89aee6443c
Since we push arguments onto a stack when calling multi-argument functions, we actually were ending up calling `call_with` with the arguments in the *reverse order* - we patched around this by passing the arguments in the reverse order for `foldl'`, but it makes more sense to have them just be the order that the function would be called with in user surface code instead. Change-Id: Ifddb98f46970ac89872383709c3ce758dc965c65 Reviewed-on: https://cl.tvl.fyi/c/depot/+/7067 Reviewed-by: sterni <sternenseemann@systemli.org> Autosubmit: grfn <grfn@gws.fyi> Tested-by: BuildkiteCI
927 lines
32 KiB
Rust
927 lines
32 KiB
Rust
//! This module implements the virtual (or abstract) machine that runs
|
|
//! Tvix bytecode.
|
|
|
|
use serde_json::json;
|
|
use std::{ops::DerefMut, path::PathBuf, rc::Rc};
|
|
|
|
use crate::{
|
|
chunk::Chunk,
|
|
errors::{Error, ErrorKind, EvalResult},
|
|
nix_search_path::NixSearchPath,
|
|
observer::RuntimeObserver,
|
|
opcode::{CodeIdx, Count, JumpOffset, OpCode, StackIdx, UpvalueIdx},
|
|
upvalues::Upvalues,
|
|
value::{Builtin, Closure, CoercionKind, Lambda, NixAttrs, NixList, Thunk, Value},
|
|
warnings::{EvalWarning, WarningKind},
|
|
};
|
|
|
|
struct CallFrame {
|
|
/// The lambda currently being executed.
|
|
lambda: Rc<Lambda>,
|
|
|
|
/// Optional captured upvalues of this frame (if a thunk or
|
|
/// closure if being evaluated).
|
|
upvalues: Upvalues,
|
|
|
|
/// Instruction pointer to the instruction currently being
|
|
/// executed.
|
|
ip: CodeIdx,
|
|
|
|
/// Stack offset, i.e. the frames "view" into the VM's full stack.
|
|
stack_offset: usize,
|
|
}
|
|
|
|
impl CallFrame {
|
|
/// Retrieve an upvalue from this frame at the given index.
|
|
fn upvalue(&self, idx: UpvalueIdx) -> &Value {
|
|
&self.upvalues[idx]
|
|
}
|
|
}
|
|
|
|
pub struct VM<'o> {
|
|
/// The VM call stack. One element is pushed onto this stack
|
|
/// each time a function is called or a thunk is forced.
|
|
frames: Vec<CallFrame>,
|
|
|
|
/// The VM value stack. This is actually a "stack of stacks",
|
|
/// with one stack-of-Values for each CallFrame in frames. This
|
|
/// is represented as a Vec<Value> rather than as
|
|
/// Vec<Vec<Value>> or a Vec<Value> inside CallFrame for
|
|
/// efficiency reasons: it avoids having to allocate a Vec on
|
|
/// the heap each time a CallFrame is entered.
|
|
stack: Vec<Value>,
|
|
|
|
/// Stack indices (absolute indexes into `stack`) of attribute
|
|
/// sets from which variables should be dynamically resolved
|
|
/// (`with`).
|
|
with_stack: Vec<usize>,
|
|
|
|
/// Runtime warnings collected during evaluation.
|
|
warnings: Vec<EvalWarning>,
|
|
|
|
nix_search_path: NixSearchPath,
|
|
|
|
observer: &'o mut dyn RuntimeObserver,
|
|
}
|
|
|
|
/// The result of a VM's runtime evaluation.
|
|
pub struct RuntimeResult {
|
|
pub value: Value,
|
|
pub warnings: Vec<EvalWarning>,
|
|
}
|
|
|
|
/// This macro wraps a computation that returns an ErrorKind or a
|
|
/// result, and wraps the ErrorKind in an Error struct if present.
|
|
///
|
|
/// The reason for this macro's existence is that calculating spans is
|
|
/// potentially expensive, so it should be avoided to the last moment
|
|
/// (i.e. definite instantiation of a runtime error) if possible.
|
|
macro_rules! fallible {
|
|
( $self:ident, $body:expr) => {
|
|
match $body {
|
|
Ok(result) => result,
|
|
Err(kind) => {
|
|
return Err(Error {
|
|
kind,
|
|
span: $self.current_span(),
|
|
})
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
#[macro_export]
|
|
macro_rules! arithmetic_op {
|
|
( $self:ident, $op:tt ) => {{
|
|
let b = $self.pop();
|
|
let a = $self.pop();
|
|
let result = fallible!($self, arithmetic_op!(&a, &b, $op));
|
|
$self.push(result);
|
|
}};
|
|
|
|
( $a:expr, $b:expr, $op:tt ) => {{
|
|
match ($a, $b) {
|
|
(Value::Integer(i1), Value::Integer(i2)) => Ok(Value::Integer(i1 $op i2)),
|
|
(Value::Float(f1), Value::Float(f2)) => Ok(Value::Float(f1 $op f2)),
|
|
(Value::Integer(i1), Value::Float(f2)) => Ok(Value::Float(*i1 as f64 $op f2)),
|
|
(Value::Float(f1), Value::Integer(i2)) => Ok(Value::Float(f1 $op *i2 as f64)),
|
|
|
|
(v1, v2) => Err(ErrorKind::TypeError {
|
|
expected: "number (either int or float)",
|
|
actual: if v1.is_number() {
|
|
v2.type_of()
|
|
} else {
|
|
v1.type_of()
|
|
},
|
|
}),
|
|
}
|
|
}};
|
|
}
|
|
|
|
#[macro_export]
|
|
macro_rules! cmp_op {
|
|
( $self:ident, $op:tt ) => {{
|
|
let b = $self.pop();
|
|
let a = $self.pop();
|
|
let result = fallible!($self, cmp_op!(&a, &b, $op));
|
|
$self.push(result);
|
|
}};
|
|
|
|
( $a:expr, $b:expr, $op:tt ) => {
|
|
// Comparable (in terms of ordering) values are numbers and
|
|
// strings. Numbers need to be coerced similarly to arithmetic
|
|
// ops if mixed types are encountered.
|
|
match ($a, $b) {
|
|
// same types
|
|
(Value::Integer(i1), Value::Integer(i2)) => Ok(Value::Bool(i1 $op i2)),
|
|
(Value::Float(f1), Value::Float(f2)) => Ok(Value::Bool(f1 $op f2)),
|
|
(Value::String(s1), Value::String(s2)) => Ok(Value::Bool(s1 $op s2)),
|
|
|
|
// different types
|
|
(Value::Integer(i1), Value::Float(f2)) => Ok(Value::Bool((*i1 as f64) $op *f2)),
|
|
(Value::Float(f1), Value::Integer(i2)) => Ok(Value::Bool(*f1 $op (*i2 as f64))),
|
|
|
|
// unsupported types
|
|
(lhs, rhs) => Err(ErrorKind::Incomparable {
|
|
lhs: lhs.type_of(),
|
|
rhs: rhs.type_of(),
|
|
}),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'o> VM<'o> {
|
|
pub fn new(nix_search_path: NixSearchPath, observer: &'o mut dyn RuntimeObserver) -> Self {
|
|
Self {
|
|
nix_search_path,
|
|
observer,
|
|
frames: vec![],
|
|
stack: vec![],
|
|
with_stack: vec![],
|
|
warnings: vec![],
|
|
}
|
|
}
|
|
|
|
fn frame(&self) -> &CallFrame {
|
|
&self.frames[self.frames.len() - 1]
|
|
}
|
|
|
|
fn chunk(&self) -> &Chunk {
|
|
&self.frame().lambda.chunk
|
|
}
|
|
|
|
fn frame_mut(&mut self) -> &mut CallFrame {
|
|
let idx = self.frames.len() - 1;
|
|
&mut self.frames[idx]
|
|
}
|
|
|
|
fn inc_ip(&mut self) -> OpCode {
|
|
let op = self.chunk()[self.frame().ip];
|
|
self.frame_mut().ip += 1;
|
|
op
|
|
}
|
|
|
|
pub fn pop(&mut self) -> Value {
|
|
self.stack.pop().expect("runtime stack empty")
|
|
}
|
|
|
|
pub fn push(&mut self, value: Value) {
|
|
self.stack.push(value)
|
|
}
|
|
|
|
fn peek(&self, offset: usize) -> &Value {
|
|
&self.stack[self.stack.len() - 1 - offset]
|
|
}
|
|
|
|
/// Returns the source span of the instruction currently being
|
|
/// executed.
|
|
pub(crate) fn current_span(&self) -> codemap::Span {
|
|
self.chunk().get_span(self.frame().ip - 1)
|
|
}
|
|
|
|
/// Construct an error from the given ErrorKind and the source
|
|
/// span of the current instruction.
|
|
pub fn error(&self, kind: ErrorKind) -> Error {
|
|
Error {
|
|
kind,
|
|
span: self.current_span(),
|
|
}
|
|
}
|
|
|
|
/// Push an already constructed warning.
|
|
pub fn push_warning(&mut self, warning: EvalWarning) {
|
|
self.warnings.push(warning);
|
|
}
|
|
|
|
/// Emit a warning with the given WarningKind and the source span
|
|
/// of the current instruction.
|
|
pub fn emit_warning(&mut self, kind: WarningKind) {
|
|
self.push_warning(EvalWarning {
|
|
kind,
|
|
span: self.current_span(),
|
|
});
|
|
}
|
|
|
|
/// Execute the given value in this VM's context, if it is a
|
|
/// callable.
|
|
///
|
|
/// The stack of the VM must be prepared with all required
|
|
/// arguments before calling this and the value must have already
|
|
/// been forced.
|
|
pub fn call_value(&mut self, callable: &Value) -> EvalResult<()> {
|
|
match callable {
|
|
Value::Closure(c) => self.enter_frame(c.lambda(), c.upvalues().clone(), 1),
|
|
|
|
Value::Builtin(b) => self.call_builtin(b.clone()),
|
|
|
|
Value::Thunk(t) => self.call_value(&t.value()),
|
|
|
|
// Attribute sets with a __functor attribute are callable.
|
|
Value::Attrs(ref attrs) => match attrs.select("__functor") {
|
|
None => Err(self.error(ErrorKind::NotCallable(callable.type_of()))),
|
|
Some(functor) => {
|
|
// The functor receives the set itself as its first argument
|
|
// and needs to be called with it. However, this call is
|
|
// synthetic (i.e. there is no corresponding OpCall for the
|
|
// first call in the bytecode.)
|
|
self.push(callable.clone());
|
|
self.call_value(functor)?;
|
|
let primed = self.pop();
|
|
self.call_value(&primed)
|
|
}
|
|
},
|
|
|
|
// TODO: this isn't guaranteed to be a useful span, actually
|
|
other => Err(self.error(ErrorKind::NotCallable(other.type_of()))),
|
|
}
|
|
}
|
|
|
|
/// Call the given `callable` value with the given list of `args`
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if the passed list of `args` is empty
|
|
#[track_caller]
|
|
pub fn call_with<I>(&mut self, callable: &Value, args: I) -> EvalResult<Value>
|
|
where
|
|
I: IntoIterator<Item = Value>,
|
|
I::IntoIter: DoubleEndedIterator,
|
|
{
|
|
let mut num_args = 0_usize;
|
|
for arg in args.into_iter().rev() {
|
|
num_args += 1;
|
|
self.push(arg);
|
|
}
|
|
|
|
if num_args == 0 {
|
|
panic!("call_with called with an empty list of args");
|
|
}
|
|
|
|
self.call_value(callable)?;
|
|
let mut res = self.pop();
|
|
|
|
for _ in 0..(num_args - 1) {
|
|
self.call_value(&res)?;
|
|
res = self.pop();
|
|
}
|
|
|
|
Ok(res)
|
|
}
|
|
|
|
fn tail_call_value(&mut self, callable: Value) -> EvalResult<()> {
|
|
match callable {
|
|
Value::Builtin(builtin) => self.call_builtin(builtin),
|
|
Value::Thunk(thunk) => self.tail_call_value(thunk.value().clone()),
|
|
|
|
Value::Closure(closure) => {
|
|
let lambda = closure.lambda();
|
|
self.observer.observe_tail_call(self.frames.len(), &lambda);
|
|
|
|
// Replace the current call frames internals with
|
|
// that of the tail-called closure.
|
|
let mut frame = self.frame_mut();
|
|
frame.lambda = lambda;
|
|
frame.upvalues = closure.upvalues().clone();
|
|
frame.ip = CodeIdx(0); // reset instruction pointer to beginning
|
|
Ok(())
|
|
}
|
|
|
|
// Attribute sets with a __functor attribute are callable.
|
|
Value::Attrs(ref attrs) => match attrs.select("__functor") {
|
|
None => Err(self.error(ErrorKind::NotCallable(callable.type_of()))),
|
|
Some(functor) => {
|
|
// The functor receives the set itself as its first argument
|
|
// and needs to be called with it. However, this call is
|
|
// synthetic (i.e. there is no corresponding OpCall for the
|
|
// first call in the bytecode.)
|
|
self.push(callable.clone());
|
|
self.call_value(functor)?;
|
|
let primed = self.pop();
|
|
self.tail_call_value(primed)
|
|
}
|
|
},
|
|
|
|
_ => Err(self.error(ErrorKind::NotCallable(callable.type_of()))),
|
|
}
|
|
}
|
|
|
|
/// Execute the given lambda in this VM's context, returning its
|
|
/// value after its stack frame completes.
|
|
pub fn enter_frame(
|
|
&mut self,
|
|
lambda: Rc<Lambda>,
|
|
upvalues: Upvalues,
|
|
arg_count: usize,
|
|
) -> EvalResult<()> {
|
|
self.observer
|
|
.observe_enter_frame(arg_count, &lambda, self.frames.len() + 1);
|
|
|
|
let frame = CallFrame {
|
|
lambda,
|
|
upvalues,
|
|
ip: CodeIdx(0),
|
|
stack_offset: self.stack.len() - arg_count,
|
|
};
|
|
|
|
self.frames.push(frame);
|
|
let result = self.run();
|
|
|
|
self.observer
|
|
.observe_exit_frame(self.frames.len() + 1, &self.stack);
|
|
|
|
result
|
|
}
|
|
|
|
/// Run the VM's current call frame to completion.
|
|
///
|
|
/// On successful return, the top of the stack is the value that
|
|
/// the frame evaluated to. The frame itself is popped off. It is
|
|
/// up to the caller to consume the value.
|
|
fn run(&mut self) -> EvalResult<()> {
|
|
loop {
|
|
// Break the loop if this call frame has already run to
|
|
// completion, pop it off, and return the value to the
|
|
// caller.
|
|
if self.frame().ip.0 == self.chunk().code.len() {
|
|
self.frames.pop();
|
|
return Ok(());
|
|
}
|
|
|
|
let op = self.inc_ip();
|
|
|
|
self.observer
|
|
.observe_execute_op(self.frame().ip, &op, &self.stack);
|
|
|
|
let res = self.run_op(op);
|
|
|
|
if self.frame().ip.0 == self.chunk().code.len() {
|
|
self.frames.pop();
|
|
return res;
|
|
} else {
|
|
res?;
|
|
}
|
|
}
|
|
}
|
|
|
|
fn run_op(&mut self, op: OpCode) -> EvalResult<()> {
|
|
match op {
|
|
OpCode::OpConstant(idx) => {
|
|
let c = self.chunk()[idx].clone();
|
|
self.push(c);
|
|
}
|
|
|
|
OpCode::OpPop => {
|
|
self.pop();
|
|
}
|
|
|
|
OpCode::OpAdd => {
|
|
let b = self.pop();
|
|
let a = self.pop();
|
|
|
|
let result = match (&a, &b) {
|
|
(Value::String(s1), Value::String(s2)) => Value::String(s1.concat(s2)),
|
|
(Value::Path(p), v) => {
|
|
let mut path = p.to_string_lossy().into_owned();
|
|
path.push_str(
|
|
&v.coerce_to_string(CoercionKind::Weak, self)
|
|
.map_err(|ek| self.error(ek))?,
|
|
);
|
|
crate::value::canon_path(PathBuf::from(path)).into()
|
|
}
|
|
_ => fallible!(self, arithmetic_op!(&a, &b, +)),
|
|
};
|
|
|
|
self.push(result)
|
|
}
|
|
|
|
OpCode::OpSub => arithmetic_op!(self, -),
|
|
OpCode::OpMul => arithmetic_op!(self, *),
|
|
OpCode::OpDiv => arithmetic_op!(self, /),
|
|
|
|
OpCode::OpInvert => {
|
|
let v = fallible!(self, self.pop().as_bool());
|
|
self.push(Value::Bool(!v));
|
|
}
|
|
|
|
OpCode::OpNegate => match self.pop() {
|
|
Value::Integer(i) => self.push(Value::Integer(-i)),
|
|
Value::Float(f) => self.push(Value::Float(-f)),
|
|
v => {
|
|
return Err(self.error(ErrorKind::TypeError {
|
|
expected: "number (either int or float)",
|
|
actual: v.type_of(),
|
|
}));
|
|
}
|
|
},
|
|
|
|
OpCode::OpEqual => {
|
|
let v2 = self.pop();
|
|
let v1 = self.pop();
|
|
let res = fallible!(self, v1.nix_eq(&v2, self));
|
|
|
|
self.push(Value::Bool(res))
|
|
}
|
|
|
|
OpCode::OpLess => cmp_op!(self, <),
|
|
OpCode::OpLessOrEq => cmp_op!(self, <=),
|
|
OpCode::OpMore => cmp_op!(self, >),
|
|
OpCode::OpMoreOrEq => cmp_op!(self, >=),
|
|
|
|
OpCode::OpNull => self.push(Value::Null),
|
|
OpCode::OpTrue => self.push(Value::Bool(true)),
|
|
OpCode::OpFalse => self.push(Value::Bool(false)),
|
|
|
|
OpCode::OpAttrs(Count(count)) => self.run_attrset(count)?,
|
|
|
|
OpCode::OpAttrsUpdate => {
|
|
let rhs = unwrap_or_clone_rc(fallible!(self, self.pop().to_attrs()));
|
|
let lhs = unwrap_or_clone_rc(fallible!(self, self.pop().to_attrs()));
|
|
|
|
self.push(Value::attrs(lhs.update(rhs)))
|
|
}
|
|
|
|
OpCode::OpAttrsSelect => {
|
|
let key = fallible!(self, self.pop().to_str());
|
|
let attrs = fallible!(self, self.pop().to_attrs());
|
|
|
|
match attrs.select(key.as_str()) {
|
|
Some(value) => self.push(value.clone()),
|
|
|
|
None => {
|
|
return Err(self.error(ErrorKind::AttributeNotFound {
|
|
name: key.as_str().to_string(),
|
|
}))
|
|
}
|
|
}
|
|
}
|
|
|
|
OpCode::OpAttrsTrySelect => {
|
|
let key = fallible!(self, self.pop().to_str());
|
|
let value = match self.pop() {
|
|
Value::Attrs(attrs) => match attrs.select(key.as_str()) {
|
|
Some(value) => value.clone(),
|
|
None => Value::AttrNotFound,
|
|
},
|
|
|
|
_ => Value::AttrNotFound,
|
|
};
|
|
|
|
self.push(value);
|
|
}
|
|
|
|
OpCode::OpHasAttr => {
|
|
let key = fallible!(self, self.pop().to_str());
|
|
let result = match self.pop() {
|
|
Value::Attrs(attrs) => attrs.contains(key.as_str()),
|
|
|
|
// Nix allows use of `?` on non-set types, but
|
|
// always returns false in those cases.
|
|
_ => false,
|
|
};
|
|
|
|
self.push(Value::Bool(result));
|
|
}
|
|
|
|
OpCode::OpValidateClosedFormals => {
|
|
let formals = self.frame().lambda.formals.as_ref().expect(
|
|
"OpValidateClosedFormals called within the frame of a lambda without formals",
|
|
);
|
|
let args = self.peek(0).to_attrs().map_err(|err| self.error(err))?;
|
|
for arg in args.keys() {
|
|
if !formals.contains(arg) {
|
|
return Err(self.error(ErrorKind::UnexpectedArgument {
|
|
arg: arg.clone(),
|
|
formals_span: formals.span,
|
|
}));
|
|
}
|
|
}
|
|
}
|
|
|
|
OpCode::OpList(Count(count)) => {
|
|
let list =
|
|
NixList::construct(count, self.stack.split_off(self.stack.len() - count));
|
|
self.push(Value::List(list));
|
|
}
|
|
|
|
OpCode::OpConcat => {
|
|
let rhs = fallible!(self, self.pop().to_list());
|
|
let lhs = fallible!(self, self.pop().to_list());
|
|
self.push(Value::List(lhs.concat(&rhs)))
|
|
}
|
|
|
|
OpCode::OpInterpolate(Count(count)) => self.run_interpolate(count)?,
|
|
|
|
OpCode::OpCoerceToString => {
|
|
// TODO: handle string context, copying to store
|
|
let string = fallible!(
|
|
self,
|
|
// note that coerce_to_string also forces
|
|
self.pop().coerce_to_string(CoercionKind::Weak, self)
|
|
);
|
|
self.push(Value::String(string));
|
|
}
|
|
|
|
OpCode::OpFindFile => match self.pop() {
|
|
Value::UnresolvedPath(path) => {
|
|
let resolved = self
|
|
.nix_search_path
|
|
.resolve(path)
|
|
.map_err(|e| self.error(e))?;
|
|
self.push(resolved.into());
|
|
}
|
|
|
|
_ => panic!("tvix compiler bug: OpFindFile called on non-UnresolvedPath"),
|
|
},
|
|
|
|
OpCode::OpResolveHomePath => match self.pop() {
|
|
Value::UnresolvedPath(path) => {
|
|
match dirs::home_dir() {
|
|
None => {
|
|
return Err(self.error(ErrorKind::RelativePathResolution(
|
|
"failed to determine home directory".into(),
|
|
)));
|
|
}
|
|
Some(mut buf) => {
|
|
buf.push(path);
|
|
self.push(buf.into());
|
|
}
|
|
};
|
|
}
|
|
|
|
_ => {
|
|
panic!("tvix compiler bug: OpResolveHomePath called on non-UnresolvedPath")
|
|
}
|
|
},
|
|
|
|
OpCode::OpJump(JumpOffset(offset)) => {
|
|
debug_assert!(offset != 0);
|
|
self.frame_mut().ip += offset;
|
|
}
|
|
|
|
OpCode::OpJumpIfTrue(JumpOffset(offset)) => {
|
|
debug_assert!(offset != 0);
|
|
if fallible!(self, self.peek(0).as_bool()) {
|
|
self.frame_mut().ip += offset;
|
|
}
|
|
}
|
|
|
|
OpCode::OpJumpIfFalse(JumpOffset(offset)) => {
|
|
debug_assert!(offset != 0);
|
|
if !fallible!(self, self.peek(0).as_bool()) {
|
|
self.frame_mut().ip += offset;
|
|
}
|
|
}
|
|
|
|
OpCode::OpJumpIfNotFound(JumpOffset(offset)) => {
|
|
debug_assert!(offset != 0);
|
|
if matches!(self.peek(0), Value::AttrNotFound) {
|
|
self.pop();
|
|
self.frame_mut().ip += offset;
|
|
}
|
|
}
|
|
|
|
// These assertion operations error out if the stack
|
|
// top is not of the expected type. This is necessary
|
|
// to implement some specific behaviours of Nix
|
|
// exactly.
|
|
OpCode::OpAssertBool => {
|
|
let val = self.peek(0);
|
|
if !val.is_bool() {
|
|
return Err(self.error(ErrorKind::TypeError {
|
|
expected: "bool",
|
|
actual: val.type_of(),
|
|
}));
|
|
}
|
|
}
|
|
|
|
// Remove the given number of elements from the stack,
|
|
// but retain the top value.
|
|
OpCode::OpCloseScope(Count(count)) => {
|
|
// Immediately move the top value into the right
|
|
// position.
|
|
let target_idx = self.stack.len() - 1 - count;
|
|
self.stack[target_idx] = self.pop();
|
|
|
|
// Then drop the remaining values.
|
|
for _ in 0..(count - 1) {
|
|
self.pop();
|
|
}
|
|
}
|
|
|
|
OpCode::OpGetLocal(StackIdx(local_idx)) => {
|
|
let idx = self.frame().stack_offset + local_idx;
|
|
self.push(self.stack[idx].clone());
|
|
}
|
|
|
|
OpCode::OpPushWith(StackIdx(idx)) => {
|
|
self.with_stack.push(self.frame().stack_offset + idx)
|
|
}
|
|
|
|
OpCode::OpPopWith => {
|
|
self.with_stack.pop();
|
|
}
|
|
|
|
OpCode::OpResolveWith => {
|
|
let ident = fallible!(self, self.pop().to_str());
|
|
let value = self.resolve_with(ident.as_str())?;
|
|
self.push(value)
|
|
}
|
|
|
|
OpCode::OpAssertFail => {
|
|
return Err(self.error(ErrorKind::AssertionFailed));
|
|
}
|
|
|
|
OpCode::OpCall => {
|
|
let callable = self.pop();
|
|
self.call_value(&callable)?;
|
|
}
|
|
|
|
OpCode::OpTailCall => {
|
|
let callable = self.pop();
|
|
self.tail_call_value(callable)?;
|
|
}
|
|
|
|
OpCode::OpGetUpvalue(upv_idx) => {
|
|
let value = self.frame().upvalue(upv_idx).clone();
|
|
self.push(value);
|
|
}
|
|
|
|
OpCode::OpClosure(idx) => {
|
|
let blueprint = match &self.chunk()[idx] {
|
|
Value::Blueprint(lambda) => lambda.clone(),
|
|
_ => panic!("compiler bug: non-blueprint in blueprint slot"),
|
|
};
|
|
|
|
let upvalue_count = blueprint.upvalue_count;
|
|
debug_assert!(
|
|
upvalue_count > 0,
|
|
"OpClosure should not be called for plain lambdas"
|
|
);
|
|
let mut upvalues = Upvalues::with_capacity(blueprint.upvalue_count);
|
|
self.populate_upvalues(upvalue_count, &mut upvalues)?;
|
|
self.push(Value::Closure(Closure::new_with_upvalues(
|
|
upvalues, blueprint,
|
|
)));
|
|
}
|
|
|
|
OpCode::OpThunkSuspended(idx) | OpCode::OpThunkClosure(idx) => {
|
|
let blueprint = match &self.chunk()[idx] {
|
|
Value::Blueprint(lambda) => lambda.clone(),
|
|
_ => panic!("compiler bug: non-blueprint in blueprint slot"),
|
|
};
|
|
|
|
let upvalue_count = blueprint.upvalue_count;
|
|
let thunk = if matches!(op, OpCode::OpThunkClosure(_)) {
|
|
debug_assert!(
|
|
upvalue_count > 0,
|
|
"OpThunkClosure should not be called for plain lambdas"
|
|
);
|
|
Thunk::new_closure(blueprint)
|
|
} else {
|
|
Thunk::new_suspended(blueprint, self.current_span())
|
|
};
|
|
let upvalues = thunk.upvalues_mut();
|
|
self.push(Value::Thunk(thunk.clone()));
|
|
|
|
// From this point on we internally mutate the
|
|
// upvalues. The closure (if `is_closure`) is
|
|
// already in its stack slot, which means that it
|
|
// can capture itself as an upvalue for
|
|
// self-recursion.
|
|
self.populate_upvalues(upvalue_count, upvalues)?;
|
|
}
|
|
|
|
OpCode::OpForce => {
|
|
let mut value = self.pop();
|
|
|
|
if let Value::Thunk(thunk) = value {
|
|
fallible!(self, thunk.force(self));
|
|
value = thunk.value().clone();
|
|
}
|
|
|
|
self.push(value);
|
|
}
|
|
|
|
OpCode::OpFinalise(StackIdx(idx)) => {
|
|
match &self.stack[self.frame().stack_offset + idx] {
|
|
Value::Closure(_) => panic!("attempted to finalise a closure"),
|
|
|
|
Value::Thunk(thunk) => thunk.finalise(&self.stack[self.frame().stack_offset..]),
|
|
|
|
// In functions with "formals" attributes, it is
|
|
// possible for `OpFinalise` to be called on a
|
|
// non-capturing value, in which case it is a no-op.
|
|
//
|
|
// TODO: detect this in some phase and skip the finalise; fail here
|
|
_ => { /* TODO: panic here again to catch bugs */ }
|
|
}
|
|
}
|
|
|
|
// Data-carrying operands should never be executed,
|
|
// that is a critical error in the VM.
|
|
OpCode::DataLocalIdx(_)
|
|
| OpCode::DataDeferredLocal(_)
|
|
| OpCode::DataUpvalueIdx(_)
|
|
| OpCode::DataCaptureWith => {
|
|
panic!("VM bug: attempted to execute data-carrying operand")
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn run_attrset(&mut self, count: usize) -> EvalResult<()> {
|
|
let attrs = fallible!(
|
|
self,
|
|
NixAttrs::construct(count, self.stack.split_off(self.stack.len() - count * 2))
|
|
);
|
|
|
|
self.push(Value::attrs(attrs));
|
|
Ok(())
|
|
}
|
|
|
|
/// Interpolate string fragments by popping the specified number of
|
|
/// fragments of the stack, evaluating them to strings, and pushing
|
|
/// the concatenated result string back on the stack.
|
|
fn run_interpolate(&mut self, count: usize) -> EvalResult<()> {
|
|
let mut out = String::new();
|
|
|
|
for _ in 0..count {
|
|
out.push_str(fallible!(self, self.pop().to_str()).as_str());
|
|
}
|
|
|
|
self.push(Value::String(out.into()));
|
|
Ok(())
|
|
}
|
|
|
|
/// Resolve a dynamic identifier through the with-stack at runtime.
|
|
fn resolve_with(&mut self, ident: &str) -> EvalResult<Value> {
|
|
// Iterate over the with_stack manually to avoid borrowing
|
|
// self, which is required for forcing the set.
|
|
for with_stack_idx in (0..self.with_stack.len()).rev() {
|
|
let with = self.stack[self.with_stack[with_stack_idx]].clone();
|
|
|
|
if let Value::Thunk(thunk) = &with {
|
|
fallible!(self, thunk.force(self));
|
|
}
|
|
|
|
match fallible!(self, with.to_attrs()).select(ident) {
|
|
None => continue,
|
|
Some(val) => return Ok(val.clone()),
|
|
}
|
|
}
|
|
|
|
// Iterate over the captured with stack if one exists. This is
|
|
// extra tricky to do without a lot of cloning.
|
|
for idx in (0..self.frame().upvalues.with_stack_len()).rev() {
|
|
// This will not panic because having an index here guarantees
|
|
// that the stack is present.
|
|
let with = self.frame().upvalues.with_stack().unwrap()[idx].clone();
|
|
if let Value::Thunk(thunk) = &with {
|
|
fallible!(self, thunk.force(self));
|
|
}
|
|
|
|
match fallible!(self, with.to_attrs()).select(ident) {
|
|
None => continue,
|
|
Some(val) => return Ok(val.clone()),
|
|
}
|
|
}
|
|
|
|
Err(self.error(ErrorKind::UnknownDynamicVariable(ident.to_string())))
|
|
}
|
|
|
|
/// Populate the upvalue fields of a thunk or closure under construction.
|
|
fn populate_upvalues(
|
|
&mut self,
|
|
count: usize,
|
|
mut upvalues: impl DerefMut<Target = Upvalues>,
|
|
) -> EvalResult<()> {
|
|
for _ in 0..count {
|
|
match self.inc_ip() {
|
|
OpCode::DataLocalIdx(StackIdx(local_idx)) => {
|
|
let idx = self.frame().stack_offset + local_idx;
|
|
|
|
let val = match self.stack.get(idx) {
|
|
Some(val) => val.clone(),
|
|
None => {
|
|
return Err(self.error(ErrorKind::TvixBug {
|
|
msg: "upvalue to be captured was missing on stack",
|
|
metadata: Some(Rc::new(json!({
|
|
"ip": format!("{:#x}", self.frame().ip.0 - 1),
|
|
"local_idx": local_idx,
|
|
"stack_idx": idx,
|
|
}))),
|
|
}))
|
|
}
|
|
};
|
|
|
|
upvalues.deref_mut().push(val);
|
|
}
|
|
|
|
OpCode::DataUpvalueIdx(upv_idx) => {
|
|
upvalues
|
|
.deref_mut()
|
|
.push(self.frame().upvalue(upv_idx).clone());
|
|
}
|
|
|
|
OpCode::DataDeferredLocal(idx) => {
|
|
upvalues.deref_mut().push(Value::DeferredUpvalue(idx));
|
|
}
|
|
|
|
OpCode::DataCaptureWith => {
|
|
// Start the captured with_stack off of the
|
|
// current call frame's captured with_stack, ...
|
|
let mut captured_with_stack = self
|
|
.frame()
|
|
.upvalues
|
|
.with_stack()
|
|
.map(Clone::clone)
|
|
// ... or make an empty one if there isn't one already.
|
|
.unwrap_or_else(|| Vec::with_capacity(self.with_stack.len()));
|
|
|
|
for idx in &self.with_stack {
|
|
captured_with_stack.push(self.stack[*idx].clone());
|
|
}
|
|
|
|
upvalues.deref_mut().set_with_stack(captured_with_stack);
|
|
}
|
|
|
|
_ => panic!("compiler error: missing closure operand"),
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
pub fn call_builtin(&mut self, builtin: Builtin) -> EvalResult<()> {
|
|
let builtin_name = builtin.name();
|
|
self.observer.observe_enter_builtin(builtin_name);
|
|
|
|
let arg = self.pop();
|
|
let result = fallible!(self, builtin.apply(self, arg));
|
|
|
|
self.observer
|
|
.observe_exit_builtin(builtin_name, &self.stack);
|
|
|
|
self.push(result);
|
|
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
// TODO: use Rc::unwrap_or_clone once it is stabilised.
|
|
// https://doc.rust-lang.org/std/rc/struct.Rc.html#method.unwrap_or_clone
|
|
fn unwrap_or_clone_rc<T: Clone>(rc: Rc<T>) -> T {
|
|
Rc::try_unwrap(rc).unwrap_or_else(|rc| (*rc).clone())
|
|
}
|
|
|
|
pub fn run_lambda(
|
|
nix_search_path: NixSearchPath,
|
|
observer: &mut dyn RuntimeObserver,
|
|
lambda: Rc<Lambda>,
|
|
) -> EvalResult<RuntimeResult> {
|
|
let mut vm = VM::new(nix_search_path, observer);
|
|
|
|
// Retain the top-level span of the expression in this lambda, as
|
|
// synthetic "calls" in deep_force will otherwise not have a span
|
|
// to fall back to.
|
|
//
|
|
// We exploit the fact that the compiler emits a final instruction
|
|
// with the span of the entire file for top-level expressions.
|
|
let root_span = lambda.chunk.get_span(CodeIdx(lambda.chunk.code.len() - 1));
|
|
|
|
vm.enter_frame(lambda, Upvalues::with_capacity(0), 0)?;
|
|
let value = vm.pop();
|
|
|
|
value
|
|
.deep_force(&mut vm, &mut Default::default())
|
|
.map_err(|kind| Error {
|
|
kind,
|
|
span: root_span,
|
|
})?;
|
|
|
|
Ok(RuntimeResult {
|
|
value,
|
|
warnings: vm.warnings,
|
|
})
|
|
}
|