tvl-depot/absl/container/inlined_vector_benchmark.cc
Abseil Team fa00c32107 Export of internal Abseil changes.
--
6258612abc571fa7f51f34046b410c73486505fe by Derek Mauro <dmauro@google.com>:

Rollback checking the return value of pthread functions in thread_identity.cc.

PiperOrigin-RevId: 248381230

--
fda6acddab04fc53eeb84ec253de4a9655bf9a36 by CJ Johnson <johnsoncj@google.com>:

Removes too-restrictive benchmark abstraction in inlined_vector_benchmark

PiperOrigin-RevId: 248366325

--
68674991e63c919de8a3eebced5adec6466ec8fe by Abseil Team <absl-team@google.com>:

Check for pthread_setmask() failure.

Log a fatal error message if pthread_setmask() fails.

PiperOrigin-RevId: 248347115

--
45389e44c0d1badafb6b560cae3df99fc8bd16ac by Derek Mauro <dmauro@google.com>:

Fix a -Wredundant-move warning in GCC 9.

PiperOrigin-RevId: 248338682

--
12cfbacf599084a8ac6bf4395026cbf193c85a26 by Derek Mauro <dmauro@google.com>:

Check the return value of pthread functions in thread_identity.cc.

PiperOrigin-RevId: 248327118

--
2bc69998e68cfee96e812ce800e83cce7a715091 by Benjamin Barenblat <bbaren@google.com>:

Encourage judicious use of ABSL_PREDICT_{TRUE,FALSE}

Recommend that users use branch prediction annotations only on hot,
consistently mispredicted branches.

PiperOrigin-RevId: 248222450
GitOrigin-RevId: 6258612abc571fa7f51f34046b410c73486505fe
Change-Id: I09d409f9a3941ee926b8476b5473f9c4899cc3ff
2019-05-15 15:37:33 -04:00

443 lines
13 KiB
C++

// Copyright 2019 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string>
#include <vector>
#include "benchmark/benchmark.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/macros.h"
#include "absl/container/inlined_vector.h"
#include "absl/strings/str_cat.h"
namespace {
void BM_InlinedVectorFill(benchmark::State& state) {
absl::InlinedVector<int, 8> v;
int val = 10;
for (auto _ : state) {
benchmark::DoNotOptimize(v);
v.push_back(val);
}
}
BENCHMARK(BM_InlinedVectorFill)->Range(0, 1024);
void BM_InlinedVectorFillRange(benchmark::State& state) {
const int len = state.range(0);
std::unique_ptr<int[]> ia(new int[len]);
for (int i = 0; i < len; i++) {
ia[i] = i;
}
auto* from = ia.get();
auto* to = from + len;
for (auto _ : state) {
benchmark::DoNotOptimize(from);
benchmark::DoNotOptimize(to);
absl::InlinedVector<int, 8> v(from, to);
benchmark::DoNotOptimize(v);
}
}
BENCHMARK(BM_InlinedVectorFillRange)->Range(0, 1024);
void BM_StdVectorFill(benchmark::State& state) {
std::vector<int> v;
int val = 10;
for (auto _ : state) {
benchmark::DoNotOptimize(v);
benchmark::DoNotOptimize(val);
v.push_back(val);
}
}
BENCHMARK(BM_StdVectorFill)->Range(0, 1024);
// The purpose of the next two benchmarks is to verify that
// absl::InlinedVector is efficient when moving is more efficent than
// copying. To do so, we use strings that are larger than the short
// string optimization.
bool StringRepresentedInline(std::string s) {
const char* chars = s.data();
std::string s1 = std::move(s);
return s1.data() != chars;
}
int GetNonShortStringOptimizationSize() {
for (int i = 24; i <= 192; i *= 2) {
if (!StringRepresentedInline(std::string(i, 'A'))) {
return i;
}
}
ABSL_RAW_LOG(
FATAL,
"Failed to find a std::string larger than the short std::string optimization");
return -1;
}
void BM_InlinedVectorFillString(benchmark::State& state) {
const int len = state.range(0);
const int no_sso = GetNonShortStringOptimizationSize();
std::string strings[4] = {std::string(no_sso, 'A'), std::string(no_sso, 'B'),
std::string(no_sso, 'C'), std::string(no_sso, 'D')};
for (auto _ : state) {
absl::InlinedVector<std::string, 8> v;
for (int i = 0; i < len; i++) {
v.push_back(strings[i & 3]);
}
}
state.SetItemsProcessed(static_cast<int64_t>(state.iterations()) * len);
}
BENCHMARK(BM_InlinedVectorFillString)->Range(0, 1024);
void BM_StdVectorFillString(benchmark::State& state) {
const int len = state.range(0);
const int no_sso = GetNonShortStringOptimizationSize();
std::string strings[4] = {std::string(no_sso, 'A'), std::string(no_sso, 'B'),
std::string(no_sso, 'C'), std::string(no_sso, 'D')};
for (auto _ : state) {
std::vector<std::string> v;
for (int i = 0; i < len; i++) {
v.push_back(strings[i & 3]);
}
}
state.SetItemsProcessed(static_cast<int64_t>(state.iterations()) * len);
}
BENCHMARK(BM_StdVectorFillString)->Range(0, 1024);
struct Buffer { // some arbitrary structure for benchmarking.
char* base;
int length;
int capacity;
void* user_data;
};
void BM_InlinedVectorAssignments(benchmark::State& state) {
const int len = state.range(0);
using BufferVec = absl::InlinedVector<Buffer, 2>;
BufferVec src;
src.resize(len);
BufferVec dst;
for (auto _ : state) {
benchmark::DoNotOptimize(dst);
benchmark::DoNotOptimize(src);
dst = src;
}
}
BENCHMARK(BM_InlinedVectorAssignments)
->Arg(0)
->Arg(1)
->Arg(2)
->Arg(3)
->Arg(4)
->Arg(20);
void BM_CreateFromContainer(benchmark::State& state) {
for (auto _ : state) {
absl::InlinedVector<int, 4> src{1, 2, 3};
benchmark::DoNotOptimize(src);
absl::InlinedVector<int, 4> dst(std::move(src));
benchmark::DoNotOptimize(dst);
}
}
BENCHMARK(BM_CreateFromContainer);
struct LargeCopyableOnly {
LargeCopyableOnly() : d(1024, 17) {}
LargeCopyableOnly(const LargeCopyableOnly& o) = default;
LargeCopyableOnly& operator=(const LargeCopyableOnly& o) = default;
std::vector<int> d;
};
struct LargeCopyableSwappable {
LargeCopyableSwappable() : d(1024, 17) {}
LargeCopyableSwappable(const LargeCopyableSwappable& o) = default;
LargeCopyableSwappable& operator=(LargeCopyableSwappable o) {
using std::swap;
swap(*this, o);
return *this;
}
friend void swap(LargeCopyableSwappable& a, LargeCopyableSwappable& b) {
using std::swap;
swap(a.d, b.d);
}
std::vector<int> d;
};
struct LargeCopyableMovable {
LargeCopyableMovable() : d(1024, 17) {}
// Use implicitly defined copy and move.
std::vector<int> d;
};
struct LargeCopyableMovableSwappable {
LargeCopyableMovableSwappable() : d(1024, 17) {}
LargeCopyableMovableSwappable(const LargeCopyableMovableSwappable& o) =
default;
LargeCopyableMovableSwappable(LargeCopyableMovableSwappable&& o) = default;
LargeCopyableMovableSwappable& operator=(LargeCopyableMovableSwappable o) {
using std::swap;
swap(*this, o);
return *this;
}
LargeCopyableMovableSwappable& operator=(LargeCopyableMovableSwappable&& o) =
default;
friend void swap(LargeCopyableMovableSwappable& a,
LargeCopyableMovableSwappable& b) {
using std::swap;
swap(a.d, b.d);
}
std::vector<int> d;
};
template <typename ElementType>
void BM_SwapElements(benchmark::State& state) {
const int len = state.range(0);
using Vec = absl::InlinedVector<ElementType, 32>;
Vec a(len);
Vec b;
for (auto _ : state) {
using std::swap;
benchmark::DoNotOptimize(a);
benchmark::DoNotOptimize(b);
swap(a, b);
}
}
BENCHMARK_TEMPLATE(BM_SwapElements, LargeCopyableOnly)->Range(0, 1024);
BENCHMARK_TEMPLATE(BM_SwapElements, LargeCopyableSwappable)->Range(0, 1024);
BENCHMARK_TEMPLATE(BM_SwapElements, LargeCopyableMovable)->Range(0, 1024);
BENCHMARK_TEMPLATE(BM_SwapElements, LargeCopyableMovableSwappable)
->Range(0, 1024);
// The following benchmark is meant to track the efficiency of the vector size
// as a function of stored type via the benchmark label. It is not meant to
// output useful sizeof operator performance. The loop is a dummy operation
// to fulfill the requirement of running the benchmark.
template <typename VecType>
void BM_Sizeof(benchmark::State& state) {
int size = 0;
for (auto _ : state) {
VecType vec;
size = sizeof(vec);
}
state.SetLabel(absl::StrCat("sz=", size));
}
BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector<char, 1>);
BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector<char, 4>);
BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector<char, 7>);
BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector<char, 8>);
BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector<int, 1>);
BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector<int, 4>);
BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector<int, 7>);
BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector<int, 8>);
BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector<void*, 1>);
BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector<void*, 4>);
BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector<void*, 7>);
BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector<void*, 8>);
BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector<std::string, 1>);
BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector<std::string, 4>);
BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector<std::string, 7>);
BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector<std::string, 8>);
void BM_InlinedVectorIndexInlined(benchmark::State& state) {
absl::InlinedVector<int, 8> v = {1, 2, 3, 4, 5, 6, 7};
for (auto _ : state) {
benchmark::DoNotOptimize(v);
benchmark::DoNotOptimize(v[4]);
}
}
BENCHMARK(BM_InlinedVectorIndexInlined);
void BM_InlinedVectorIndexExternal(benchmark::State& state) {
absl::InlinedVector<int, 8> v = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
for (auto _ : state) {
benchmark::DoNotOptimize(v);
benchmark::DoNotOptimize(v[4]);
}
}
BENCHMARK(BM_InlinedVectorIndexExternal);
void BM_StdVectorIndex(benchmark::State& state) {
std::vector<int> v = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
for (auto _ : state) {
benchmark::DoNotOptimize(v);
benchmark::DoNotOptimize(v[4]);
}
}
BENCHMARK(BM_StdVectorIndex);
void BM_InlinedVectorDataInlined(benchmark::State& state) {
absl::InlinedVector<int, 8> v = {1, 2, 3, 4, 5, 6, 7};
for (auto _ : state) {
benchmark::DoNotOptimize(v);
benchmark::DoNotOptimize(v.data());
}
}
BENCHMARK(BM_InlinedVectorDataInlined);
void BM_InlinedVectorDataExternal(benchmark::State& state) {
absl::InlinedVector<int, 8> v = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
for (auto _ : state) {
benchmark::DoNotOptimize(v);
benchmark::DoNotOptimize(v.data());
}
state.SetItemsProcessed(16 * static_cast<int64_t>(state.iterations()));
}
BENCHMARK(BM_InlinedVectorDataExternal);
void BM_StdVectorData(benchmark::State& state) {
std::vector<int> v = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
for (auto _ : state) {
benchmark::DoNotOptimize(v);
benchmark::DoNotOptimize(v.data());
}
state.SetItemsProcessed(16 * static_cast<int64_t>(state.iterations()));
}
BENCHMARK(BM_StdVectorData);
void BM_InlinedVectorSizeInlined(benchmark::State& state) {
absl::InlinedVector<int, 8> v = {1, 2, 3, 4, 5, 6, 7};
for (auto _ : state) {
benchmark::DoNotOptimize(v);
benchmark::DoNotOptimize(v.size());
}
}
BENCHMARK(BM_InlinedVectorSizeInlined);
void BM_InlinedVectorSizeExternal(benchmark::State& state) {
absl::InlinedVector<int, 8> v = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
for (auto _ : state) {
benchmark::DoNotOptimize(v);
benchmark::DoNotOptimize(v.size());
}
}
BENCHMARK(BM_InlinedVectorSizeExternal);
void BM_StdVectorSize(benchmark::State& state) {
std::vector<int> v = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
for (auto _ : state) {
benchmark::DoNotOptimize(v);
benchmark::DoNotOptimize(v.size());
}
}
BENCHMARK(BM_StdVectorSize);
void BM_InlinedVectorEmptyInlined(benchmark::State& state) {
absl::InlinedVector<int, 8> v = {1, 2, 3, 4, 5, 6, 7};
for (auto _ : state) {
benchmark::DoNotOptimize(v);
benchmark::DoNotOptimize(v.empty());
}
}
BENCHMARK(BM_InlinedVectorEmptyInlined);
void BM_InlinedVectorEmptyExternal(benchmark::State& state) {
absl::InlinedVector<int, 8> v = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
for (auto _ : state) {
benchmark::DoNotOptimize(v);
benchmark::DoNotOptimize(v.empty());
}
}
BENCHMARK(BM_InlinedVectorEmptyExternal);
void BM_StdVectorEmpty(benchmark::State& state) {
std::vector<int> v = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
for (auto _ : state) {
benchmark::DoNotOptimize(v);
benchmark::DoNotOptimize(v.empty());
}
}
BENCHMARK(BM_StdVectorEmpty);
constexpr size_t kInlineElements = 4;
constexpr size_t kSmallSize = kInlineElements / 2;
constexpr size_t kLargeSize = kInlineElements * 2;
constexpr size_t kBatchSize = 100;
struct TrivialType {
size_t val;
};
using TrivialVec = absl::InlinedVector<TrivialType, kInlineElements>;
class NontrivialType {
public:
ABSL_ATTRIBUTE_NOINLINE NontrivialType() : val_() {}
ABSL_ATTRIBUTE_NOINLINE NontrivialType(const NontrivialType& other)
: val_(other.val_) {}
ABSL_ATTRIBUTE_NOINLINE NontrivialType& operator=(
const NontrivialType& other) {
val_ = other.val_;
return *this;
}
ABSL_ATTRIBUTE_NOINLINE ~NontrivialType() noexcept {}
private:
size_t val_;
};
using NontrivialVec = absl::InlinedVector<NontrivialType, kInlineElements>;
template <typename VecT, typename PrepareVec, typename TestVec>
void BatchedBenchmark(benchmark::State& state, PrepareVec prepare_vec,
TestVec test_vec) {
VecT vectors[kBatchSize];
while (state.KeepRunningBatch(kBatchSize)) {
// Prepare batch
state.PauseTiming();
for (auto& vec : vectors) {
prepare_vec(&vec);
}
benchmark::DoNotOptimize(vectors);
state.ResumeTiming();
// Test batch
for (auto& vec : vectors) {
test_vec(&vec);
}
}
}
template <typename VecT, size_t FromSize>
void BM_Clear(benchmark::State& state) {
BatchedBenchmark<VecT>(
state,
/* prepare_vec = */ [](VecT* vec) { vec->resize(FromSize); },
/* test_vec = */ [](VecT* vec) { vec->clear(); });
}
BENCHMARK_TEMPLATE(BM_Clear, TrivialVec, kSmallSize);
BENCHMARK_TEMPLATE(BM_Clear, TrivialVec, kLargeSize);
BENCHMARK_TEMPLATE(BM_Clear, NontrivialVec, kSmallSize);
BENCHMARK_TEMPLATE(BM_Clear, NontrivialVec, kLargeSize);
} // namespace