cf3a1998e9
-- 44ccc0320ffaa2106ba3c6393b5a40c3b4f7b901 by Abseil Team <absl-team@google.com>: Clarify span iterator documentation. PiperOrigin-RevId: 299110584 -- 80d016d8026b8d6904aa0ff2d5e1c3ae27f129bb by Greg Falcon <gfalcon@google.com>: Add Cord::TryFlat(). PiperOrigin-RevId: 298889772 -- da6900203f1e4131d5693cbca157b6dba099bbed by Greg Falcon <gfalcon@google.com>: clang-format cord_test.cc. PiperOrigin-RevId: 298851425 GitOrigin-RevId: 44ccc0320ffaa2106ba3c6393b5a40c3b4f7b901 Change-Id: Ia5394f6fbb473d206726fdd48a00eb07a6acad6a
1220 lines
41 KiB
C++
1220 lines
41 KiB
C++
// Copyright 2020 The Abseil Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
// A Cord is a sequence of characters with some unusual access propreties.
|
|
// A Cord supports efficient insertions and deletions at the start and end of
|
|
// the byte sequence, but random access reads are slower, and random access
|
|
// modifications are not supported by the API. Cord also provides cheap copies
|
|
// (using a copy-on-write strategy) and cheap substring operations.
|
|
//
|
|
// Thread safety
|
|
// -------------
|
|
// Cord has the same thread-safety properties as many other types like
|
|
// std::string, std::vector<>, int, etc -- it is thread-compatible. In
|
|
// particular, if no thread may call a non-const method, then it is safe to
|
|
// concurrently call const methods. Copying a Cord produces a new instance that
|
|
// can be used concurrently with the original in arbitrary ways.
|
|
//
|
|
// Implementation is similar to the "Ropes" described in:
|
|
// Ropes: An alternative to strings
|
|
// Hans J. Boehm, Russ Atkinson, Michael Plass
|
|
// Software Practice and Experience, December 1995
|
|
|
|
#ifndef ABSL_STRINGS_CORD_H_
|
|
#define ABSL_STRINGS_CORD_H_
|
|
|
|
#include <algorithm>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <iostream>
|
|
#include <iterator>
|
|
#include <string>
|
|
#include <type_traits>
|
|
|
|
#include "absl/base/internal/endian.h"
|
|
#include "absl/base/internal/invoke.h"
|
|
#include "absl/base/internal/per_thread_tls.h"
|
|
#include "absl/base/macros.h"
|
|
#include "absl/base/port.h"
|
|
#include "absl/functional/function_ref.h"
|
|
#include "absl/meta/type_traits.h"
|
|
#include "absl/strings/internal/cord_internal.h"
|
|
#include "absl/strings/internal/resize_uninitialized.h"
|
|
#include "absl/strings/string_view.h"
|
|
#include "absl/types/optional.h"
|
|
|
|
namespace absl {
|
|
ABSL_NAMESPACE_BEGIN
|
|
class Cord;
|
|
class CordTestPeer;
|
|
template <typename Releaser>
|
|
Cord MakeCordFromExternal(absl::string_view, Releaser&&);
|
|
void CopyCordToString(const Cord& src, std::string* dst);
|
|
namespace hash_internal {
|
|
template <typename H>
|
|
H HashFragmentedCord(H, const Cord&);
|
|
}
|
|
|
|
namespace cord_internal {
|
|
|
|
// It's expensive to keep a tree perfectly balanced, so instead we keep trees
|
|
// approximately balanced. A tree node N of depth D(N) that contains a string
|
|
// of L(N) characters is considered balanced if L >= Fibonacci(D + 2).
|
|
// The "+ 2" is used to ensure that every leaf node contains at least one
|
|
// character. Here we presume that
|
|
// Fibonacci(0) = 0
|
|
// Fibonacci(1) = 1
|
|
// Fibonacci(2) = 1
|
|
// Fibonacci(3) = 2
|
|
// ...
|
|
//
|
|
// Fibonacci numbers are convenient because it means when two balanced trees of
|
|
// the same depth are made the children of a new node, the resulting tree is
|
|
// guaranteed to also be balanced:
|
|
//
|
|
//
|
|
// L(left) >= Fibonacci(D(left) + 2)
|
|
// L(right) >= Fibonacci(D(right) + 2)
|
|
//
|
|
// L(left) + L(right) >= Fibonacci(D(left) + 2) + Fibonacci(D(right) + 2)
|
|
// L(left) + L(right) == L(new_tree)
|
|
//
|
|
// L(new_tree) >= 2 * Fibonacci(D(child) + 2)
|
|
// D(child) == D(new_tree) - 1
|
|
//
|
|
// L(new_tree) >= 2 * Fibonacci(D(new_tree) + 1)
|
|
// 2 * Fibonacci(N) >= Fibonacci(N + 1)
|
|
//
|
|
// L(new_tree) >= Fibonacci(D(new_tree) + 2)
|
|
//
|
|
//
|
|
// The 93rd Fibonacci number is the largest Fibonacci number that can be
|
|
// represented in 64 bits, so the size of a balanced Cord of depth 92 is too big
|
|
// for an unsigned 64 bit integer to hold. Therefore we can safely assume that
|
|
// the maximum depth of a Cord is 91.
|
|
constexpr size_t MaxCordDepth() { return 91; }
|
|
|
|
// This class models fixed max size stack of CordRep pointers.
|
|
// The elements are being pushed back and popped from the back.
|
|
template <typename CordRepPtr, size_t N>
|
|
class CordTreePath {
|
|
public:
|
|
CordTreePath() {}
|
|
explicit CordTreePath(CordRepPtr root) { push_back(root); }
|
|
|
|
bool empty() const { return size_ == 0; }
|
|
size_t size() const { return size_; }
|
|
void clear() { size_ = 0; }
|
|
|
|
CordRepPtr back() { return data_[size_ - 1]; }
|
|
|
|
void pop_back() {
|
|
--size_;
|
|
assert(size_ < N);
|
|
}
|
|
void push_back(CordRepPtr elem) { data_[size_++] = elem; }
|
|
|
|
private:
|
|
CordRepPtr data_[N];
|
|
size_t size_ = 0;
|
|
};
|
|
|
|
using CordTreeMutablePath = CordTreePath<CordRep*, MaxCordDepth()>;
|
|
} // namespace cord_internal
|
|
|
|
// A Cord is a sequence of characters.
|
|
class Cord {
|
|
private:
|
|
template <typename T>
|
|
using EnableIfString =
|
|
absl::enable_if_t<std::is_same<T, std::string>::value, int>;
|
|
|
|
public:
|
|
// --------------------------------------------------------------------
|
|
// Constructors, destructors and helper factories
|
|
|
|
// Create an empty cord
|
|
constexpr Cord() noexcept;
|
|
|
|
// Cord is copyable and efficiently movable.
|
|
// The moved-from state is valid but unspecified.
|
|
Cord(const Cord& src);
|
|
Cord(Cord&& src) noexcept;
|
|
Cord& operator=(const Cord& x);
|
|
Cord& operator=(Cord&& x) noexcept;
|
|
|
|
// Create a cord out of "src". This constructor is explicit on
|
|
// purpose so that people do not get automatic type conversions.
|
|
explicit Cord(absl::string_view src);
|
|
Cord& operator=(absl::string_view src);
|
|
|
|
// These are templated to avoid ambiguities for types that are convertible to
|
|
// both `absl::string_view` and `std::string`, such as `const char*`.
|
|
//
|
|
// Note that these functions reserve the right to reuse the `string&&`'s
|
|
// memory and that they will do so in the future.
|
|
template <typename T, EnableIfString<T> = 0>
|
|
explicit Cord(T&& src) : Cord(absl::string_view(src)) {}
|
|
template <typename T, EnableIfString<T> = 0>
|
|
Cord& operator=(T&& src);
|
|
|
|
// Destroy the cord
|
|
~Cord() {
|
|
if (contents_.is_tree()) DestroyCordSlow();
|
|
}
|
|
|
|
// Creates a Cord that takes ownership of external memory. The contents of
|
|
// `data` are not copied.
|
|
//
|
|
// This function takes a callable that is invoked when all Cords are
|
|
// finished with `data`. The data must remain live and unchanging until the
|
|
// releaser is called. The requirements for the releaser are that it:
|
|
// * is move constructible,
|
|
// * supports `void operator()(absl::string_view) const` or
|
|
// `void operator()() const`,
|
|
// * does not have alignment requirement greater than what is guaranteed by
|
|
// ::operator new. This is dictated by alignof(std::max_align_t) before
|
|
// C++17 and __STDCPP_DEFAULT_NEW_ALIGNMENT__ if compiling with C++17 or
|
|
// it is supported by the implementation.
|
|
//
|
|
// Example:
|
|
//
|
|
// Cord MakeCord(BlockPool* pool) {
|
|
// Block* block = pool->NewBlock();
|
|
// FillBlock(block);
|
|
// return absl::MakeCordFromExternal(
|
|
// block->ToStringView(),
|
|
// [pool, block](absl::string_view v) {
|
|
// pool->FreeBlock(block, v);
|
|
// });
|
|
// }
|
|
//
|
|
// WARNING: It's likely a bug if your releaser doesn't do anything.
|
|
// For example, consider the following:
|
|
//
|
|
// void Foo(const char* buffer, int len) {
|
|
// auto c = absl::MakeCordFromExternal(absl::string_view(buffer, len),
|
|
// [](absl::string_view) {});
|
|
//
|
|
// // BUG: If Bar() copies its cord for any reason, including keeping a
|
|
// // substring of it, the lifetime of buffer might be extended beyond
|
|
// // when Foo() returns.
|
|
// Bar(c);
|
|
// }
|
|
template <typename Releaser>
|
|
friend Cord MakeCordFromExternal(absl::string_view data, Releaser&& releaser);
|
|
|
|
// --------------------------------------------------------------------
|
|
// Mutations
|
|
|
|
void Clear();
|
|
|
|
void Append(const Cord& src);
|
|
void Append(Cord&& src);
|
|
void Append(absl::string_view src);
|
|
template <typename T, EnableIfString<T> = 0>
|
|
void Append(T&& src);
|
|
|
|
void Prepend(const Cord& src);
|
|
void Prepend(absl::string_view src);
|
|
template <typename T, EnableIfString<T> = 0>
|
|
void Prepend(T&& src);
|
|
|
|
void RemovePrefix(size_t n);
|
|
void RemoveSuffix(size_t n);
|
|
|
|
// Returns a new cord representing the subrange [pos, pos + new_size) of
|
|
// *this. If pos >= size(), the result is empty(). If
|
|
// (pos + new_size) >= size(), the result is the subrange [pos, size()).
|
|
Cord Subcord(size_t pos, size_t new_size) const;
|
|
|
|
friend void swap(Cord& x, Cord& y) noexcept;
|
|
|
|
// --------------------------------------------------------------------
|
|
// Accessors
|
|
|
|
size_t size() const;
|
|
bool empty() const;
|
|
|
|
// Returns the approximate number of bytes pinned by this Cord. Note that
|
|
// Cords that share memory could each be "charged" independently for the same
|
|
// shared memory.
|
|
size_t EstimatedMemoryUsage() const;
|
|
|
|
// --------------------------------------------------------------------
|
|
// Comparators
|
|
|
|
// Compares 'this' Cord with rhs. This function and its relatives
|
|
// treat Cords as sequences of unsigned bytes. The comparison is a
|
|
// straightforward lexicographic comparison. Return value:
|
|
// -1 'this' Cord is smaller
|
|
// 0 two Cords are equal
|
|
// 1 'this' Cord is larger
|
|
int Compare(absl::string_view rhs) const;
|
|
int Compare(const Cord& rhs) const;
|
|
|
|
// Does 'this' cord start/end with rhs
|
|
bool StartsWith(const Cord& rhs) const;
|
|
bool StartsWith(absl::string_view rhs) const;
|
|
bool EndsWith(absl::string_view rhs) const;
|
|
bool EndsWith(const Cord& rhs) const;
|
|
|
|
// --------------------------------------------------------------------
|
|
// Conversion to other types
|
|
|
|
explicit operator std::string() const;
|
|
|
|
// Copies the contents from `src` to `*dst`.
|
|
//
|
|
// This function optimizes the case of reusing the destination std::string since it
|
|
// can reuse previously allocated capacity. However, this function does not
|
|
// guarantee that pointers previously returned by `dst->data()` remain valid
|
|
// even if `*dst` had enough capacity to hold `src`. If `*dst` is a new
|
|
// object, prefer to simply use the conversion operator to `std::string`.
|
|
friend void CopyCordToString(const Cord& src, std::string* dst);
|
|
|
|
// --------------------------------------------------------------------
|
|
// Iteration
|
|
|
|
class CharIterator;
|
|
|
|
// Type for iterating over the chunks of a `Cord`. See comments for
|
|
// `Cord::chunk_begin()`, `Cord::chunk_end()` and `Cord::Chunks()` below for
|
|
// preferred usage.
|
|
//
|
|
// Additional notes:
|
|
// * The `string_view` returned by dereferencing a valid, non-`end()`
|
|
// iterator is guaranteed to be non-empty.
|
|
// * A `ChunkIterator` object is invalidated after any non-const
|
|
// operation on the `Cord` object over which it iterates.
|
|
// * Two `ChunkIterator` objects can be equality compared if and only if
|
|
// they remain valid and iterate over the same `Cord`.
|
|
// * This is a proxy iterator. This means the `string_view` returned by the
|
|
// iterator does not live inside the Cord, and its lifetime is limited to
|
|
// the lifetime of the iterator itself. To help prevent issues,
|
|
// `ChunkIterator::reference` is not a true reference type and is
|
|
// equivalent to `value_type`.
|
|
// * The iterator keeps state that can grow for `Cord`s that contain many
|
|
// nodes and are imbalanced due to sharing. Prefer to pass this type by
|
|
// const reference instead of by value.
|
|
class ChunkIterator {
|
|
public:
|
|
using iterator_category = std::input_iterator_tag;
|
|
using value_type = absl::string_view;
|
|
using difference_type = ptrdiff_t;
|
|
using pointer = const value_type*;
|
|
using reference = value_type;
|
|
|
|
ChunkIterator() = default;
|
|
|
|
ChunkIterator& operator++();
|
|
ChunkIterator operator++(int);
|
|
bool operator==(const ChunkIterator& other) const;
|
|
bool operator!=(const ChunkIterator& other) const;
|
|
reference operator*() const;
|
|
pointer operator->() const;
|
|
|
|
friend class Cord;
|
|
friend class CharIterator;
|
|
|
|
private:
|
|
// Constructs a `begin()` iterator from `cord`.
|
|
explicit ChunkIterator(const Cord* cord);
|
|
|
|
// Removes `n` bytes from `current_chunk_`. Expects `n` to be smaller than
|
|
// `current_chunk_.size()`.
|
|
void RemoveChunkPrefix(size_t n);
|
|
Cord AdvanceAndReadBytes(size_t n);
|
|
void AdvanceBytes(size_t n);
|
|
// Iterates `n` bytes, where `n` is expected to be greater than or equal to
|
|
// `current_chunk_.size()`.
|
|
void AdvanceBytesSlowPath(size_t n);
|
|
|
|
// A view into bytes of the current `CordRep`. It may only be a view to a
|
|
// suffix of bytes if this is being used by `CharIterator`.
|
|
absl::string_view current_chunk_;
|
|
// The current leaf, or `nullptr` if the iterator points to short data.
|
|
// If the current chunk is a substring node, current_leaf_ points to the
|
|
// underlying flat or external node.
|
|
absl::cord_internal::CordRep* current_leaf_ = nullptr;
|
|
// The number of bytes left in the `Cord` over which we are iterating.
|
|
size_t bytes_remaining_ = 0;
|
|
absl::cord_internal::CordTreeMutablePath stack_of_right_children_;
|
|
};
|
|
|
|
// Returns an iterator to the first chunk of the `Cord`.
|
|
//
|
|
// This is useful for getting a `ChunkIterator` outside the context of a
|
|
// range-based for-loop (in which case see `Cord::Chunks()` below).
|
|
//
|
|
// Example:
|
|
//
|
|
// absl::Cord::ChunkIterator FindAsChunk(const absl::Cord& c,
|
|
// absl::string_view s) {
|
|
// return std::find(c.chunk_begin(), c.chunk_end(), s);
|
|
// }
|
|
ChunkIterator chunk_begin() const;
|
|
// Returns an iterator one increment past the last chunk of the `Cord`.
|
|
ChunkIterator chunk_end() const;
|
|
|
|
// Convenience wrapper over `Cord::chunk_begin()` and `Cord::chunk_end()` to
|
|
// enable range-based for-loop iteration over `Cord` chunks.
|
|
//
|
|
// Prefer to use `Cord::Chunks()` below instead of constructing this directly.
|
|
class ChunkRange {
|
|
public:
|
|
explicit ChunkRange(const Cord* cord) : cord_(cord) {}
|
|
|
|
ChunkIterator begin() const;
|
|
ChunkIterator end() const;
|
|
|
|
private:
|
|
const Cord* cord_;
|
|
};
|
|
|
|
// Returns a range for iterating over the chunks of a `Cord` with a
|
|
// range-based for-loop.
|
|
//
|
|
// Example:
|
|
//
|
|
// void ProcessChunks(const Cord& cord) {
|
|
// for (absl::string_view chunk : cord.Chunks()) { ... }
|
|
// }
|
|
//
|
|
// Note that the ordinary caveats of temporary lifetime extension apply:
|
|
//
|
|
// void Process() {
|
|
// for (absl::string_view chunk : CordFactory().Chunks()) {
|
|
// // The temporary Cord returned by CordFactory has been destroyed!
|
|
// }
|
|
// }
|
|
ChunkRange Chunks() const;
|
|
|
|
// Type for iterating over the characters of a `Cord`. See comments for
|
|
// `Cord::char_begin()`, `Cord::char_end()` and `Cord::Chars()` below for
|
|
// preferred usage.
|
|
//
|
|
// Additional notes:
|
|
// * A `CharIterator` object is invalidated after any non-const
|
|
// operation on the `Cord` object over which it iterates.
|
|
// * Two `CharIterator` objects can be equality compared if and only if
|
|
// they remain valid and iterate over the same `Cord`.
|
|
// * The iterator keeps state that can grow for `Cord`s that contain many
|
|
// nodes and are imbalanced due to sharing. Prefer to pass this type by
|
|
// const reference instead of by value.
|
|
// * This type cannot be a forward iterator because a `Cord` can reuse
|
|
// sections of memory. This violates the requirement that if dereferencing
|
|
// two iterators returns the same object, the iterators must compare
|
|
// equal.
|
|
class CharIterator {
|
|
public:
|
|
using iterator_category = std::input_iterator_tag;
|
|
using value_type = char;
|
|
using difference_type = ptrdiff_t;
|
|
using pointer = const char*;
|
|
using reference = const char&;
|
|
|
|
CharIterator() = default;
|
|
|
|
CharIterator& operator++();
|
|
CharIterator operator++(int);
|
|
bool operator==(const CharIterator& other) const;
|
|
bool operator!=(const CharIterator& other) const;
|
|
reference operator*() const;
|
|
pointer operator->() const;
|
|
|
|
friend Cord;
|
|
|
|
private:
|
|
explicit CharIterator(const Cord* cord) : chunk_iterator_(cord) {}
|
|
|
|
ChunkIterator chunk_iterator_;
|
|
};
|
|
|
|
// Advances `*it` by `n_bytes` and returns the bytes passed as a `Cord`.
|
|
//
|
|
// `n_bytes` must be less than or equal to the number of bytes remaining for
|
|
// iteration. Otherwise the behavior is undefined. It is valid to pass
|
|
// `char_end()` and 0.
|
|
static Cord AdvanceAndRead(CharIterator* it, size_t n_bytes);
|
|
|
|
// Advances `*it` by `n_bytes`.
|
|
//
|
|
// `n_bytes` must be less than or equal to the number of bytes remaining for
|
|
// iteration. Otherwise the behavior is undefined. It is valid to pass
|
|
// `char_end()` and 0.
|
|
static void Advance(CharIterator* it, size_t n_bytes);
|
|
|
|
// Returns the longest contiguous view starting at the iterator's position.
|
|
//
|
|
// `it` must be dereferenceable.
|
|
static absl::string_view ChunkRemaining(const CharIterator& it);
|
|
|
|
// Returns an iterator to the first character of the `Cord`.
|
|
CharIterator char_begin() const;
|
|
// Returns an iterator to one past the last character of the `Cord`.
|
|
CharIterator char_end() const;
|
|
|
|
// Convenience wrapper over `Cord::char_begin()` and `Cord::char_end()` to
|
|
// enable range-based for-loop iterator over the characters of a `Cord`.
|
|
//
|
|
// Prefer to use `Cord::Chars()` below instead of constructing this directly.
|
|
class CharRange {
|
|
public:
|
|
explicit CharRange(const Cord* cord) : cord_(cord) {}
|
|
|
|
CharIterator begin() const;
|
|
CharIterator end() const;
|
|
|
|
private:
|
|
const Cord* cord_;
|
|
};
|
|
|
|
// Returns a range for iterating over the characters of a `Cord` with a
|
|
// range-based for-loop.
|
|
//
|
|
// Example:
|
|
//
|
|
// void ProcessCord(const Cord& cord) {
|
|
// for (char c : cord.Chars()) { ... }
|
|
// }
|
|
//
|
|
// Note that the ordinary caveats of temporary lifetime extension apply:
|
|
//
|
|
// void Process() {
|
|
// for (char c : CordFactory().Chars()) {
|
|
// // The temporary Cord returned by CordFactory has been destroyed!
|
|
// }
|
|
// }
|
|
CharRange Chars() const;
|
|
|
|
// --------------------------------------------------------------------
|
|
// Miscellaneous
|
|
|
|
// Get the "i"th character of 'this' and return it.
|
|
// NOTE: This routine is reasonably efficient. It is roughly
|
|
// logarithmic in the number of nodes that make up the cord. Still,
|
|
// if you need to iterate over the contents of a cord, you should
|
|
// use a CharIterator/CordIterator rather than call operator[] or Get()
|
|
// repeatedly in a loop.
|
|
//
|
|
// REQUIRES: 0 <= i < size()
|
|
char operator[](size_t i) const;
|
|
|
|
// If this cord's representation is a single flat array, return a
|
|
// string_view referencing that array. Otherwise return nullopt.
|
|
absl::optional<absl::string_view> TryFlat() const;
|
|
|
|
// Flattens the cord into a single array and returns a view of the data.
|
|
//
|
|
// If the cord was already flat, the contents are not modified.
|
|
absl::string_view Flatten();
|
|
|
|
private:
|
|
friend class CordTestPeer;
|
|
template <typename H>
|
|
friend H absl::hash_internal::HashFragmentedCord(H, const Cord&);
|
|
friend bool operator==(const Cord& lhs, const Cord& rhs);
|
|
friend bool operator==(const Cord& lhs, absl::string_view rhs);
|
|
|
|
// Call the provided function once for each cord chunk, in order. Unlike
|
|
// Chunks(), this API will not allocate memory.
|
|
void ForEachChunk(absl::FunctionRef<void(absl::string_view)>) const;
|
|
|
|
// Allocates new contiguous storage for the contents of the cord. This is
|
|
// called by Flatten() when the cord was not already flat.
|
|
absl::string_view FlattenSlowPath();
|
|
|
|
// Actual cord contents are hidden inside the following simple
|
|
// class so that we can isolate the bulk of cord.cc from changes
|
|
// to the representation.
|
|
//
|
|
// InlineRep holds either either a tree pointer, or an array of kMaxInline
|
|
// bytes.
|
|
class InlineRep {
|
|
public:
|
|
static const unsigned char kMaxInline = 15;
|
|
static_assert(kMaxInline >= sizeof(absl::cord_internal::CordRep*), "");
|
|
// Tag byte & kMaxInline means we are storing a pointer.
|
|
static const unsigned char kTreeFlag = 1 << 4;
|
|
// Tag byte & kProfiledFlag means we are profiling the Cord.
|
|
static const unsigned char kProfiledFlag = 1 << 5;
|
|
|
|
constexpr InlineRep() : data_{} {}
|
|
InlineRep(const InlineRep& src);
|
|
InlineRep(InlineRep&& src);
|
|
InlineRep& operator=(const InlineRep& src);
|
|
InlineRep& operator=(InlineRep&& src) noexcept;
|
|
|
|
void Swap(InlineRep* rhs);
|
|
bool empty() const;
|
|
size_t size() const;
|
|
const char* data() const; // Returns nullptr if holding pointer
|
|
void set_data(const char* data, size_t n,
|
|
bool nullify_tail); // Discards pointer, if any
|
|
char* set_data(size_t n); // Write data to the result
|
|
// Returns nullptr if holding bytes
|
|
absl::cord_internal::CordRep* tree() const;
|
|
// Discards old pointer, if any
|
|
void set_tree(absl::cord_internal::CordRep* rep);
|
|
// Replaces a tree with a new root. This is faster than set_tree, but it
|
|
// should only be used when it's clear that the old rep was a tree.
|
|
void replace_tree(absl::cord_internal::CordRep* rep);
|
|
// Returns non-null iff was holding a pointer
|
|
absl::cord_internal::CordRep* clear();
|
|
// Convert to pointer if necessary
|
|
absl::cord_internal::CordRep* force_tree(size_t extra_hint);
|
|
void reduce_size(size_t n); // REQUIRES: holding data
|
|
void remove_prefix(size_t n); // REQUIRES: holding data
|
|
void AppendArray(const char* src_data, size_t src_size);
|
|
absl::string_view FindFlatStartPiece() const;
|
|
void AppendTree(absl::cord_internal::CordRep* tree);
|
|
void PrependTree(absl::cord_internal::CordRep* tree);
|
|
void GetAppendRegion(char** region, size_t* size, size_t max_length);
|
|
void GetAppendRegion(char** region, size_t* size);
|
|
bool IsSame(const InlineRep& other) const {
|
|
return memcmp(data_, other.data_, sizeof(data_)) == 0;
|
|
}
|
|
int BitwiseCompare(const InlineRep& other) const {
|
|
uint64_t x, y;
|
|
// Use memcpy to avoid anti-aliasing issues.
|
|
memcpy(&x, data_, sizeof(x));
|
|
memcpy(&y, other.data_, sizeof(y));
|
|
if (x == y) {
|
|
memcpy(&x, data_ + 8, sizeof(x));
|
|
memcpy(&y, other.data_ + 8, sizeof(y));
|
|
if (x == y) return 0;
|
|
}
|
|
return absl::big_endian::FromHost64(x) < absl::big_endian::FromHost64(y)
|
|
? -1
|
|
: 1;
|
|
}
|
|
void CopyTo(std::string* dst) const {
|
|
// memcpy is much faster when operating on a known size. On most supported
|
|
// platforms, the small std::string optimization is large enough that resizing
|
|
// to 15 bytes does not cause a memory allocation.
|
|
absl::strings_internal::STLStringResizeUninitialized(dst,
|
|
sizeof(data_) - 1);
|
|
memcpy(&(*dst)[0], data_, sizeof(data_) - 1);
|
|
// erase is faster than resize because the logic for memory allocation is
|
|
// not needed.
|
|
dst->erase(data_[kMaxInline]);
|
|
}
|
|
|
|
// Copies the inline contents into `dst`. Assumes the cord is not empty.
|
|
void CopyToArray(char* dst) const;
|
|
|
|
bool is_tree() const { return data_[kMaxInline] > kMaxInline; }
|
|
|
|
private:
|
|
friend class Cord;
|
|
|
|
void AssignSlow(const InlineRep& src);
|
|
// Unrefs the tree, stops profiling, and zeroes the contents
|
|
void ClearSlow();
|
|
|
|
// If the data has length <= kMaxInline, we store it in data_[0..len-1],
|
|
// and store the length in data_[kMaxInline]. Else we store it in a tree
|
|
// and store a pointer to that tree in data_[0..sizeof(CordRep*)-1].
|
|
alignas(absl::cord_internal::CordRep*) char data_[kMaxInline + 1];
|
|
};
|
|
InlineRep contents_;
|
|
|
|
// Helper for MemoryUsage()
|
|
static size_t MemoryUsageAux(const absl::cord_internal::CordRep* rep);
|
|
|
|
// Helper for GetFlat() and TryFlat()
|
|
static bool GetFlatAux(absl::cord_internal::CordRep* rep,
|
|
absl::string_view* fragment);
|
|
|
|
// Helper for ForEachChunk()
|
|
static void ForEachChunkAux(
|
|
absl::cord_internal::CordRep* rep,
|
|
absl::FunctionRef<void(absl::string_view)> callback);
|
|
|
|
// The destructor for non-empty Cords.
|
|
void DestroyCordSlow();
|
|
|
|
// Out-of-line implementation of slower parts of logic.
|
|
void CopyToArraySlowPath(char* dst) const;
|
|
int CompareSlowPath(absl::string_view rhs, size_t compared_size,
|
|
size_t size_to_compare) const;
|
|
int CompareSlowPath(const Cord& rhs, size_t compared_size,
|
|
size_t size_to_compare) const;
|
|
bool EqualsImpl(absl::string_view rhs, size_t size_to_compare) const;
|
|
bool EqualsImpl(const Cord& rhs, size_t size_to_compare) const;
|
|
int CompareImpl(const Cord& rhs) const;
|
|
|
|
template <typename ResultType, typename RHS>
|
|
friend ResultType GenericCompare(const Cord& lhs, const RHS& rhs,
|
|
size_t size_to_compare);
|
|
static absl::string_view GetFirstChunk(const Cord& c);
|
|
static absl::string_view GetFirstChunk(absl::string_view sv);
|
|
|
|
// Returns a new reference to contents_.tree(), or steals an existing
|
|
// reference if called on an rvalue.
|
|
absl::cord_internal::CordRep* TakeRep() const&;
|
|
absl::cord_internal::CordRep* TakeRep() &&;
|
|
|
|
// Helper for Append()
|
|
template <typename C>
|
|
void AppendImpl(C&& src);
|
|
};
|
|
|
|
ABSL_NAMESPACE_END
|
|
} // namespace absl
|
|
|
|
namespace absl {
|
|
ABSL_NAMESPACE_BEGIN
|
|
|
|
// allow a Cord to be logged
|
|
extern std::ostream& operator<<(std::ostream& out, const Cord& cord);
|
|
|
|
// ------------------------------------------------------------------
|
|
// Internal details follow. Clients should ignore.
|
|
|
|
namespace cord_internal {
|
|
|
|
// Fast implementation of memmove for up to 15 bytes. This implementation is
|
|
// safe for overlapping regions. If nullify_tail is true, the destination is
|
|
// padded with '\0' up to 16 bytes.
|
|
inline void SmallMemmove(char* dst, const char* src, size_t n,
|
|
bool nullify_tail = false) {
|
|
if (n >= 8) {
|
|
assert(n <= 16);
|
|
uint64_t buf1;
|
|
uint64_t buf2;
|
|
memcpy(&buf1, src, 8);
|
|
memcpy(&buf2, src + n - 8, 8);
|
|
if (nullify_tail) {
|
|
memset(dst + 8, 0, 8);
|
|
}
|
|
memcpy(dst, &buf1, 8);
|
|
memcpy(dst + n - 8, &buf2, 8);
|
|
} else if (n >= 4) {
|
|
uint32_t buf1;
|
|
uint32_t buf2;
|
|
memcpy(&buf1, src, 4);
|
|
memcpy(&buf2, src + n - 4, 4);
|
|
if (nullify_tail) {
|
|
memset(dst + 4, 0, 4);
|
|
memset(dst + 8, 0, 8);
|
|
}
|
|
memcpy(dst, &buf1, 4);
|
|
memcpy(dst + n - 4, &buf2, 4);
|
|
} else {
|
|
if (n != 0) {
|
|
dst[0] = src[0];
|
|
dst[n / 2] = src[n / 2];
|
|
dst[n - 1] = src[n - 1];
|
|
}
|
|
if (nullify_tail) {
|
|
memset(dst + 8, 0, 8);
|
|
memset(dst + n, 0, 8);
|
|
}
|
|
}
|
|
}
|
|
|
|
struct ExternalRepReleaserPair {
|
|
CordRep* rep;
|
|
void* releaser_address;
|
|
};
|
|
|
|
// Allocates a new external `CordRep` and returns a pointer to it and a pointer
|
|
// to `releaser_size` bytes where the desired releaser can be constructed.
|
|
// Expects `data` to be non-empty.
|
|
ExternalRepReleaserPair NewExternalWithUninitializedReleaser(
|
|
absl::string_view data, ExternalReleaserInvoker invoker,
|
|
size_t releaser_size);
|
|
|
|
struct Rank1 {};
|
|
struct Rank0 : Rank1 {};
|
|
|
|
template <typename Releaser, typename = ::absl::base_internal::InvokeT<
|
|
Releaser, absl::string_view>>
|
|
void InvokeReleaser(Rank0, Releaser&& releaser, absl::string_view data) {
|
|
::absl::base_internal::Invoke(std::forward<Releaser>(releaser), data);
|
|
}
|
|
|
|
template <typename Releaser,
|
|
typename = ::absl::base_internal::InvokeT<Releaser>>
|
|
void InvokeReleaser(Rank1, Releaser&& releaser, absl::string_view) {
|
|
::absl::base_internal::Invoke(std::forward<Releaser>(releaser));
|
|
}
|
|
|
|
// Creates a new `CordRep` that owns `data` and `releaser` and returns a pointer
|
|
// to it, or `nullptr` if `data` was empty.
|
|
template <typename Releaser>
|
|
// NOLINTNEXTLINE - suppress clang-tidy raw pointer return.
|
|
CordRep* NewExternalRep(absl::string_view data, Releaser&& releaser) {
|
|
static_assert(
|
|
#if defined(__STDCPP_DEFAULT_NEW_ALIGNMENT__)
|
|
alignof(Releaser) <= __STDCPP_DEFAULT_NEW_ALIGNMENT__,
|
|
#else
|
|
alignof(Releaser) <= alignof(max_align_t),
|
|
#endif
|
|
"Releasers with alignment requirement greater than what is returned by "
|
|
"default `::operator new()` are not supported.");
|
|
|
|
using ReleaserType = absl::decay_t<Releaser>;
|
|
if (data.empty()) {
|
|
// Never create empty external nodes.
|
|
InvokeReleaser(Rank0{}, ReleaserType(std::forward<Releaser>(releaser)),
|
|
data);
|
|
return nullptr;
|
|
}
|
|
|
|
auto releaser_invoker = [](void* type_erased_releaser, absl::string_view d) {
|
|
auto* my_releaser = static_cast<ReleaserType*>(type_erased_releaser);
|
|
InvokeReleaser(Rank0{}, std::move(*my_releaser), d);
|
|
my_releaser->~ReleaserType();
|
|
return sizeof(Releaser);
|
|
};
|
|
|
|
ExternalRepReleaserPair external = NewExternalWithUninitializedReleaser(
|
|
data, releaser_invoker, sizeof(releaser));
|
|
::new (external.releaser_address)
|
|
ReleaserType(std::forward<Releaser>(releaser));
|
|
return external.rep;
|
|
}
|
|
|
|
// Overload for function reference types that dispatches using a function
|
|
// pointer because there are no `alignof()` or `sizeof()` a function reference.
|
|
// NOLINTNEXTLINE - suppress clang-tidy raw pointer return.
|
|
inline CordRep* NewExternalRep(absl::string_view data,
|
|
void (&releaser)(absl::string_view)) {
|
|
return NewExternalRep(data, &releaser);
|
|
}
|
|
|
|
} // namespace cord_internal
|
|
|
|
template <typename Releaser>
|
|
Cord MakeCordFromExternal(absl::string_view data, Releaser&& releaser) {
|
|
Cord cord;
|
|
cord.contents_.set_tree(::absl::cord_internal::NewExternalRep(
|
|
data, std::forward<Releaser>(releaser)));
|
|
return cord;
|
|
}
|
|
|
|
inline Cord::InlineRep::InlineRep(const Cord::InlineRep& src) {
|
|
cord_internal::SmallMemmove(data_, src.data_, sizeof(data_));
|
|
}
|
|
|
|
inline Cord::InlineRep::InlineRep(Cord::InlineRep&& src) {
|
|
memcpy(data_, src.data_, sizeof(data_));
|
|
memset(src.data_, 0, sizeof(data_));
|
|
}
|
|
|
|
inline Cord::InlineRep& Cord::InlineRep::operator=(const Cord::InlineRep& src) {
|
|
if (this == &src) {
|
|
return *this;
|
|
}
|
|
if (!is_tree() && !src.is_tree()) {
|
|
cord_internal::SmallMemmove(data_, src.data_, sizeof(data_));
|
|
return *this;
|
|
}
|
|
AssignSlow(src);
|
|
return *this;
|
|
}
|
|
|
|
inline Cord::InlineRep& Cord::InlineRep::operator=(
|
|
Cord::InlineRep&& src) noexcept {
|
|
if (is_tree()) {
|
|
ClearSlow();
|
|
}
|
|
memcpy(data_, src.data_, sizeof(data_));
|
|
memset(src.data_, 0, sizeof(data_));
|
|
return *this;
|
|
}
|
|
|
|
inline void Cord::InlineRep::Swap(Cord::InlineRep* rhs) {
|
|
if (rhs == this) {
|
|
return;
|
|
}
|
|
|
|
Cord::InlineRep tmp;
|
|
cord_internal::SmallMemmove(tmp.data_, data_, sizeof(data_));
|
|
cord_internal::SmallMemmove(data_, rhs->data_, sizeof(data_));
|
|
cord_internal::SmallMemmove(rhs->data_, tmp.data_, sizeof(data_));
|
|
}
|
|
|
|
inline const char* Cord::InlineRep::data() const {
|
|
return is_tree() ? nullptr : data_;
|
|
}
|
|
|
|
inline absl::cord_internal::CordRep* Cord::InlineRep::tree() const {
|
|
if (is_tree()) {
|
|
absl::cord_internal::CordRep* rep;
|
|
memcpy(&rep, data_, sizeof(rep));
|
|
return rep;
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
inline bool Cord::InlineRep::empty() const { return data_[kMaxInline] == 0; }
|
|
|
|
inline size_t Cord::InlineRep::size() const {
|
|
const char tag = data_[kMaxInline];
|
|
if (tag <= kMaxInline) return tag;
|
|
return static_cast<size_t>(tree()->length);
|
|
}
|
|
|
|
inline void Cord::InlineRep::set_tree(absl::cord_internal::CordRep* rep) {
|
|
if (rep == nullptr) {
|
|
memset(data_, 0, sizeof(data_));
|
|
} else {
|
|
bool was_tree = is_tree();
|
|
memcpy(data_, &rep, sizeof(rep));
|
|
memset(data_ + sizeof(rep), 0, sizeof(data_) - sizeof(rep) - 1);
|
|
if (!was_tree) {
|
|
data_[kMaxInline] = kTreeFlag;
|
|
}
|
|
}
|
|
}
|
|
|
|
inline void Cord::InlineRep::replace_tree(absl::cord_internal::CordRep* rep) {
|
|
ABSL_ASSERT(is_tree());
|
|
if (ABSL_PREDICT_FALSE(rep == nullptr)) {
|
|
set_tree(rep);
|
|
return;
|
|
}
|
|
memcpy(data_, &rep, sizeof(rep));
|
|
memset(data_ + sizeof(rep), 0, sizeof(data_) - sizeof(rep) - 1);
|
|
}
|
|
|
|
inline absl::cord_internal::CordRep* Cord::InlineRep::clear() {
|
|
const char tag = data_[kMaxInline];
|
|
absl::cord_internal::CordRep* result = nullptr;
|
|
if (tag > kMaxInline) {
|
|
memcpy(&result, data_, sizeof(result));
|
|
}
|
|
memset(data_, 0, sizeof(data_)); // Clear the cord
|
|
return result;
|
|
}
|
|
|
|
inline void Cord::InlineRep::CopyToArray(char* dst) const {
|
|
assert(!is_tree());
|
|
size_t n = data_[kMaxInline];
|
|
assert(n != 0);
|
|
cord_internal::SmallMemmove(dst, data_, n);
|
|
}
|
|
|
|
constexpr inline Cord::Cord() noexcept {}
|
|
|
|
inline Cord& Cord::operator=(const Cord& x) {
|
|
contents_ = x.contents_;
|
|
return *this;
|
|
}
|
|
|
|
inline Cord::Cord(Cord&& src) noexcept : contents_(std::move(src.contents_)) {}
|
|
|
|
inline Cord& Cord::operator=(Cord&& x) noexcept {
|
|
contents_ = std::move(x.contents_);
|
|
return *this;
|
|
}
|
|
|
|
template <typename T, Cord::EnableIfString<T>>
|
|
inline Cord& Cord::operator=(T&& src) {
|
|
*this = absl::string_view(src);
|
|
return *this;
|
|
}
|
|
|
|
inline size_t Cord::size() const {
|
|
// Length is 1st field in str.rep_
|
|
return contents_.size();
|
|
}
|
|
|
|
inline bool Cord::empty() const { return contents_.empty(); }
|
|
|
|
inline size_t Cord::EstimatedMemoryUsage() const {
|
|
size_t result = sizeof(Cord);
|
|
if (const absl::cord_internal::CordRep* rep = contents_.tree()) {
|
|
result += MemoryUsageAux(rep);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
inline absl::optional<absl::string_view> Cord::TryFlat() const {
|
|
absl::cord_internal::CordRep* rep = contents_.tree();
|
|
if (rep == nullptr) {
|
|
return absl::string_view(contents_.data(), contents_.size());
|
|
}
|
|
absl::string_view fragment;
|
|
if (GetFlatAux(rep, &fragment)) {
|
|
return fragment;
|
|
}
|
|
return absl::nullopt;
|
|
}
|
|
|
|
inline absl::string_view Cord::Flatten() {
|
|
absl::cord_internal::CordRep* rep = contents_.tree();
|
|
if (rep == nullptr) {
|
|
return absl::string_view(contents_.data(), contents_.size());
|
|
} else {
|
|
absl::string_view already_flat_contents;
|
|
if (GetFlatAux(rep, &already_flat_contents)) {
|
|
return already_flat_contents;
|
|
}
|
|
}
|
|
return FlattenSlowPath();
|
|
}
|
|
|
|
inline void Cord::Append(absl::string_view src) {
|
|
contents_.AppendArray(src.data(), src.size());
|
|
}
|
|
|
|
template <typename T, Cord::EnableIfString<T>>
|
|
inline void Cord::Append(T&& src) {
|
|
// Note that this function reserves the right to reuse the `string&&`'s
|
|
// memory and that it will do so in the future.
|
|
Append(absl::string_view(src));
|
|
}
|
|
|
|
template <typename T, Cord::EnableIfString<T>>
|
|
inline void Cord::Prepend(T&& src) {
|
|
// Note that this function reserves the right to reuse the `string&&`'s
|
|
// memory and that it will do so in the future.
|
|
Prepend(absl::string_view(src));
|
|
}
|
|
|
|
inline int Cord::Compare(const Cord& rhs) const {
|
|
if (!contents_.is_tree() && !rhs.contents_.is_tree()) {
|
|
return contents_.BitwiseCompare(rhs.contents_);
|
|
}
|
|
|
|
return CompareImpl(rhs);
|
|
}
|
|
|
|
// Does 'this' cord start/end with rhs
|
|
inline bool Cord::StartsWith(const Cord& rhs) const {
|
|
if (contents_.IsSame(rhs.contents_)) return true;
|
|
size_t rhs_size = rhs.size();
|
|
if (size() < rhs_size) return false;
|
|
return EqualsImpl(rhs, rhs_size);
|
|
}
|
|
|
|
inline bool Cord::StartsWith(absl::string_view rhs) const {
|
|
size_t rhs_size = rhs.size();
|
|
if (size() < rhs_size) return false;
|
|
return EqualsImpl(rhs, rhs_size);
|
|
}
|
|
|
|
inline Cord::ChunkIterator::ChunkIterator(const Cord* cord)
|
|
: bytes_remaining_(cord->size()) {
|
|
if (cord->empty()) return;
|
|
if (cord->contents_.is_tree()) {
|
|
stack_of_right_children_.push_back(cord->contents_.tree());
|
|
operator++();
|
|
} else {
|
|
current_chunk_ = absl::string_view(cord->contents_.data(), cord->size());
|
|
}
|
|
}
|
|
|
|
inline Cord::ChunkIterator Cord::ChunkIterator::operator++(int) {
|
|
ChunkIterator tmp(*this);
|
|
operator++();
|
|
return tmp;
|
|
}
|
|
|
|
inline bool Cord::ChunkIterator::operator==(const ChunkIterator& other) const {
|
|
return bytes_remaining_ == other.bytes_remaining_;
|
|
}
|
|
|
|
inline bool Cord::ChunkIterator::operator!=(const ChunkIterator& other) const {
|
|
return !(*this == other);
|
|
}
|
|
|
|
inline Cord::ChunkIterator::reference Cord::ChunkIterator::operator*() const {
|
|
assert(bytes_remaining_ != 0);
|
|
return current_chunk_;
|
|
}
|
|
|
|
inline Cord::ChunkIterator::pointer Cord::ChunkIterator::operator->() const {
|
|
assert(bytes_remaining_ != 0);
|
|
return ¤t_chunk_;
|
|
}
|
|
|
|
inline void Cord::ChunkIterator::RemoveChunkPrefix(size_t n) {
|
|
assert(n < current_chunk_.size());
|
|
current_chunk_.remove_prefix(n);
|
|
bytes_remaining_ -= n;
|
|
}
|
|
|
|
inline void Cord::ChunkIterator::AdvanceBytes(size_t n) {
|
|
if (ABSL_PREDICT_TRUE(n < current_chunk_.size())) {
|
|
RemoveChunkPrefix(n);
|
|
} else if (n != 0) {
|
|
AdvanceBytesSlowPath(n);
|
|
}
|
|
}
|
|
|
|
inline Cord::ChunkIterator Cord::chunk_begin() const {
|
|
return ChunkIterator(this);
|
|
}
|
|
|
|
inline Cord::ChunkIterator Cord::chunk_end() const { return ChunkIterator(); }
|
|
|
|
inline Cord::ChunkIterator Cord::ChunkRange::begin() const {
|
|
return cord_->chunk_begin();
|
|
}
|
|
|
|
inline Cord::ChunkIterator Cord::ChunkRange::end() const {
|
|
return cord_->chunk_end();
|
|
}
|
|
|
|
inline Cord::ChunkRange Cord::Chunks() const { return ChunkRange(this); }
|
|
|
|
inline Cord::CharIterator& Cord::CharIterator::operator++() {
|
|
if (ABSL_PREDICT_TRUE(chunk_iterator_->size() > 1)) {
|
|
chunk_iterator_.RemoveChunkPrefix(1);
|
|
} else {
|
|
++chunk_iterator_;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
inline Cord::CharIterator Cord::CharIterator::operator++(int) {
|
|
CharIterator tmp(*this);
|
|
operator++();
|
|
return tmp;
|
|
}
|
|
|
|
inline bool Cord::CharIterator::operator==(const CharIterator& other) const {
|
|
return chunk_iterator_ == other.chunk_iterator_;
|
|
}
|
|
|
|
inline bool Cord::CharIterator::operator!=(const CharIterator& other) const {
|
|
return !(*this == other);
|
|
}
|
|
|
|
inline Cord::CharIterator::reference Cord::CharIterator::operator*() const {
|
|
return *chunk_iterator_->data();
|
|
}
|
|
|
|
inline Cord::CharIterator::pointer Cord::CharIterator::operator->() const {
|
|
return chunk_iterator_->data();
|
|
}
|
|
|
|
inline Cord Cord::AdvanceAndRead(CharIterator* it, size_t n_bytes) {
|
|
assert(it != nullptr);
|
|
return it->chunk_iterator_.AdvanceAndReadBytes(n_bytes);
|
|
}
|
|
|
|
inline void Cord::Advance(CharIterator* it, size_t n_bytes) {
|
|
assert(it != nullptr);
|
|
it->chunk_iterator_.AdvanceBytes(n_bytes);
|
|
}
|
|
|
|
inline absl::string_view Cord::ChunkRemaining(const CharIterator& it) {
|
|
return *it.chunk_iterator_;
|
|
}
|
|
|
|
inline Cord::CharIterator Cord::char_begin() const {
|
|
return CharIterator(this);
|
|
}
|
|
|
|
inline Cord::CharIterator Cord::char_end() const { return CharIterator(); }
|
|
|
|
inline Cord::CharIterator Cord::CharRange::begin() const {
|
|
return cord_->char_begin();
|
|
}
|
|
|
|
inline Cord::CharIterator Cord::CharRange::end() const {
|
|
return cord_->char_end();
|
|
}
|
|
|
|
inline Cord::CharRange Cord::Chars() const { return CharRange(this); }
|
|
|
|
inline void Cord::ForEachChunk(
|
|
absl::FunctionRef<void(absl::string_view)> callback) const {
|
|
absl::cord_internal::CordRep* rep = contents_.tree();
|
|
if (rep == nullptr) {
|
|
callback(absl::string_view(contents_.data(), contents_.size()));
|
|
} else {
|
|
return ForEachChunkAux(rep, callback);
|
|
}
|
|
}
|
|
|
|
// Nonmember Cord-to-Cord relational operarators.
|
|
inline bool operator==(const Cord& lhs, const Cord& rhs) {
|
|
if (lhs.contents_.IsSame(rhs.contents_)) return true;
|
|
size_t rhs_size = rhs.size();
|
|
if (lhs.size() != rhs_size) return false;
|
|
return lhs.EqualsImpl(rhs, rhs_size);
|
|
}
|
|
|
|
inline bool operator!=(const Cord& x, const Cord& y) { return !(x == y); }
|
|
inline bool operator<(const Cord& x, const Cord& y) {
|
|
return x.Compare(y) < 0;
|
|
}
|
|
inline bool operator>(const Cord& x, const Cord& y) {
|
|
return x.Compare(y) > 0;
|
|
}
|
|
inline bool operator<=(const Cord& x, const Cord& y) {
|
|
return x.Compare(y) <= 0;
|
|
}
|
|
inline bool operator>=(const Cord& x, const Cord& y) {
|
|
return x.Compare(y) >= 0;
|
|
}
|
|
|
|
// Nonmember Cord-to-absl::string_view relational operators.
|
|
//
|
|
// Due to implicit conversions, these also enable comparisons of Cord with
|
|
// with std::string, ::string, and const char*.
|
|
inline bool operator==(const Cord& lhs, absl::string_view rhs) {
|
|
size_t lhs_size = lhs.size();
|
|
size_t rhs_size = rhs.size();
|
|
if (lhs_size != rhs_size) return false;
|
|
return lhs.EqualsImpl(rhs, rhs_size);
|
|
}
|
|
|
|
inline bool operator==(absl::string_view x, const Cord& y) { return y == x; }
|
|
inline bool operator!=(const Cord& x, absl::string_view y) { return !(x == y); }
|
|
inline bool operator!=(absl::string_view x, const Cord& y) { return !(x == y); }
|
|
inline bool operator<(const Cord& x, absl::string_view y) {
|
|
return x.Compare(y) < 0;
|
|
}
|
|
inline bool operator<(absl::string_view x, const Cord& y) {
|
|
return y.Compare(x) > 0;
|
|
}
|
|
inline bool operator>(const Cord& x, absl::string_view y) { return y < x; }
|
|
inline bool operator>(absl::string_view x, const Cord& y) { return y < x; }
|
|
inline bool operator<=(const Cord& x, absl::string_view y) { return !(y < x); }
|
|
inline bool operator<=(absl::string_view x, const Cord& y) { return !(y < x); }
|
|
inline bool operator>=(const Cord& x, absl::string_view y) { return !(x < y); }
|
|
inline bool operator>=(absl::string_view x, const Cord& y) { return !(x < y); }
|
|
|
|
// Overload of swap for Cord. The use of non-const references is
|
|
// required. :(
|
|
inline void swap(Cord& x, Cord& y) noexcept { y.contents_.Swap(&x.contents_); }
|
|
|
|
// Some internals exposed to test code.
|
|
namespace strings_internal {
|
|
class CordTestAccess {
|
|
public:
|
|
static size_t FlatOverhead();
|
|
static size_t MaxFlatLength();
|
|
static size_t SizeofCordRepConcat();
|
|
static size_t SizeofCordRepExternal();
|
|
static size_t SizeofCordRepSubstring();
|
|
static size_t FlatTagToLength(uint8_t tag);
|
|
static uint8_t LengthToTag(size_t s);
|
|
};
|
|
} // namespace strings_internal
|
|
ABSL_NAMESPACE_END
|
|
} // namespace absl
|
|
|
|
#endif // ABSL_STRINGS_CORD_H_
|