74d91756c1
-- a874475e842d2adeb31bb7bd37bdd6eb15a2aeb9 by Mark Barolak <mbar@google.com>: Import of CCTZ from GitHub. PiperOrigin-RevId: 256414250 -- c95e6c21944c59c9b9b9e7eb9dc79cfb9ae5ef8d by CJ Johnson <johnsoncj@google.com>: Update the license year + run clang-format for the FixedArray and InlinedVector test files PiperOrigin-RevId: 256376285 -- f430b04f332d6b89cb8447b07217e391e1c38000 by Derek Mauro <dmauro@google.com>: Migrate the Linux CMake tests from GCC 4.8 to the GCC latest version. This will allow us to delete the GCC 4.8 test since that is currently our only CMake coverage. This also means that we don't have to update the script every time we move to a new minumum GCC version. This change includes a fix for a -Wstringops-truncation warning in symbolize_test.cc that triggers when it is built in release mode with the latest GCC. PiperOrigin-RevId: 256370092 GitOrigin-RevId: a874475e842d2adeb31bb7bd37bdd6eb15a2aeb9 Change-Id: Ia2ec58f9b9dfc382d043344e346cb397b802270a
883 lines
26 KiB
C++
883 lines
26 KiB
C++
// Copyright 2019 The Abseil Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "absl/container/fixed_array.h"
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <cstring>
|
|
#include <list>
|
|
#include <memory>
|
|
#include <numeric>
|
|
#include <scoped_allocator>
|
|
#include <stdexcept>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "gmock/gmock.h"
|
|
#include "gtest/gtest.h"
|
|
#include "absl/base/internal/exception_testing.h"
|
|
#include "absl/hash/hash_testing.h"
|
|
#include "absl/memory/memory.h"
|
|
|
|
using ::testing::ElementsAreArray;
|
|
|
|
namespace {
|
|
|
|
// Helper routine to determine if a absl::FixedArray used stack allocation.
|
|
template <typename ArrayType>
|
|
static bool IsOnStack(const ArrayType& a) {
|
|
return a.size() <= ArrayType::inline_elements;
|
|
}
|
|
|
|
class ConstructionTester {
|
|
public:
|
|
ConstructionTester() : self_ptr_(this), value_(0) { constructions++; }
|
|
~ConstructionTester() {
|
|
assert(self_ptr_ == this);
|
|
self_ptr_ = nullptr;
|
|
destructions++;
|
|
}
|
|
|
|
// These are incremented as elements are constructed and destructed so we can
|
|
// be sure all elements are properly cleaned up.
|
|
static int constructions;
|
|
static int destructions;
|
|
|
|
void CheckConstructed() { assert(self_ptr_ == this); }
|
|
|
|
void set(int value) { value_ = value; }
|
|
int get() { return value_; }
|
|
|
|
private:
|
|
// self_ptr_ should always point to 'this' -- that's how we can be sure the
|
|
// constructor has been called.
|
|
ConstructionTester* self_ptr_;
|
|
int value_;
|
|
};
|
|
|
|
int ConstructionTester::constructions = 0;
|
|
int ConstructionTester::destructions = 0;
|
|
|
|
// ThreeInts will initialize its three ints to the value stored in
|
|
// ThreeInts::counter. The constructor increments counter so that each object
|
|
// in an array of ThreeInts will have different values.
|
|
class ThreeInts {
|
|
public:
|
|
ThreeInts() {
|
|
x_ = counter;
|
|
y_ = counter;
|
|
z_ = counter;
|
|
++counter;
|
|
}
|
|
|
|
static int counter;
|
|
|
|
int x_, y_, z_;
|
|
};
|
|
|
|
int ThreeInts::counter = 0;
|
|
|
|
TEST(FixedArrayTest, CopyCtor) {
|
|
absl::FixedArray<int, 10> on_stack(5);
|
|
std::iota(on_stack.begin(), on_stack.end(), 0);
|
|
absl::FixedArray<int, 10> stack_copy = on_stack;
|
|
EXPECT_THAT(stack_copy, ElementsAreArray(on_stack));
|
|
EXPECT_TRUE(IsOnStack(stack_copy));
|
|
|
|
absl::FixedArray<int, 10> allocated(15);
|
|
std::iota(allocated.begin(), allocated.end(), 0);
|
|
absl::FixedArray<int, 10> alloced_copy = allocated;
|
|
EXPECT_THAT(alloced_copy, ElementsAreArray(allocated));
|
|
EXPECT_FALSE(IsOnStack(alloced_copy));
|
|
}
|
|
|
|
TEST(FixedArrayTest, MoveCtor) {
|
|
absl::FixedArray<std::unique_ptr<int>, 10> on_stack(5);
|
|
for (int i = 0; i < 5; ++i) {
|
|
on_stack[i] = absl::make_unique<int>(i);
|
|
}
|
|
|
|
absl::FixedArray<std::unique_ptr<int>, 10> stack_copy = std::move(on_stack);
|
|
for (int i = 0; i < 5; ++i) EXPECT_EQ(*(stack_copy[i]), i);
|
|
EXPECT_EQ(stack_copy.size(), on_stack.size());
|
|
|
|
absl::FixedArray<std::unique_ptr<int>, 10> allocated(15);
|
|
for (int i = 0; i < 15; ++i) {
|
|
allocated[i] = absl::make_unique<int>(i);
|
|
}
|
|
|
|
absl::FixedArray<std::unique_ptr<int>, 10> alloced_copy =
|
|
std::move(allocated);
|
|
for (int i = 0; i < 15; ++i) EXPECT_EQ(*(alloced_copy[i]), i);
|
|
EXPECT_EQ(allocated.size(), alloced_copy.size());
|
|
}
|
|
|
|
TEST(FixedArrayTest, SmallObjects) {
|
|
// Small object arrays
|
|
{
|
|
// Short arrays should be on the stack
|
|
absl::FixedArray<int> array(4);
|
|
EXPECT_TRUE(IsOnStack(array));
|
|
}
|
|
|
|
{
|
|
// Large arrays should be on the heap
|
|
absl::FixedArray<int> array(1048576);
|
|
EXPECT_FALSE(IsOnStack(array));
|
|
}
|
|
|
|
{
|
|
// Arrays of <= default size should be on the stack
|
|
absl::FixedArray<int, 100> array(100);
|
|
EXPECT_TRUE(IsOnStack(array));
|
|
}
|
|
|
|
{
|
|
// Arrays of > default size should be on the heap
|
|
absl::FixedArray<int, 100> array(101);
|
|
EXPECT_FALSE(IsOnStack(array));
|
|
}
|
|
|
|
{
|
|
// Arrays with different size elements should use approximately
|
|
// same amount of stack space
|
|
absl::FixedArray<int> array1(0);
|
|
absl::FixedArray<char> array2(0);
|
|
EXPECT_LE(sizeof(array1), sizeof(array2) + 100);
|
|
EXPECT_LE(sizeof(array2), sizeof(array1) + 100);
|
|
}
|
|
|
|
{
|
|
// Ensure that vectors are properly constructed inside a fixed array.
|
|
absl::FixedArray<std::vector<int>> array(2);
|
|
EXPECT_EQ(0, array[0].size());
|
|
EXPECT_EQ(0, array[1].size());
|
|
}
|
|
|
|
{
|
|
// Regardless of absl::FixedArray implementation, check that a type with a
|
|
// low alignment requirement and a non power-of-two size is initialized
|
|
// correctly.
|
|
ThreeInts::counter = 1;
|
|
absl::FixedArray<ThreeInts> array(2);
|
|
EXPECT_EQ(1, array[0].x_);
|
|
EXPECT_EQ(1, array[0].y_);
|
|
EXPECT_EQ(1, array[0].z_);
|
|
EXPECT_EQ(2, array[1].x_);
|
|
EXPECT_EQ(2, array[1].y_);
|
|
EXPECT_EQ(2, array[1].z_);
|
|
}
|
|
}
|
|
|
|
TEST(FixedArrayTest, AtThrows) {
|
|
absl::FixedArray<int> a = {1, 2, 3};
|
|
EXPECT_EQ(a.at(2), 3);
|
|
ABSL_BASE_INTERNAL_EXPECT_FAIL(a.at(3), std::out_of_range,
|
|
"failed bounds check");
|
|
}
|
|
|
|
TEST(FixedArrayRelationalsTest, EqualArrays) {
|
|
for (int i = 0; i < 10; ++i) {
|
|
absl::FixedArray<int, 5> a1(i);
|
|
std::iota(a1.begin(), a1.end(), 0);
|
|
absl::FixedArray<int, 5> a2(a1.begin(), a1.end());
|
|
|
|
EXPECT_TRUE(a1 == a2);
|
|
EXPECT_FALSE(a1 != a2);
|
|
EXPECT_TRUE(a2 == a1);
|
|
EXPECT_FALSE(a2 != a1);
|
|
EXPECT_FALSE(a1 < a2);
|
|
EXPECT_FALSE(a1 > a2);
|
|
EXPECT_FALSE(a2 < a1);
|
|
EXPECT_FALSE(a2 > a1);
|
|
EXPECT_TRUE(a1 <= a2);
|
|
EXPECT_TRUE(a1 >= a2);
|
|
EXPECT_TRUE(a2 <= a1);
|
|
EXPECT_TRUE(a2 >= a1);
|
|
}
|
|
}
|
|
|
|
TEST(FixedArrayRelationalsTest, UnequalArrays) {
|
|
for (int i = 1; i < 10; ++i) {
|
|
absl::FixedArray<int, 5> a1(i);
|
|
std::iota(a1.begin(), a1.end(), 0);
|
|
absl::FixedArray<int, 5> a2(a1.begin(), a1.end());
|
|
--a2[i / 2];
|
|
|
|
EXPECT_FALSE(a1 == a2);
|
|
EXPECT_TRUE(a1 != a2);
|
|
EXPECT_FALSE(a2 == a1);
|
|
EXPECT_TRUE(a2 != a1);
|
|
EXPECT_FALSE(a1 < a2);
|
|
EXPECT_TRUE(a1 > a2);
|
|
EXPECT_TRUE(a2 < a1);
|
|
EXPECT_FALSE(a2 > a1);
|
|
EXPECT_FALSE(a1 <= a2);
|
|
EXPECT_TRUE(a1 >= a2);
|
|
EXPECT_TRUE(a2 <= a1);
|
|
EXPECT_FALSE(a2 >= a1);
|
|
}
|
|
}
|
|
|
|
template <int stack_elements>
|
|
static void TestArray(int n) {
|
|
SCOPED_TRACE(n);
|
|
SCOPED_TRACE(stack_elements);
|
|
ConstructionTester::constructions = 0;
|
|
ConstructionTester::destructions = 0;
|
|
{
|
|
absl::FixedArray<ConstructionTester, stack_elements> array(n);
|
|
|
|
EXPECT_THAT(array.size(), n);
|
|
EXPECT_THAT(array.memsize(), sizeof(ConstructionTester) * n);
|
|
EXPECT_THAT(array.begin() + n, array.end());
|
|
|
|
// Check that all elements were constructed
|
|
for (int i = 0; i < n; i++) {
|
|
array[i].CheckConstructed();
|
|
}
|
|
// Check that no other elements were constructed
|
|
EXPECT_THAT(ConstructionTester::constructions, n);
|
|
|
|
// Test operator[]
|
|
for (int i = 0; i < n; i++) {
|
|
array[i].set(i);
|
|
}
|
|
for (int i = 0; i < n; i++) {
|
|
EXPECT_THAT(array[i].get(), i);
|
|
EXPECT_THAT(array.data()[i].get(), i);
|
|
}
|
|
|
|
// Test data()
|
|
for (int i = 0; i < n; i++) {
|
|
array.data()[i].set(i + 1);
|
|
}
|
|
for (int i = 0; i < n; i++) {
|
|
EXPECT_THAT(array[i].get(), i + 1);
|
|
EXPECT_THAT(array.data()[i].get(), i + 1);
|
|
}
|
|
} // Close scope containing 'array'.
|
|
|
|
// Check that all constructed elements were destructed.
|
|
EXPECT_EQ(ConstructionTester::constructions,
|
|
ConstructionTester::destructions);
|
|
}
|
|
|
|
template <int elements_per_inner_array, int inline_elements>
|
|
static void TestArrayOfArrays(int n) {
|
|
SCOPED_TRACE(n);
|
|
SCOPED_TRACE(inline_elements);
|
|
SCOPED_TRACE(elements_per_inner_array);
|
|
ConstructionTester::constructions = 0;
|
|
ConstructionTester::destructions = 0;
|
|
{
|
|
using InnerArray = ConstructionTester[elements_per_inner_array];
|
|
// Heap-allocate the FixedArray to avoid blowing the stack frame.
|
|
auto array_ptr =
|
|
absl::make_unique<absl::FixedArray<InnerArray, inline_elements>>(n);
|
|
auto& array = *array_ptr;
|
|
|
|
ASSERT_EQ(array.size(), n);
|
|
ASSERT_EQ(array.memsize(),
|
|
sizeof(ConstructionTester) * elements_per_inner_array * n);
|
|
ASSERT_EQ(array.begin() + n, array.end());
|
|
|
|
// Check that all elements were constructed
|
|
for (int i = 0; i < n; i++) {
|
|
for (int j = 0; j < elements_per_inner_array; j++) {
|
|
(array[i])[j].CheckConstructed();
|
|
}
|
|
}
|
|
// Check that no other elements were constructed
|
|
ASSERT_EQ(ConstructionTester::constructions, n * elements_per_inner_array);
|
|
|
|
// Test operator[]
|
|
for (int i = 0; i < n; i++) {
|
|
for (int j = 0; j < elements_per_inner_array; j++) {
|
|
(array[i])[j].set(i * elements_per_inner_array + j);
|
|
}
|
|
}
|
|
for (int i = 0; i < n; i++) {
|
|
for (int j = 0; j < elements_per_inner_array; j++) {
|
|
ASSERT_EQ((array[i])[j].get(), i * elements_per_inner_array + j);
|
|
ASSERT_EQ((array.data()[i])[j].get(), i * elements_per_inner_array + j);
|
|
}
|
|
}
|
|
|
|
// Test data()
|
|
for (int i = 0; i < n; i++) {
|
|
for (int j = 0; j < elements_per_inner_array; j++) {
|
|
(array.data()[i])[j].set((i + 1) * elements_per_inner_array + j);
|
|
}
|
|
}
|
|
for (int i = 0; i < n; i++) {
|
|
for (int j = 0; j < elements_per_inner_array; j++) {
|
|
ASSERT_EQ((array[i])[j].get(), (i + 1) * elements_per_inner_array + j);
|
|
ASSERT_EQ((array.data()[i])[j].get(),
|
|
(i + 1) * elements_per_inner_array + j);
|
|
}
|
|
}
|
|
} // Close scope containing 'array'.
|
|
|
|
// Check that all constructed elements were destructed.
|
|
EXPECT_EQ(ConstructionTester::constructions,
|
|
ConstructionTester::destructions);
|
|
}
|
|
|
|
TEST(IteratorConstructorTest, NonInline) {
|
|
int const kInput[] = {2, 3, 5, 7, 11, 13, 17};
|
|
absl::FixedArray<int, ABSL_ARRAYSIZE(kInput) - 1> const fixed(
|
|
kInput, kInput + ABSL_ARRAYSIZE(kInput));
|
|
ASSERT_EQ(ABSL_ARRAYSIZE(kInput), fixed.size());
|
|
for (size_t i = 0; i < ABSL_ARRAYSIZE(kInput); ++i) {
|
|
ASSERT_EQ(kInput[i], fixed[i]);
|
|
}
|
|
}
|
|
|
|
TEST(IteratorConstructorTest, Inline) {
|
|
int const kInput[] = {2, 3, 5, 7, 11, 13, 17};
|
|
absl::FixedArray<int, ABSL_ARRAYSIZE(kInput)> const fixed(
|
|
kInput, kInput + ABSL_ARRAYSIZE(kInput));
|
|
ASSERT_EQ(ABSL_ARRAYSIZE(kInput), fixed.size());
|
|
for (size_t i = 0; i < ABSL_ARRAYSIZE(kInput); ++i) {
|
|
ASSERT_EQ(kInput[i], fixed[i]);
|
|
}
|
|
}
|
|
|
|
TEST(IteratorConstructorTest, NonPod) {
|
|
char const* kInput[] = {"red", "orange", "yellow", "green",
|
|
"blue", "indigo", "violet"};
|
|
absl::FixedArray<std::string> const fixed(kInput,
|
|
kInput + ABSL_ARRAYSIZE(kInput));
|
|
ASSERT_EQ(ABSL_ARRAYSIZE(kInput), fixed.size());
|
|
for (size_t i = 0; i < ABSL_ARRAYSIZE(kInput); ++i) {
|
|
ASSERT_EQ(kInput[i], fixed[i]);
|
|
}
|
|
}
|
|
|
|
TEST(IteratorConstructorTest, FromEmptyVector) {
|
|
std::vector<int> const empty;
|
|
absl::FixedArray<int> const fixed(empty.begin(), empty.end());
|
|
EXPECT_EQ(0, fixed.size());
|
|
EXPECT_EQ(empty.size(), fixed.size());
|
|
}
|
|
|
|
TEST(IteratorConstructorTest, FromNonEmptyVector) {
|
|
int const kInput[] = {2, 3, 5, 7, 11, 13, 17};
|
|
std::vector<int> const items(kInput, kInput + ABSL_ARRAYSIZE(kInput));
|
|
absl::FixedArray<int> const fixed(items.begin(), items.end());
|
|
ASSERT_EQ(items.size(), fixed.size());
|
|
for (size_t i = 0; i < items.size(); ++i) {
|
|
ASSERT_EQ(items[i], fixed[i]);
|
|
}
|
|
}
|
|
|
|
TEST(IteratorConstructorTest, FromBidirectionalIteratorRange) {
|
|
int const kInput[] = {2, 3, 5, 7, 11, 13, 17};
|
|
std::list<int> const items(kInput, kInput + ABSL_ARRAYSIZE(kInput));
|
|
absl::FixedArray<int> const fixed(items.begin(), items.end());
|
|
EXPECT_THAT(fixed, testing::ElementsAreArray(kInput));
|
|
}
|
|
|
|
TEST(InitListConstructorTest, InitListConstruction) {
|
|
absl::FixedArray<int> fixed = {1, 2, 3};
|
|
EXPECT_THAT(fixed, testing::ElementsAreArray({1, 2, 3}));
|
|
}
|
|
|
|
TEST(FillConstructorTest, NonEmptyArrays) {
|
|
absl::FixedArray<int> stack_array(4, 1);
|
|
EXPECT_THAT(stack_array, testing::ElementsAreArray({1, 1, 1, 1}));
|
|
|
|
absl::FixedArray<int, 0> heap_array(4, 1);
|
|
EXPECT_THAT(stack_array, testing::ElementsAreArray({1, 1, 1, 1}));
|
|
}
|
|
|
|
TEST(FillConstructorTest, EmptyArray) {
|
|
absl::FixedArray<int> empty_fill(0, 1);
|
|
absl::FixedArray<int> empty_size(0);
|
|
EXPECT_EQ(empty_fill, empty_size);
|
|
}
|
|
|
|
TEST(FillConstructorTest, NotTriviallyCopyable) {
|
|
std::string str = "abcd";
|
|
absl::FixedArray<std::string> strings = {str, str, str, str};
|
|
|
|
absl::FixedArray<std::string> array(4, str);
|
|
EXPECT_EQ(array, strings);
|
|
}
|
|
|
|
TEST(FillConstructorTest, Disambiguation) {
|
|
absl::FixedArray<size_t> a(1, 2);
|
|
EXPECT_THAT(a, testing::ElementsAre(2));
|
|
}
|
|
|
|
TEST(FixedArrayTest, ManySizedArrays) {
|
|
std::vector<int> sizes;
|
|
for (int i = 1; i < 100; i++) sizes.push_back(i);
|
|
for (int i = 100; i <= 1000; i += 100) sizes.push_back(i);
|
|
for (int n : sizes) {
|
|
TestArray<0>(n);
|
|
TestArray<1>(n);
|
|
TestArray<64>(n);
|
|
TestArray<1000>(n);
|
|
}
|
|
}
|
|
|
|
TEST(FixedArrayTest, ManySizedArraysOfArraysOf1) {
|
|
for (int n = 1; n < 1000; n++) {
|
|
ASSERT_NO_FATAL_FAILURE((TestArrayOfArrays<1, 0>(n)));
|
|
ASSERT_NO_FATAL_FAILURE((TestArrayOfArrays<1, 1>(n)));
|
|
ASSERT_NO_FATAL_FAILURE((TestArrayOfArrays<1, 64>(n)));
|
|
ASSERT_NO_FATAL_FAILURE((TestArrayOfArrays<1, 1000>(n)));
|
|
}
|
|
}
|
|
|
|
TEST(FixedArrayTest, ManySizedArraysOfArraysOf2) {
|
|
for (int n = 1; n < 1000; n++) {
|
|
TestArrayOfArrays<2, 0>(n);
|
|
TestArrayOfArrays<2, 1>(n);
|
|
TestArrayOfArrays<2, 64>(n);
|
|
TestArrayOfArrays<2, 1000>(n);
|
|
}
|
|
}
|
|
|
|
// If value_type is put inside of a struct container,
|
|
// we might evoke this error in a hardened build unless data() is carefully
|
|
// written, so check on that.
|
|
// error: call to int __builtin___sprintf_chk(etc...)
|
|
// will always overflow destination buffer [-Werror]
|
|
TEST(FixedArrayTest, AvoidParanoidDiagnostics) {
|
|
absl::FixedArray<char, 32> buf(32);
|
|
sprintf(buf.data(), "foo"); // NOLINT(runtime/printf)
|
|
}
|
|
|
|
TEST(FixedArrayTest, TooBigInlinedSpace) {
|
|
struct TooBig {
|
|
char c[1 << 20];
|
|
}; // too big for even one on the stack
|
|
|
|
// Simulate the data members of absl::FixedArray, a pointer and a size_t.
|
|
struct Data {
|
|
TooBig* p;
|
|
size_t size;
|
|
};
|
|
|
|
// Make sure TooBig objects are not inlined for 0 or default size.
|
|
static_assert(sizeof(absl::FixedArray<TooBig, 0>) == sizeof(Data),
|
|
"0-sized absl::FixedArray should have same size as Data.");
|
|
static_assert(alignof(absl::FixedArray<TooBig, 0>) == alignof(Data),
|
|
"0-sized absl::FixedArray should have same alignment as Data.");
|
|
static_assert(sizeof(absl::FixedArray<TooBig>) == sizeof(Data),
|
|
"default-sized absl::FixedArray should have same size as Data");
|
|
static_assert(
|
|
alignof(absl::FixedArray<TooBig>) == alignof(Data),
|
|
"default-sized absl::FixedArray should have same alignment as Data.");
|
|
}
|
|
|
|
// PickyDelete EXPECTs its class-scope deallocation funcs are unused.
|
|
struct PickyDelete {
|
|
PickyDelete() {}
|
|
~PickyDelete() {}
|
|
void operator delete(void* p) {
|
|
EXPECT_TRUE(false) << __FUNCTION__;
|
|
::operator delete(p);
|
|
}
|
|
void operator delete[](void* p) {
|
|
EXPECT_TRUE(false) << __FUNCTION__;
|
|
::operator delete[](p);
|
|
}
|
|
};
|
|
|
|
TEST(FixedArrayTest, UsesGlobalAlloc) { absl::FixedArray<PickyDelete, 0> a(5); }
|
|
|
|
TEST(FixedArrayTest, Data) {
|
|
static const int kInput[] = {2, 3, 5, 7, 11, 13, 17};
|
|
absl::FixedArray<int> fa(std::begin(kInput), std::end(kInput));
|
|
EXPECT_EQ(fa.data(), &*fa.begin());
|
|
EXPECT_EQ(fa.data(), &fa[0]);
|
|
|
|
const absl::FixedArray<int>& cfa = fa;
|
|
EXPECT_EQ(cfa.data(), &*cfa.begin());
|
|
EXPECT_EQ(cfa.data(), &cfa[0]);
|
|
}
|
|
|
|
TEST(FixedArrayTest, Empty) {
|
|
absl::FixedArray<int> empty(0);
|
|
absl::FixedArray<int> inline_filled(1);
|
|
absl::FixedArray<int, 0> heap_filled(1);
|
|
EXPECT_TRUE(empty.empty());
|
|
EXPECT_FALSE(inline_filled.empty());
|
|
EXPECT_FALSE(heap_filled.empty());
|
|
}
|
|
|
|
TEST(FixedArrayTest, FrontAndBack) {
|
|
absl::FixedArray<int, 3 * sizeof(int)> inlined = {1, 2, 3};
|
|
EXPECT_EQ(inlined.front(), 1);
|
|
EXPECT_EQ(inlined.back(), 3);
|
|
|
|
absl::FixedArray<int, 0> allocated = {1, 2, 3};
|
|
EXPECT_EQ(allocated.front(), 1);
|
|
EXPECT_EQ(allocated.back(), 3);
|
|
|
|
absl::FixedArray<int> one_element = {1};
|
|
EXPECT_EQ(one_element.front(), one_element.back());
|
|
}
|
|
|
|
TEST(FixedArrayTest, ReverseIteratorInlined) {
|
|
absl::FixedArray<int, 5 * sizeof(int)> a = {0, 1, 2, 3, 4};
|
|
|
|
int counter = 5;
|
|
for (absl::FixedArray<int>::reverse_iterator iter = a.rbegin();
|
|
iter != a.rend(); ++iter) {
|
|
counter--;
|
|
EXPECT_EQ(counter, *iter);
|
|
}
|
|
EXPECT_EQ(counter, 0);
|
|
|
|
counter = 5;
|
|
for (absl::FixedArray<int>::const_reverse_iterator iter = a.rbegin();
|
|
iter != a.rend(); ++iter) {
|
|
counter--;
|
|
EXPECT_EQ(counter, *iter);
|
|
}
|
|
EXPECT_EQ(counter, 0);
|
|
|
|
counter = 5;
|
|
for (auto iter = a.crbegin(); iter != a.crend(); ++iter) {
|
|
counter--;
|
|
EXPECT_EQ(counter, *iter);
|
|
}
|
|
EXPECT_EQ(counter, 0);
|
|
}
|
|
|
|
TEST(FixedArrayTest, ReverseIteratorAllocated) {
|
|
absl::FixedArray<int, 0> a = {0, 1, 2, 3, 4};
|
|
|
|
int counter = 5;
|
|
for (absl::FixedArray<int>::reverse_iterator iter = a.rbegin();
|
|
iter != a.rend(); ++iter) {
|
|
counter--;
|
|
EXPECT_EQ(counter, *iter);
|
|
}
|
|
EXPECT_EQ(counter, 0);
|
|
|
|
counter = 5;
|
|
for (absl::FixedArray<int>::const_reverse_iterator iter = a.rbegin();
|
|
iter != a.rend(); ++iter) {
|
|
counter--;
|
|
EXPECT_EQ(counter, *iter);
|
|
}
|
|
EXPECT_EQ(counter, 0);
|
|
|
|
counter = 5;
|
|
for (auto iter = a.crbegin(); iter != a.crend(); ++iter) {
|
|
counter--;
|
|
EXPECT_EQ(counter, *iter);
|
|
}
|
|
EXPECT_EQ(counter, 0);
|
|
}
|
|
|
|
TEST(FixedArrayTest, Fill) {
|
|
absl::FixedArray<int, 5 * sizeof(int)> inlined(5);
|
|
int fill_val = 42;
|
|
inlined.fill(fill_val);
|
|
for (int i : inlined) EXPECT_EQ(i, fill_val);
|
|
|
|
absl::FixedArray<int, 0> allocated(5);
|
|
allocated.fill(fill_val);
|
|
for (int i : allocated) EXPECT_EQ(i, fill_val);
|
|
|
|
// It doesn't do anything, just make sure this compiles.
|
|
absl::FixedArray<int> empty(0);
|
|
empty.fill(fill_val);
|
|
}
|
|
|
|
// TODO(johnsoncj): Investigate InlinedStorage default initialization in GCC 4.x
|
|
#ifndef __GNUC__
|
|
TEST(FixedArrayTest, DefaultCtorDoesNotValueInit) {
|
|
using T = char;
|
|
constexpr auto capacity = 10;
|
|
using FixedArrType = absl::FixedArray<T, capacity>;
|
|
using FixedArrBuffType =
|
|
absl::aligned_storage_t<sizeof(FixedArrType), alignof(FixedArrType)>;
|
|
constexpr auto scrubbed_bits = 0x95;
|
|
constexpr auto length = capacity / 2;
|
|
|
|
FixedArrBuffType buff;
|
|
std::memset(std::addressof(buff), scrubbed_bits, sizeof(FixedArrBuffType));
|
|
|
|
FixedArrType* arr =
|
|
::new (static_cast<void*>(std::addressof(buff))) FixedArrType(length);
|
|
EXPECT_THAT(*arr, testing::Each(scrubbed_bits));
|
|
arr->~FixedArrType();
|
|
}
|
|
#endif // __GNUC__
|
|
|
|
// This is a stateful allocator, but the state lives outside of the
|
|
// allocator (in whatever test is using the allocator). This is odd
|
|
// but helps in tests where the allocator is propagated into nested
|
|
// containers - that chain of allocators uses the same state and is
|
|
// thus easier to query for aggregate allocation information.
|
|
template <typename T>
|
|
class CountingAllocator : public std::allocator<T> {
|
|
public:
|
|
using Alloc = std::allocator<T>;
|
|
using pointer = typename Alloc::pointer;
|
|
using size_type = typename Alloc::size_type;
|
|
|
|
CountingAllocator() : bytes_used_(nullptr), instance_count_(nullptr) {}
|
|
explicit CountingAllocator(int64_t* b)
|
|
: bytes_used_(b), instance_count_(nullptr) {}
|
|
CountingAllocator(int64_t* b, int64_t* a)
|
|
: bytes_used_(b), instance_count_(a) {}
|
|
|
|
template <typename U>
|
|
explicit CountingAllocator(const CountingAllocator<U>& x)
|
|
: Alloc(x),
|
|
bytes_used_(x.bytes_used_),
|
|
instance_count_(x.instance_count_) {}
|
|
|
|
pointer allocate(size_type n, const void* const hint = nullptr) {
|
|
assert(bytes_used_ != nullptr);
|
|
*bytes_used_ += n * sizeof(T);
|
|
return Alloc::allocate(n, hint);
|
|
}
|
|
|
|
void deallocate(pointer p, size_type n) {
|
|
Alloc::deallocate(p, n);
|
|
assert(bytes_used_ != nullptr);
|
|
*bytes_used_ -= n * sizeof(T);
|
|
}
|
|
|
|
template <typename... Args>
|
|
void construct(pointer p, Args&&... args) {
|
|
Alloc::construct(p, absl::forward<Args>(args)...);
|
|
if (instance_count_) {
|
|
*instance_count_ += 1;
|
|
}
|
|
}
|
|
|
|
void destroy(pointer p) {
|
|
Alloc::destroy(p);
|
|
if (instance_count_) {
|
|
*instance_count_ -= 1;
|
|
}
|
|
}
|
|
|
|
template <typename U>
|
|
class rebind {
|
|
public:
|
|
using other = CountingAllocator<U>;
|
|
};
|
|
|
|
int64_t* bytes_used_;
|
|
int64_t* instance_count_;
|
|
};
|
|
|
|
TEST(AllocatorSupportTest, CountInlineAllocations) {
|
|
constexpr size_t inlined_size = 4;
|
|
using Alloc = CountingAllocator<int>;
|
|
using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>;
|
|
|
|
int64_t allocated = 0;
|
|
int64_t active_instances = 0;
|
|
|
|
{
|
|
const int ia[] = {0, 1, 2, 3, 4, 5, 6, 7};
|
|
|
|
Alloc alloc(&allocated, &active_instances);
|
|
|
|
AllocFxdArr arr(ia, ia + inlined_size, alloc);
|
|
static_cast<void>(arr);
|
|
}
|
|
|
|
EXPECT_EQ(allocated, 0);
|
|
EXPECT_EQ(active_instances, 0);
|
|
}
|
|
|
|
TEST(AllocatorSupportTest, CountOutoflineAllocations) {
|
|
constexpr size_t inlined_size = 4;
|
|
using Alloc = CountingAllocator<int>;
|
|
using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>;
|
|
|
|
int64_t allocated = 0;
|
|
int64_t active_instances = 0;
|
|
|
|
{
|
|
const int ia[] = {0, 1, 2, 3, 4, 5, 6, 7};
|
|
Alloc alloc(&allocated, &active_instances);
|
|
|
|
AllocFxdArr arr(ia, ia + ABSL_ARRAYSIZE(ia), alloc);
|
|
|
|
EXPECT_EQ(allocated, arr.size() * sizeof(int));
|
|
static_cast<void>(arr);
|
|
}
|
|
|
|
EXPECT_EQ(active_instances, 0);
|
|
}
|
|
|
|
TEST(AllocatorSupportTest, CountCopyInlineAllocations) {
|
|
constexpr size_t inlined_size = 4;
|
|
using Alloc = CountingAllocator<int>;
|
|
using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>;
|
|
|
|
int64_t allocated1 = 0;
|
|
int64_t allocated2 = 0;
|
|
int64_t active_instances = 0;
|
|
Alloc alloc(&allocated1, &active_instances);
|
|
Alloc alloc2(&allocated2, &active_instances);
|
|
|
|
{
|
|
int initial_value = 1;
|
|
|
|
AllocFxdArr arr1(inlined_size / 2, initial_value, alloc);
|
|
|
|
EXPECT_EQ(allocated1, 0);
|
|
|
|
AllocFxdArr arr2(arr1, alloc2);
|
|
|
|
EXPECT_EQ(allocated2, 0);
|
|
static_cast<void>(arr1);
|
|
static_cast<void>(arr2);
|
|
}
|
|
|
|
EXPECT_EQ(active_instances, 0);
|
|
}
|
|
|
|
TEST(AllocatorSupportTest, CountCopyOutoflineAllocations) {
|
|
constexpr size_t inlined_size = 4;
|
|
using Alloc = CountingAllocator<int>;
|
|
using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>;
|
|
|
|
int64_t allocated1 = 0;
|
|
int64_t allocated2 = 0;
|
|
int64_t active_instances = 0;
|
|
Alloc alloc(&allocated1, &active_instances);
|
|
Alloc alloc2(&allocated2, &active_instances);
|
|
|
|
{
|
|
int initial_value = 1;
|
|
|
|
AllocFxdArr arr1(inlined_size * 2, initial_value, alloc);
|
|
|
|
EXPECT_EQ(allocated1, arr1.size() * sizeof(int));
|
|
|
|
AllocFxdArr arr2(arr1, alloc2);
|
|
|
|
EXPECT_EQ(allocated2, inlined_size * 2 * sizeof(int));
|
|
static_cast<void>(arr1);
|
|
static_cast<void>(arr2);
|
|
}
|
|
|
|
EXPECT_EQ(active_instances, 0);
|
|
}
|
|
|
|
TEST(AllocatorSupportTest, SizeValAllocConstructor) {
|
|
using testing::AllOf;
|
|
using testing::Each;
|
|
using testing::SizeIs;
|
|
|
|
constexpr size_t inlined_size = 4;
|
|
using Alloc = CountingAllocator<int>;
|
|
using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>;
|
|
|
|
{
|
|
auto len = inlined_size / 2;
|
|
auto val = 0;
|
|
int64_t allocated = 0;
|
|
AllocFxdArr arr(len, val, Alloc(&allocated));
|
|
|
|
EXPECT_EQ(allocated, 0);
|
|
EXPECT_THAT(arr, AllOf(SizeIs(len), Each(0)));
|
|
}
|
|
|
|
{
|
|
auto len = inlined_size * 2;
|
|
auto val = 0;
|
|
int64_t allocated = 0;
|
|
AllocFxdArr arr(len, val, Alloc(&allocated));
|
|
|
|
EXPECT_EQ(allocated, len * sizeof(int));
|
|
EXPECT_THAT(arr, AllOf(SizeIs(len), Each(0)));
|
|
}
|
|
}
|
|
|
|
#ifdef ADDRESS_SANITIZER
|
|
TEST(FixedArrayTest, AddressSanitizerAnnotations1) {
|
|
absl::FixedArray<int, 32> a(10);
|
|
int* raw = a.data();
|
|
raw[0] = 0;
|
|
raw[9] = 0;
|
|
EXPECT_DEATH(raw[-2] = 0, "container-overflow");
|
|
EXPECT_DEATH(raw[-1] = 0, "container-overflow");
|
|
EXPECT_DEATH(raw[10] = 0, "container-overflow");
|
|
EXPECT_DEATH(raw[31] = 0, "container-overflow");
|
|
}
|
|
|
|
TEST(FixedArrayTest, AddressSanitizerAnnotations2) {
|
|
absl::FixedArray<char, 17> a(12);
|
|
char* raw = a.data();
|
|
raw[0] = 0;
|
|
raw[11] = 0;
|
|
EXPECT_DEATH(raw[-7] = 0, "container-overflow");
|
|
EXPECT_DEATH(raw[-1] = 0, "container-overflow");
|
|
EXPECT_DEATH(raw[12] = 0, "container-overflow");
|
|
EXPECT_DEATH(raw[17] = 0, "container-overflow");
|
|
}
|
|
|
|
TEST(FixedArrayTest, AddressSanitizerAnnotations3) {
|
|
absl::FixedArray<uint64_t, 20> a(20);
|
|
uint64_t* raw = a.data();
|
|
raw[0] = 0;
|
|
raw[19] = 0;
|
|
EXPECT_DEATH(raw[-1] = 0, "container-overflow");
|
|
EXPECT_DEATH(raw[20] = 0, "container-overflow");
|
|
}
|
|
|
|
TEST(FixedArrayTest, AddressSanitizerAnnotations4) {
|
|
absl::FixedArray<ThreeInts> a(10);
|
|
ThreeInts* raw = a.data();
|
|
raw[0] = ThreeInts();
|
|
raw[9] = ThreeInts();
|
|
// Note: raw[-1] is pointing to 12 bytes before the container range. However,
|
|
// there is only a 8-byte red zone before the container range, so we only
|
|
// access the last 4 bytes of the struct to make sure it stays within the red
|
|
// zone.
|
|
EXPECT_DEATH(raw[-1].z_ = 0, "container-overflow");
|
|
EXPECT_DEATH(raw[10] = ThreeInts(), "container-overflow");
|
|
// The actual size of storage is kDefaultBytes=256, 21*12 = 252,
|
|
// so reading raw[21] should still trigger the correct warning.
|
|
EXPECT_DEATH(raw[21] = ThreeInts(), "container-overflow");
|
|
}
|
|
#endif // ADDRESS_SANITIZER
|
|
|
|
TEST(FixedArrayTest, AbslHashValueWorks) {
|
|
using V = absl::FixedArray<int>;
|
|
std::vector<V> cases;
|
|
|
|
// Generate a variety of vectors some of these are small enough for the inline
|
|
// space but are stored out of line.
|
|
for (int i = 0; i < 10; ++i) {
|
|
V v(i);
|
|
for (int j = 0; j < i; ++j) {
|
|
v[j] = j;
|
|
}
|
|
cases.push_back(v);
|
|
}
|
|
|
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(cases));
|
|
}
|
|
|
|
} // namespace
|