118 lines
2.8 KiB
TeX
118 lines
2.8 KiB
TeX
\documentclass[12pt]{beamer}
|
|
\usetheme{metropolis}
|
|
\newenvironment{code}{\ttfamily}{\par}
|
|
\title{Where does \textit{your} compiler come from?}
|
|
\date{2018-03-13}
|
|
\author{Vincent Ambo}
|
|
\institute{Norwegian Unix User Group}
|
|
\begin{document}
|
|
\maketitle
|
|
|
|
%% Slide 1:
|
|
\section{Introduction}
|
|
|
|
|
|
%% Slide 2:
|
|
\begin{frame}{Chicken and egg}
|
|
Self-hosted compilers are often built using themselves, for example:
|
|
|
|
\begin{itemize}
|
|
\item C-family compilers bootstrap themselves \& each other
|
|
\item (Some!) Common Lisp compilers can bootstrap each other
|
|
\item \texttt{rustc} bootstraps itself with a previous version
|
|
\item ... same for many other languages!
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
%% Slide 3:
|
|
\begin{frame}{Trusting Trust}
|
|
\begin{center}
|
|
Could this be exploited?
|
|
\end{center}
|
|
\end{frame}
|
|
|
|
%% Slide 4:
|
|
\begin{frame}{Short interlude: A quine}
|
|
\begin{center}
|
|
\begin{code}
|
|
((lambda (x) (list x (list 'quote x)))
|
|
\newline\vspace*{6mm} '(lambda (x) (list x (list 'quote x))))
|
|
\end{code}
|
|
\end{center}
|
|
\end{frame}
|
|
|
|
%% Slide 5:
|
|
\begin{frame}{Short interlude: Quine Relay}
|
|
\begin{center}
|
|
\includegraphics[
|
|
keepaspectratio=true,
|
|
height=\textheight
|
|
]{quine-relay.png}
|
|
\end{center}
|
|
\end{frame}
|
|
|
|
%% Slide 6:
|
|
\begin{frame}{Trusting Trust}
|
|
An attack described by Ken Thompson in 1984:
|
|
|
|
\begin{enumerate}
|
|
\item Modify a compiler to detect when it's compiling itself.
|
|
\item Let the modification insert \textit{itself} into the new compiler.
|
|
\item Add arbitrary attack code to the modification.
|
|
\end{enumerate}
|
|
\end{frame}
|
|
|
|
%% Slide 7:
|
|
\begin{frame}{Damage potential?}
|
|
\begin{center}
|
|
Let your imagination run wild!
|
|
\end{center}
|
|
\end{frame}
|
|
|
|
%% Slide 8:
|
|
\section{Countermeasures}
|
|
|
|
%% Slide 9:
|
|
\begin{frame}{Diverse Double-Compiling}
|
|
Assume we have:
|
|
|
|
\begin{itemize}
|
|
\item Target language compilers $A$ and $T$
|
|
\item The source code of $A$: $ S_{A} $
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
%% Slide 10:
|
|
\begin{frame}{Diverse Double-Compiling}
|
|
Apply the first stage (functional equivalence):
|
|
|
|
\begin{itemize}
|
|
\item $ X = A(S_{A})$
|
|
\item $ Y = T(S_{A})$
|
|
\end{itemize}
|
|
|
|
Apply the second stage (bit-for-bit equivalence):
|
|
|
|
\begin{itemize}
|
|
\item $ V = X(S_{A})$
|
|
\item $ W = Y(S_{A})$
|
|
\end{itemize}
|
|
|
|
Now we have a new problem: Reproducibility!
|
|
\end{frame}
|
|
|
|
%% Slide 11:
|
|
\begin{frame}{Reproducibility}
|
|
Bit-for-bit equivalent output is hard, for example:
|
|
|
|
\begin{itemize}
|
|
\item Timestamps in output artifacts
|
|
\item Non-deterministic linking order in concurrent builds
|
|
\item Non-deterministic VM & memory states in outputs
|
|
\item Randomness in builds (sic!)
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
%% Slide 12:
|
|
\section{State of (some part of) the Union}
|
|
\end{document}
|