0);
|
|
EXPECT_EQ(0, t.bucket_count());
|
|
}
|
|
|
|
TEST(Table, RehashZeroDeallocatesEmptyTable) {
|
|
IntTable t;
|
|
t.emplace(0);
|
|
t.clear();
|
|
EXPECT_NE(0, t.bucket_count());
|
|
t.rehash(0);
|
|
EXPECT_EQ(0, t.bucket_count());
|
|
}
|
|
|
|
TEST(Table, RehashZeroForcesRehash) {
|
|
IntTable t;
|
|
t.emplace(0);
|
|
t.emplace(1);
|
|
auto* p = &*t.find(0);
|
|
t.rehash(0);
|
|
EXPECT_NE(p, &*t.find(0));
|
|
}
|
|
|
|
TEST(Table, ConstructFromInitList) {
|
|
using P = std::pair<std::string, std::string>;
|
|
struct Q {
|
|
operator P() const { return {}; }
|
|
};
|
|
StringTable t = {P(), Q(), {}, {{}, {}}};
|
|
}
|
|
|
|
TEST(Table, CopyConstruct) {
|
|
IntTable t;
|
|
t.max_load_factor(.321f);
|
|
t.emplace(0);
|
|
EXPECT_EQ(1, t.size());
|
|
{
|
|
IntTable u(t);
|
|
EXPECT_EQ(1, u.size());
|
|
EXPECT_EQ(t.max_load_factor(), u.max_load_factor());
|
|
EXPECT_THAT(*u.find(0), 0);
|
|
}
|
|
{
|
|
IntTable u{t};
|
|
EXPECT_EQ(1, u.size());
|
|
EXPECT_EQ(t.max_load_factor(), u.max_load_factor());
|
|
EXPECT_THAT(*u.find(0), 0);
|
|
}
|
|
{
|
|
IntTable u = t;
|
|
EXPECT_EQ(1, u.size());
|
|
EXPECT_EQ(t.max_load_factor(), u.max_load_factor());
|
|
EXPECT_THAT(*u.find(0), 0);
|
|
}
|
|
}
|
|
|
|
TEST(Table, CopyConstructWithAlloc) {
|
|
StringTable t;
|
|
t.max_load_factor(.321f);
|
|
t.emplace("a", "b");
|
|
EXPECT_EQ(1, t.size());
|
|
StringTable u(t, Alloc<std::pair<std::string, std::string>>());
|
|
EXPECT_EQ(1, u.size());
|
|
EXPECT_EQ(t.max_load_factor(), u.max_load_factor());
|
|
EXPECT_THAT(*u.find("a"), Pair("a", "b"));
|
|
}
|
|
|
|
struct ExplicitAllocIntTable
|
|
: raw_hash_set<IntPolicy, container_internal::hash_default_hash<int64_t>,
|
|
std::equal_to<int64_t>, Alloc<int64_t>> {
|
|
ExplicitAllocIntTable() {}
|
|
};
|
|
|
|
TEST(Table, AllocWithExplicitCtor) {
|
|
ExplicitAllocIntTable t;
|
|
EXPECT_EQ(0, t.size());
|
|
}
|
|
|
|
TEST(Table, MoveConstruct) {
|
|
{
|
|
StringTable t;
|
|
t.max_load_factor(.321f);
|
|
const float lf = t.max_load_factor();
|
|
t.emplace("a", "b");
|
|
EXPECT_EQ(1, t.size());
|
|
|
|
StringTable u(std::move(t));
|
|
EXPECT_EQ(1, u.size());
|
|
EXPECT_EQ(lf, u.max_load_factor());
|
|
EXPECT_THAT(*u.find("a"), Pair("a", "b"));
|
|
}
|
|
{
|
|
StringTable t;
|
|
t.max_load_factor(.321f);
|
|
const float lf = t.max_load_factor();
|
|
t.emplace("a", "b");
|
|
EXPECT_EQ(1, t.size());
|
|
|
|
StringTable u{std::move(t)};
|
|
EXPECT_EQ(1, u.size());
|
|
EXPECT_EQ(lf, u.max_load_factor());
|
|
EXPECT_THAT(*u.find("a"), Pair("a", "b"));
|
|
}
|
|
{
|
|
StringTable t;
|
|
t.max_load_factor(.321f);
|
|
const float lf = t.max_load_factor();
|
|
t.emplace("a", "b");
|
|
EXPECT_EQ(1, t.size());
|
|
|
|
StringTable u = std::move(t);
|
|
EXPECT_EQ(1, u.size());
|
|
EXPECT_EQ(lf, u.max_load_factor());
|
|
EXPECT_THAT(*u.find("a"), Pair("a", "b"));
|
|
}
|
|
}
|
|
|
|
TEST(Table, MoveConstructWithAlloc) {
|
|
StringTable t;
|
|
t.max_load_factor(.321f);
|
|
const float lf = t.max_load_factor();
|
|
t.emplace("a", "b");
|
|
EXPECT_EQ(1, t.size());
|
|
StringTable u(std::move(t), Alloc<std::pair<std::string, std::string>>());
|
|
EXPECT_EQ(1, u.size());
|
|
EXPECT_EQ(lf, u.max_load_factor());
|
|
EXPECT_THAT(*u.find("a"), Pair("a", "b"));
|
|
}
|
|
|
|
TEST(Table, CopyAssign) {
|
|
StringTable t;
|
|
t.max_load_factor(.321f);
|
|
t.emplace("a", "b");
|
|
EXPECT_EQ(1, t.size());
|
|
StringTable u;
|
|
u = t;
|
|
EXPECT_EQ(1, u.size());
|
|
EXPECT_EQ(t.max_load_factor(), u.max_load_factor());
|
|
EXPECT_THAT(*u.find("a"), Pair("a", "b"));
|
|
}
|
|
|
|
TEST(Table, CopySelfAssign) {
|
|
StringTable t;
|
|
t.max_load_factor(.321f);
|
|
const float lf = t.max_load_factor();
|
|
t.emplace("a", "b");
|
|
EXPECT_EQ(1, t.size());
|
|
t = *&t;
|
|
EXPECT_EQ(1, t.size());
|
|
EXPECT_EQ(lf, t.max_load_factor());
|
|
EXPECT_THAT(*t.find("a"), Pair("a", "b"));
|
|
}
|
|
|
|
TEST(Table, MoveAssign) {
|
|
StringTable t;
|
|
t.max_load_factor(.321f);
|
|
const float lf = t.max_load_factor();
|
|
t.emplace("a", "b");
|
|
EXPECT_EQ(1, t.size());
|
|
StringTable u;
|
|
u = std::move(t);
|
|
EXPECT_EQ(1, u.size());
|
|
EXPECT_EQ(lf, u.max_load_factor());
|
|
EXPECT_THAT(*u.find("a"), Pair("a", "b"));
|
|
}
|
|
|
|
TEST(Table, Equality) {
|
|
StringTable t;
|
|
std::vector<std::pair<std::string, std::string>> v = {{"a", "b"},
|
|
{"aa", "bb"}};
|
|
t.insert(std::begin(v), std::end(v));
|
|
StringTable u = t;
|
|
EXPECT_EQ(u, t);
|
|
}
|
|
|
|
TEST(Table, Equality2) {
|
|
StringTable t;
|
|
std::vector<std::pair<std::string, std::string>> v1 = {{"a", "b"},
|
|
{"aa", "bb"}};
|
|
t.insert(std::begin(v1), std::end(v1));
|
|
StringTable u;
|
|
std::vector<std::pair<std::string, std::string>> v2 = {{"a", "a"},
|
|
{"aa", "aa"}};
|
|
u.insert(std::begin(v2), std::end(v2));
|
|
EXPECT_NE(u, t);
|
|
}
|
|
|
|
TEST(Table, Equality3) {
|
|
StringTable t;
|
|
std::vector<std::pair<std::string, std::string>> v1 = {{"b", "b"},
|
|
{"bb", "bb"}};
|
|
t.insert(std::begin(v1), std::end(v1));
|
|
StringTable u;
|
|
std::vector<std::pair<std::string, std::string>> v2 = {{"a", "a"},
|
|
{"aa", "aa"}};
|
|
u.insert(std::begin(v2), std::end(v2));
|
|
EXPECT_NE(u, t);
|
|
}
|
|
|
|
TEST(Table, NumDeletedRegression) {
|
|
IntTable t;
|
|
t.emplace(0);
|
|
t.erase(t.find(0));
|
|
// construct over a deleted slot.
|
|
t.emplace(0);
|
|
t.clear();
|
|
}
|
|
|
|
TEST(Table, FindFullDeletedRegression) {
|
|
IntTable t;
|
|
for (int i = 0; i < 1000; ++i) {
|
|
t.emplace(i);
|
|
t.erase(t.find(i));
|
|
}
|
|
EXPECT_EQ(0, t.size());
|
|
}
|
|
|
|
TEST(Table, ReplacingDeletedSlotDoesNotRehash) {
|
|
size_t n;
|
|
{
|
|
// Compute n such that n is the maximum number of elements before rehash.
|
|
IntTable t;
|
|
t.emplace(0);
|
|
size_t c = t.bucket_count();
|
|
for (n = 1; c == t.bucket_count(); ++n) t.emplace(n);
|
|
--n;
|
|
}
|
|
IntTable t;
|
|
t.rehash(n);
|
|
const size_t c = t.bucket_count();
|
|
for (size_t i = 0; i != n; ++i) t.emplace(i);
|
|
EXPECT_EQ(c, t.bucket_count()) << "rehashing threshold = " << n;
|
|
t.erase(0);
|
|
t.emplace(0);
|
|
EXPECT_EQ(c, t.bucket_count()) << "rehashing threshold = " << n;
|
|
}
|
|
|
|
TEST(Table, NoThrowMoveConstruct) {
|
|
ASSERT_TRUE(
|
|
std::is_nothrow_copy_constructible<absl::Hash<absl::string_view>>::value);
|
|
ASSERT_TRUE(std::is_nothrow_copy_constructible<
|
|
std::equal_to<absl::string_view>>::value);
|
|
ASSERT_TRUE(std::is_nothrow_copy_constructible<std::allocator<int>>::value);
|
|
EXPECT_TRUE(std::is_nothrow_move_constructible<StringTable>::value);
|
|
}
|
|
|
|
TEST(Table, NoThrowMoveAssign) {
|
|
ASSERT_TRUE(
|
|
std::is_nothrow_move_assignable<absl::Hash<absl::string_view>>::value);
|
|
ASSERT_TRUE(
|
|
std::is_nothrow_move_assignable<std::equal_to<absl::string_view>>::value);
|
|
ASSERT_TRUE(std::is_nothrow_move_assignable<std::allocator<int>>::value);
|
|
ASSERT_TRUE(
|
|
absl::allocator_traits<std::allocator<int>>::is_always_equal::value);
|
|
EXPECT_TRUE(std::is_nothrow_move_assignable<StringTable>::value);
|
|
}
|
|
|
|
TEST(Table, NoThrowSwappable) {
|
|
ASSERT_TRUE(
|
|
container_internal::IsNoThrowSwappable<absl::Hash<absl::string_view>>());
|
|
ASSERT_TRUE(container_internal::IsNoThrowSwappable<
|
|
std::equal_to<absl::string_view>>());
|
|
ASSERT_TRUE(container_internal::IsNoThrowSwappable<std::allocator<int>>());
|
|
EXPECT_TRUE(container_internal::IsNoThrowSwappable<StringTable>());
|
|
}
|
|
|
|
TEST(Table, HeterogeneousLookup) {
|
|
struct Hash {
|
|
size_t operator()(int64_t i) const { return i; }
|
|
size_t operator()(double i) const {
|
|
ADD_FAILURE();
|
|
return i;
|
|
}
|
|
};
|
|
struct Eq {
|
|
bool operator()(int64_t a, int64_t b) const { return a == b; }
|
|
bool operator()(double a, int64_t b) const {
|
|
ADD_FAILURE();
|
|
return a == b;
|
|
}
|
|
bool operator()(int64_t a, double b) const {
|
|
ADD_FAILURE();
|
|
return a == b;
|
|
}
|
|
bool operator()(double a, double b) const {
|
|
ADD_FAILURE();
|
|
return a == b;
|
|
}
|
|
};
|
|
|
|
struct THash {
|
|
using is_transparent = void;
|
|
size_t operator()(int64_t i) const { return i; }
|
|
size_t operator()(double i) const { return i; }
|
|
};
|
|
struct TEq {
|
|
using is_transparent = void;
|
|
bool operator()(int64_t a, int64_t b) const { return a == b; }
|
|
bool operator()(double a, int64_t b) const { return a == b; }
|
|
bool operator()(int64_t a, double b) const { return a == b; }
|
|
bool operator()(double a, double b) const { return a == b; }
|
|
};
|
|
|
|
raw_hash_set<IntPolicy, Hash, Eq, Alloc<int64_t>> s{0, 1, 2};
|
|
// It will convert to int64_t before the query.
|
|
EXPECT_EQ(1, *s.find(double{1.1}));
|
|
|
|
raw_hash_set<IntPolicy, THash, TEq, Alloc<int64_t>> ts{0, 1, 2};
|
|
// It will try to use the double, and fail to find the object.
|
|
EXPECT_TRUE(ts.find(1.1) == ts.end());
|
|
}
|
|
|
|
template <class Table>
|
|
using CallFind = decltype(std::declval<Table&>().find(17));
|
|
|
|
template <class Table>
|
|
using CallErase = decltype(std::declval<Table&>().erase(17));
|
|
|
|
template <class Table>
|
|
using CallExtract = decltype(std::declval<Table&>().extract(17));
|
|
|
|
template <class Table>
|
|
using CallPrefetch = decltype(std::declval<Table&>().prefetch(17));
|
|
|
|
template <class Table>
|
|
using CallCount = decltype(std::declval<Table&>().count(17));
|
|
|
|
template <template <typename> class C, class Table, class = void>
|
|
struct VerifyResultOf : std::false_type {};
|
|
|
|
template <template <typename> class C, class Table>
|
|
struct VerifyResultOf<C, Table, absl::void_t<C<Table>>> : std::true_type {};
|
|
|
|
TEST(Table, HeterogeneousLookupOverloads) {
|
|
using NonTransparentTable =
|
|
raw_hash_set<StringPolicy, absl::Hash<absl::string_view>,
|
|
std::equal_to<absl::string_view>, std::allocator<int>>;
|
|
|
|
EXPECT_FALSE((VerifyResultOf<CallFind, NonTransparentTable>()));
|
|
EXPECT_FALSE((VerifyResultOf<CallErase, NonTransparentTable>()));
|
|
EXPECT_FALSE((VerifyResultOf<CallExtract, NonTransparentTable>()));
|
|
EXPECT_FALSE((VerifyResultOf<CallPrefetch, NonTransparentTable>()));
|
|
EXPECT_FALSE((VerifyResultOf<CallCount, NonTransparentTable>()));
|
|
|
|
using TransparentTable = raw_hash_set<
|
|
StringPolicy,
|
|
absl::container_internal::hash_default_hash<absl::string_view>,
|
|
absl::container_internal::hash_default_eq<absl::string_view>,
|
|
std::allocator<int>>;
|
|
|
|
EXPECT_TRUE((VerifyResultOf<CallFind, TransparentTable>()));
|
|
EXPECT_TRUE((VerifyResultOf<CallErase, TransparentTable>()));
|
|
EXPECT_TRUE((VerifyResultOf<CallExtract, TransparentTable>()));
|
|
EXPECT_TRUE((VerifyResultOf<CallPrefetch, TransparentTable>()));
|
|
EXPECT_TRUE((VerifyResultOf<CallCount, TransparentTable>()));
|
|
}
|
|
|
|
// TODO(alkis): Expand iterator tests.
|
|
TEST(Iterator, IsDefaultConstructible) {
|
|
StringTable::iterator i;
|
|
EXPECT_TRUE(i == StringTable::iterator());
|
|
}
|
|
|
|
TEST(ConstIterator, IsDefaultConstructible) {
|
|
StringTable::const_iterator i;
|
|
EXPECT_TRUE(i == StringTable::const_iterator());
|
|
}
|
|
|
|
TEST(Iterator, ConvertsToConstIterator) {
|
|
StringTable::iterator i;
|
|
EXPECT_TRUE(i == StringTable::const_iterator());
|
|
}
|
|
|
|
TEST(Iterator, Iterates) {
|
|
IntTable t;
|
|
for (size_t i = 3; i != 6; ++i) EXPECT_TRUE(t.emplace(i).second);
|
|
EXPECT_THAT(t, UnorderedElementsAre(3, 4, 5));
|
|
}
|
|
|
|
TEST(Table, Merge) {
|
|
StringTable t1, t2;
|
|
t1.emplace("0", "-0");
|
|
t1.emplace("1", "-1");
|
|
t2.emplace("0", "~0");
|
|
t2.emplace("2", "~2");
|
|
|
|
EXPECT_THAT(t1, UnorderedElementsAre(Pair("0", "-0"), Pair("1", "-1")));
|
|
EXPECT_THAT(t2, UnorderedElementsAre(Pair("0", "~0"), Pair("2", "~2")));
|
|
|
|
t1.merge(t2);
|
|
EXPECT_THAT(t1, UnorderedElementsAre(Pair("0", "-0"), Pair("1", "-1"),
|
|
Pair("2", "~2")));
|
|
EXPECT_THAT(t2, UnorderedElementsAre(Pair("0", "~0")));
|
|
}
|
|
|
|
TEST(Nodes, EmptyNodeType) {
|
|
using node_type = StringTable::node_type;
|
|
node_type n;
|
|
EXPECT_FALSE(n);
|
|
EXPECT_TRUE(n.empty());
|
|
|
|
EXPECT_TRUE((std::is_same<node_type::allocator_type,
|
|
StringTable::allocator_type>::value));
|
|
}
|
|
|
|
TEST(Nodes, ExtractInsert) {
|
|
constexpr char k0[] = "Very long std::string zero.";
|
|
constexpr char k1[] = "Very long std::string one.";
|
|
constexpr char k2[] = "Very long std::string two.";
|
|
StringTable t = {{k0, ""}, {k1, ""}, {k2, ""}};
|
|
EXPECT_THAT(t,
|
|
UnorderedElementsAre(Pair(k0, ""), Pair(k1, ""), Pair(k2, "")));
|
|
|
|
auto node = t.extract(k0);
|
|
EXPECT_THAT(t, UnorderedElementsAre(Pair(k1, ""), Pair(k2, "")));
|
|
EXPECT_TRUE(node);
|
|
EXPECT_FALSE(node.empty());
|
|
|
|
StringTable t2;
|
|
StringTable::insert_return_type res = t2.insert(std::move(node));
|
|
EXPECT_TRUE(res.inserted);
|
|
EXPECT_THAT(*res.position, Pair(k0, ""));
|
|
EXPECT_FALSE(res.node);
|
|
EXPECT_THAT(t2, UnorderedElementsAre(Pair(k0, "")));
|
|
|
|
// Not there.
|
|
EXPECT_THAT(t, UnorderedElementsAre(Pair(k1, ""), Pair(k2, "")));
|
|
node = t.extract("Not there!");
|
|
EXPECT_THAT(t, UnorderedElementsAre(Pair(k1, ""), Pair(k2, "")));
|
|
EXPECT_FALSE(node);
|
|
|
|
// Inserting nothing.
|
|
res = t2.insert(std::move(node));
|
|
EXPECT_FALSE(res.inserted);
|
|
EXPECT_EQ(res.position, t2.end());
|
|
EXPECT_FALSE(res.node);
|
|
EXPECT_THAT(t2, UnorderedElementsAre(Pair(k0, "")));
|
|
|
|
t.emplace(k0, "1");
|
|
node = t.extract(k0);
|
|
|
|
// Insert duplicate.
|
|
res = t2.insert(std::move(node));
|
|
EXPECT_FALSE(res.inserted);
|
|
EXPECT_THAT(*res.position, Pair(k0, ""));
|
|
EXPECT_TRUE(res.node);
|
|
EXPECT_FALSE(node);
|
|
}
|
|
|
|
StringTable MakeSimpleTable(size_t size) {
|
|
StringTable t;
|
|
for (size_t i = 0; i < size; ++i) t.emplace(std::string(1, 'A' + i), "");
|
|
return t;
|
|
}
|
|
|
|
std::string OrderOfIteration(const StringTable& t) {
|
|
std::string order;
|
|
for (auto& p : t) order += p.first;
|
|
return order;
|
|
}
|
|
|
|
TEST(Table, IterationOrderChangesByInstance) {
|
|
// Needs to be more than kWidth elements to be able to affect order.
|
|
const StringTable reference = MakeSimpleTable(20);
|
|
|
|
// Since order is non-deterministic we can't just try once and verify.
|
|
// We'll try until we find that order changed. It should not take many tries
|
|
// for that.
|
|
// Important: we have to keep the old tables around. Otherwise tcmalloc will
|
|
// just give us the same blocks and we would be doing the same order again.
|
|
std::vector<StringTable> garbage;
|
|
for (int i = 0; i < 10; ++i) {
|
|
auto trial = MakeSimpleTable(20);
|
|
if (OrderOfIteration(trial) != OrderOfIteration(reference)) {
|
|
// We are done.
|
|
return;
|
|
}
|
|
garbage.push_back(std::move(trial));
|
|
}
|
|
FAIL();
|
|
}
|
|
|
|
TEST(Table, IterationOrderChangesOnRehash) {
|
|
// Since order is non-deterministic we can't just try once and verify.
|
|
// We'll try until we find that order changed. It should not take many tries
|
|
// for that.
|
|
// Important: we have to keep the old tables around. Otherwise tcmalloc will
|
|
// just give us the same blocks and we would be doing the same order again.
|
|
std::vector<StringTable> garbage;
|
|
for (int i = 0; i < 10; ++i) {
|
|
// Needs to be more than kWidth elements to be able to affect order.
|
|
StringTable t = MakeSimpleTable(20);
|
|
const std::string reference = OrderOfIteration(t);
|
|
// Force rehash to the same size.
|
|
t.rehash(0);
|
|
std::string trial = OrderOfIteration(t);
|
|
if (trial != reference) {
|
|
// We are done.
|
|
return;
|
|
}
|
|
garbage.push_back(std::move(t));
|
|
}
|
|
FAIL();
|
|
}
|
|
|
|
TEST(Table, IterationOrderChangesForSmallTables) {
|
|
// Since order is non-deterministic we can't just try once and verify.
|
|
// We'll try until we find that order changed.
|
|
// Important: we have to keep the old tables around. Otherwise tcmalloc will
|
|
// just give us the same blocks and we would be doing the same order again.
|
|
StringTable reference_table = MakeSimpleTable(5);
|
|
const std::string reference = OrderOfIteration(reference_table);
|
|
std::vector<StringTable> garbage;
|
|
for (int i = 0; i < 50; ++i) {
|
|
StringTable t = MakeSimpleTable(5);
|
|
std::string trial = OrderOfIteration(t);
|
|
if (trial != reference) {
|
|
// We are done.
|
|
return;
|
|
}
|
|
garbage.push_back(std::move(t));
|
|
}
|
|
FAIL() << "Iteration order remained the same across many attempts.";
|
|
}
|
|
|
|
// Confirm that we assert if we try to erase() end().
|
|
TEST(TableDeathTest, EraseOfEndAsserts) {
|
|
// Use an assert with side-effects to figure out if they are actually enabled.
|
|
bool assert_enabled = false;
|
|
assert([&]() {
|
|
assert_enabled = true;
|
|
return true;
|
|
}());
|
|
if (!assert_enabled) return;
|
|
|
|
IntTable t;
|
|
// Extra simple "regexp" as regexp support is highly varied across platforms.
|
|
constexpr char kDeathMsg[] = "it != end";
|
|
EXPECT_DEATH_IF_SUPPORTED(t.erase(t.end()), kDeathMsg);
|
|
}
|
|
|
|
TEST(RawHashSamplerTest, Sample) {
|
|
// Enable the feature even if the prod default is off.
|
|
SetHashtablezEnabled(true);
|
|
SetHashtablezSampleParameter(100);
|
|
|
|
auto& sampler = HashtablezSampler::Global();
|
|
size_t start_size = 0;
|
|
start_size += sampler.Iterate([&](const HashtablezInfo&) { ++start_size; });
|
|
|
|
std::vector<IntTable> tables;
|
|
for (int i = 0; i < 1000000; ++i) {
|
|
tables.emplace_back();
|
|
tables.back().insert(1);
|
|
}
|
|
size_t end_size = 0;
|
|
end_size += sampler.Iterate([&](const HashtablezInfo&) { ++end_size; });
|
|
|
|
EXPECT_NEAR((end_size - start_size) / static_cast<double>(tables.size()),
|
|
0.01, 0.005);
|
|
}
|
|
|
|
#ifdef ADDRESS_SANITIZER
|
|
TEST(Sanitizer, PoisoningUnused) {
|
|
IntTable t;
|
|
// Insert something to force an allocation.
|
|
int64_t& v1 = *t.insert(0).first;
|
|
|
|
// Make sure there is something to test.
|
|
ASSERT_GT(t.capacity(), 1);
|
|
|
|
int64_t* slots = RawHashSetTestOnlyAccess::GetSlots(t);
|
|
for (size_t i = 0; i < t.capacity(); ++i) {
|
|
EXPECT_EQ(slots + i != &v1, __asan_address_is_poisoned(slots + i));
|
|
}
|
|
}
|
|
|
|
TEST(Sanitizer, PoisoningOnErase) {
|
|
IntTable t;
|
|
int64_t& v = *t.insert(0).first;
|
|
|
|
EXPECT_FALSE(__asan_address_is_poisoned(&v));
|
|
t.erase(0);
|
|
EXPECT_TRUE(__asan_address_is_poisoned(&v));
|
|
}
|
|
#endif // ADDRESS_SANITIZER
|
|
|
|
} // namespace
|
|
} // namespace container_internal
|
|
} // namespace absl
|