2680 lines
108 KiB
C++
2680 lines
108 KiB
C++
#include "absl/synchronization/mutex.h"
|
|
|
|
#ifdef _WIN32
|
|
#include <windows.h>
|
|
#ifdef ERROR
|
|
#undef ERROR
|
|
#endif
|
|
#else
|
|
#include <fcntl.h>
|
|
#include <pthread.h>
|
|
#include <sched.h>
|
|
#include <sys/time.h>
|
|
#endif
|
|
|
|
#include <assert.h>
|
|
#include <errno.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <time.h>
|
|
|
|
#include <algorithm>
|
|
#include <atomic>
|
|
#include <cinttypes>
|
|
#include <thread> // NOLINT(build/c++11)
|
|
|
|
#include "absl/base/attributes.h"
|
|
#include "absl/base/config.h"
|
|
#include "absl/base/dynamic_annotations.h"
|
|
#include "absl/base/internal/atomic_hook.h"
|
|
#include "absl/base/internal/cycleclock.h"
|
|
#include "absl/base/internal/low_level_alloc.h"
|
|
#include "absl/base/internal/raw_logging.h"
|
|
#include "absl/base/internal/spinlock.h"
|
|
#include "absl/base/internal/sysinfo.h"
|
|
#include "absl/base/internal/thread_identity.h"
|
|
#include "absl/base/internal/tsan_mutex_interface.h"
|
|
#include "absl/base/port.h"
|
|
#include "absl/debugging/stacktrace.h"
|
|
#include "absl/synchronization/internal/graphcycles.h"
|
|
#include "absl/synchronization/internal/per_thread_sem.h"
|
|
#include "absl/time/time.h"
|
|
|
|
using absl::base_internal::CurrentThreadIdentityIfPresent;
|
|
using absl::base_internal::PerThreadSynch;
|
|
using absl::base_internal::ThreadIdentity;
|
|
using absl::synchronization_internal::GetOrCreateCurrentThreadIdentity;
|
|
using absl::synchronization_internal::GraphCycles;
|
|
using absl::synchronization_internal::GraphId;
|
|
using absl::synchronization_internal::InvalidGraphId;
|
|
using absl::synchronization_internal::KernelTimeout;
|
|
using absl::synchronization_internal::PerThreadSem;
|
|
|
|
extern "C" {
|
|
ABSL_ATTRIBUTE_WEAK void AbslInternalMutexYield() { std::this_thread::yield(); }
|
|
} // extern "C"
|
|
|
|
namespace absl {
|
|
|
|
namespace {
|
|
|
|
#if defined(THREAD_SANITIZER)
|
|
constexpr OnDeadlockCycle kDeadlockDetectionDefault = OnDeadlockCycle::kIgnore;
|
|
#else
|
|
constexpr OnDeadlockCycle kDeadlockDetectionDefault = OnDeadlockCycle::kAbort;
|
|
#endif
|
|
|
|
ABSL_CONST_INIT std::atomic<OnDeadlockCycle> synch_deadlock_detection(
|
|
kDeadlockDetectionDefault);
|
|
ABSL_CONST_INIT std::atomic<bool> synch_check_invariants(false);
|
|
|
|
// ------------------------------------------ spinlock support
|
|
|
|
// Make sure read-only globals used in the Mutex code are contained on the
|
|
// same cacheline and cacheline aligned to eliminate any false sharing with
|
|
// other globals from this and other modules.
|
|
static struct MutexGlobals {
|
|
MutexGlobals() {
|
|
// Find machine-specific data needed for Delay() and
|
|
// TryAcquireWithSpinning(). This runs in the global constructor
|
|
// sequence, and before that zeros are safe values.
|
|
num_cpus = absl::base_internal::NumCPUs();
|
|
spinloop_iterations = num_cpus > 1 ? 1500 : 0;
|
|
}
|
|
int num_cpus;
|
|
int spinloop_iterations;
|
|
// Pad this struct to a full cacheline to prevent false sharing.
|
|
char padding[ABSL_CACHELINE_SIZE - 2 * sizeof(int)];
|
|
} ABSL_CACHELINE_ALIGNED mutex_globals;
|
|
static_assert(
|
|
sizeof(MutexGlobals) == ABSL_CACHELINE_SIZE,
|
|
"MutexGlobals must occupy an entire cacheline to prevent false sharing");
|
|
|
|
ABSL_CONST_INIT absl::base_internal::AtomicHook<void (*)(int64_t wait_cycles)>
|
|
submit_profile_data;
|
|
ABSL_CONST_INIT absl::base_internal::AtomicHook<
|
|
void (*)(const char *msg, const void *obj, int64_t wait_cycles)> mutex_tracer;
|
|
ABSL_CONST_INIT absl::base_internal::AtomicHook<
|
|
void (*)(const char *msg, const void *cv)> cond_var_tracer;
|
|
ABSL_CONST_INIT absl::base_internal::AtomicHook<
|
|
bool (*)(const void *pc, char *out, int out_size)> symbolizer;
|
|
|
|
} // namespace
|
|
|
|
void RegisterMutexProfiler(void (*fn)(int64_t wait_timestamp)) {
|
|
submit_profile_data.Store(fn);
|
|
}
|
|
|
|
void RegisterMutexTracer(void (*fn)(const char *msg, const void *obj,
|
|
int64_t wait_cycles)) {
|
|
mutex_tracer.Store(fn);
|
|
}
|
|
|
|
void RegisterCondVarTracer(void (*fn)(const char *msg, const void *cv)) {
|
|
cond_var_tracer.Store(fn);
|
|
}
|
|
|
|
void RegisterSymbolizer(bool (*fn)(const void *pc, char *out, int out_size)) {
|
|
symbolizer.Store(fn);
|
|
}
|
|
|
|
// spinlock delay on iteration c. Returns new c.
|
|
namespace {
|
|
enum DelayMode { AGGRESSIVE, GENTLE };
|
|
};
|
|
static int Delay(int32_t c, DelayMode mode) {
|
|
// If this a uniprocessor, only yield/sleep. Otherwise, if the mode is
|
|
// aggressive then spin many times before yielding. If the mode is
|
|
// gentle then spin only a few times before yielding. Aggressive spinning is
|
|
// used to ensure that an Unlock() call, which must get the spin lock for
|
|
// any thread to make progress gets it without undue delay.
|
|
int32_t limit = (mutex_globals.num_cpus > 1) ?
|
|
((mode == AGGRESSIVE) ? 5000 : 250) : 0;
|
|
if (c < limit) {
|
|
c++; // spin
|
|
} else {
|
|
ABSL_TSAN_MUTEX_PRE_DIVERT(0, 0);
|
|
if (c == limit) { // yield once
|
|
AbslInternalMutexYield();
|
|
c++;
|
|
} else { // then wait
|
|
absl::SleepFor(absl::Microseconds(10));
|
|
c = 0;
|
|
}
|
|
ABSL_TSAN_MUTEX_POST_DIVERT(0, 0);
|
|
}
|
|
return (c);
|
|
}
|
|
|
|
// --------------------------Generic atomic ops
|
|
// Ensure that "(*pv & bits) == bits" by doing an atomic update of "*pv" to
|
|
// "*pv | bits" if necessary. Wait until (*pv & wait_until_clear)==0
|
|
// before making any change.
|
|
// This is used to set flags in mutex and condition variable words.
|
|
static void AtomicSetBits(std::atomic<intptr_t>* pv, intptr_t bits,
|
|
intptr_t wait_until_clear) {
|
|
intptr_t v;
|
|
do {
|
|
v = pv->load(std::memory_order_relaxed);
|
|
} while ((v & bits) != bits &&
|
|
((v & wait_until_clear) != 0 ||
|
|
!pv->compare_exchange_weak(v, v | bits,
|
|
std::memory_order_release,
|
|
std::memory_order_relaxed)));
|
|
}
|
|
|
|
// Ensure that "(*pv & bits) == 0" by doing an atomic update of "*pv" to
|
|
// "*pv & ~bits" if necessary. Wait until (*pv & wait_until_clear)==0
|
|
// before making any change.
|
|
// This is used to unset flags in mutex and condition variable words.
|
|
static void AtomicClearBits(std::atomic<intptr_t>* pv, intptr_t bits,
|
|
intptr_t wait_until_clear) {
|
|
intptr_t v;
|
|
do {
|
|
v = pv->load(std::memory_order_relaxed);
|
|
} while ((v & bits) != 0 &&
|
|
((v & wait_until_clear) != 0 ||
|
|
!pv->compare_exchange_weak(v, v & ~bits,
|
|
std::memory_order_release,
|
|
std::memory_order_relaxed)));
|
|
}
|
|
|
|
//------------------------------------------------------------------
|
|
|
|
// Data for doing deadlock detection.
|
|
static absl::base_internal::SpinLock deadlock_graph_mu(
|
|
absl::base_internal::kLinkerInitialized);
|
|
|
|
// graph used to detect deadlocks.
|
|
static GraphCycles *deadlock_graph GUARDED_BY(deadlock_graph_mu)
|
|
PT_GUARDED_BY(deadlock_graph_mu);
|
|
|
|
//------------------------------------------------------------------
|
|
// An event mechanism for debugging mutex use.
|
|
// It also allows mutexes to be given names for those who can't handle
|
|
// addresses, and instead like to give their data structures names like
|
|
// "Henry", "Fido", or "Rupert IV, King of Yondavia".
|
|
|
|
namespace { // to prevent name pollution
|
|
enum { // Mutex and CondVar events passed as "ev" to PostSynchEvent
|
|
// Mutex events
|
|
SYNCH_EV_TRYLOCK_SUCCESS,
|
|
SYNCH_EV_TRYLOCK_FAILED,
|
|
SYNCH_EV_READERTRYLOCK_SUCCESS,
|
|
SYNCH_EV_READERTRYLOCK_FAILED,
|
|
SYNCH_EV_LOCK,
|
|
SYNCH_EV_LOCK_RETURNING,
|
|
SYNCH_EV_READERLOCK,
|
|
SYNCH_EV_READERLOCK_RETURNING,
|
|
SYNCH_EV_UNLOCK,
|
|
SYNCH_EV_READERUNLOCK,
|
|
|
|
// CondVar events
|
|
SYNCH_EV_WAIT,
|
|
SYNCH_EV_WAIT_RETURNING,
|
|
SYNCH_EV_SIGNAL,
|
|
SYNCH_EV_SIGNALALL,
|
|
};
|
|
|
|
enum { // Event flags
|
|
SYNCH_F_R = 0x01, // reader event
|
|
SYNCH_F_LCK = 0x02, // PostSynchEvent called with mutex held
|
|
SYNCH_F_ACQ = 0x04, // event is an acquire
|
|
|
|
SYNCH_F_LCK_W = SYNCH_F_LCK,
|
|
SYNCH_F_LCK_R = SYNCH_F_LCK | SYNCH_F_R,
|
|
SYNCH_F_ACQ_W = SYNCH_F_ACQ,
|
|
SYNCH_F_ACQ_R = SYNCH_F_ACQ | SYNCH_F_R,
|
|
};
|
|
} // anonymous namespace
|
|
|
|
// Properties of the events.
|
|
static const struct {
|
|
int flags;
|
|
const char *msg;
|
|
} event_properties[] = {
|
|
{ SYNCH_F_LCK_W|SYNCH_F_ACQ_W, "TryLock succeeded " },
|
|
{ 0, "TryLock failed " },
|
|
{ SYNCH_F_LCK_R|SYNCH_F_ACQ_R, "ReaderTryLock succeeded " },
|
|
{ 0, "ReaderTryLock failed " },
|
|
{ SYNCH_F_ACQ_W, "Lock blocking " },
|
|
{ SYNCH_F_LCK_W, "Lock returning " },
|
|
{ SYNCH_F_ACQ_R, "ReaderLock blocking " },
|
|
{ SYNCH_F_LCK_R, "ReaderLock returning " },
|
|
{ SYNCH_F_LCK_W, "Unlock " },
|
|
{ SYNCH_F_LCK_R, "ReaderUnlock " },
|
|
{ 0, "Wait on " },
|
|
{ 0, "Wait unblocked " },
|
|
{ 0, "Signal on " },
|
|
{ 0, "SignalAll on " },
|
|
};
|
|
|
|
static absl::base_internal::SpinLock synch_event_mu(
|
|
absl::base_internal::kLinkerInitialized);
|
|
// protects synch_event
|
|
|
|
// Hash table size; should be prime > 2.
|
|
// Can't be too small, as it's used for deadlock detection information.
|
|
static const uint32_t kNSynchEvent = 1031;
|
|
|
|
// We need to hide Mutexes (or other deadlock detection's pointers)
|
|
// from the leak detector.
|
|
static const uintptr_t kHideMask = static_cast<uintptr_t>(0xF03A5F7BF03A5F7BLL);
|
|
static uintptr_t MaskMu(const void *mu) {
|
|
return reinterpret_cast<uintptr_t>(mu) ^ kHideMask;
|
|
}
|
|
|
|
static struct SynchEvent { // this is a trivial hash table for the events
|
|
// struct is freed when refcount reaches 0
|
|
int refcount GUARDED_BY(synch_event_mu);
|
|
|
|
// buckets have linear, 0-terminated chains
|
|
SynchEvent *next GUARDED_BY(synch_event_mu);
|
|
|
|
// Constant after initialization
|
|
uintptr_t masked_addr; // object at this address is called "name"
|
|
|
|
// No explicit synchronization used. Instead we assume that the
|
|
// client who enables/disables invariants/logging on a Mutex does so
|
|
// while the Mutex is not being concurrently accessed by others.
|
|
void (*invariant)(void *arg); // called on each event
|
|
void *arg; // first arg to (*invariant)()
|
|
bool log; // logging turned on
|
|
|
|
// Constant after initialization
|
|
char name[1]; // actually longer---null-terminated std::string
|
|
} *synch_event[kNSynchEvent] GUARDED_BY(synch_event_mu);
|
|
|
|
// Ensure that the object at "addr" has a SynchEvent struct associated with it,
|
|
// set "bits" in the word there (waiting until lockbit is clear before doing
|
|
// so), and return a refcounted reference that will remain valid until
|
|
// UnrefSynchEvent() is called. If a new SynchEvent is allocated,
|
|
// the std::string name is copied into it.
|
|
// When used with a mutex, the caller should also ensure that kMuEvent
|
|
// is set in the mutex word, and similarly for condition variables and kCVEvent.
|
|
static SynchEvent *EnsureSynchEvent(std::atomic<intptr_t> *addr,
|
|
const char *name, intptr_t bits,
|
|
intptr_t lockbit) {
|
|
uint32_t h = reinterpret_cast<intptr_t>(addr) % kNSynchEvent;
|
|
SynchEvent *e;
|
|
// first look for existing SynchEvent struct..
|
|
synch_event_mu.Lock();
|
|
for (e = synch_event[h]; e != nullptr && e->masked_addr != MaskMu(addr);
|
|
e = e->next) {
|
|
}
|
|
if (e == nullptr) { // no SynchEvent struct found; make one.
|
|
if (name == nullptr) {
|
|
name = "";
|
|
}
|
|
size_t l = strlen(name);
|
|
e = reinterpret_cast<SynchEvent *>(
|
|
base_internal::LowLevelAlloc::Alloc(sizeof(*e) + l));
|
|
e->refcount = 2; // one for return value, one for linked list
|
|
e->masked_addr = MaskMu(addr);
|
|
e->invariant = nullptr;
|
|
e->arg = nullptr;
|
|
e->log = false;
|
|
strcpy(e->name, name); // NOLINT(runtime/printf)
|
|
e->next = synch_event[h];
|
|
AtomicSetBits(addr, bits, lockbit);
|
|
synch_event[h] = e;
|
|
} else {
|
|
e->refcount++; // for return value
|
|
}
|
|
synch_event_mu.Unlock();
|
|
return e;
|
|
}
|
|
|
|
// Deallocate the SynchEvent *e, whose refcount has fallen to zero.
|
|
static void DeleteSynchEvent(SynchEvent *e) {
|
|
base_internal::LowLevelAlloc::Free(e);
|
|
}
|
|
|
|
// Decrement the reference count of *e, or do nothing if e==null.
|
|
static void UnrefSynchEvent(SynchEvent *e) {
|
|
if (e != nullptr) {
|
|
synch_event_mu.Lock();
|
|
bool del = (--(e->refcount) == 0);
|
|
synch_event_mu.Unlock();
|
|
if (del) {
|
|
DeleteSynchEvent(e);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Forget the mapping from the object (Mutex or CondVar) at address addr
|
|
// to SynchEvent object, and clear "bits" in its word (waiting until lockbit
|
|
// is clear before doing so).
|
|
static void ForgetSynchEvent(std::atomic<intptr_t> *addr, intptr_t bits,
|
|
intptr_t lockbit) {
|
|
uint32_t h = reinterpret_cast<intptr_t>(addr) % kNSynchEvent;
|
|
SynchEvent **pe;
|
|
SynchEvent *e;
|
|
synch_event_mu.Lock();
|
|
for (pe = &synch_event[h];
|
|
(e = *pe) != nullptr && e->masked_addr != MaskMu(addr); pe = &e->next) {
|
|
}
|
|
bool del = false;
|
|
if (e != nullptr) {
|
|
*pe = e->next;
|
|
del = (--(e->refcount) == 0);
|
|
}
|
|
AtomicClearBits(addr, bits, lockbit);
|
|
synch_event_mu.Unlock();
|
|
if (del) {
|
|
DeleteSynchEvent(e);
|
|
}
|
|
}
|
|
|
|
// Return a refcounted reference to the SynchEvent of the object at address
|
|
// "addr", if any. The pointer returned is valid until the UnrefSynchEvent() is
|
|
// called.
|
|
static SynchEvent *GetSynchEvent(const void *addr) {
|
|
uint32_t h = reinterpret_cast<intptr_t>(addr) % kNSynchEvent;
|
|
SynchEvent *e;
|
|
synch_event_mu.Lock();
|
|
for (e = synch_event[h]; e != nullptr && e->masked_addr != MaskMu(addr);
|
|
e = e->next) {
|
|
}
|
|
if (e != nullptr) {
|
|
e->refcount++;
|
|
}
|
|
synch_event_mu.Unlock();
|
|
return e;
|
|
}
|
|
|
|
// Called when an event "ev" occurs on a Mutex of CondVar "obj"
|
|
// if event recording is on
|
|
static void PostSynchEvent(void *obj, int ev) {
|
|
SynchEvent *e = GetSynchEvent(obj);
|
|
// logging is on if event recording is on and either there's no event struct,
|
|
// or it explicitly says to log
|
|
if (e == nullptr || e->log) {
|
|
void *pcs[40];
|
|
int n = absl::GetStackTrace(pcs, ABSL_ARRAYSIZE(pcs), 1);
|
|
// A buffer with enough space for the ASCII for all the PCs, even on a
|
|
// 64-bit machine.
|
|
char buffer[ABSL_ARRAYSIZE(pcs) * 24];
|
|
int pos = snprintf(buffer, sizeof (buffer), " @");
|
|
for (int i = 0; i != n; i++) {
|
|
pos += snprintf(&buffer[pos], sizeof (buffer) - pos, " %p", pcs[i]);
|
|
}
|
|
ABSL_RAW_LOG(INFO, "%s%p %s %s", event_properties[ev].msg, obj,
|
|
(e == nullptr ? "" : e->name), buffer);
|
|
}
|
|
if ((event_properties[ev].flags & SYNCH_F_LCK) != 0 && e != nullptr &&
|
|
e->invariant != nullptr) {
|
|
(*e->invariant)(e->arg);
|
|
}
|
|
UnrefSynchEvent(e);
|
|
}
|
|
|
|
//------------------------------------------------------------------
|
|
|
|
// The SynchWaitParams struct encapsulates the way in which a thread is waiting:
|
|
// whether it has a timeout, the condition, exclusive/shared, and whether a
|
|
// condition variable wait has an associated Mutex (as opposed to another
|
|
// type of lock). It also points to the PerThreadSynch struct of its thread.
|
|
// cv_word tells Enqueue() to enqueue on a CondVar using CondVarEnqueue().
|
|
//
|
|
// This structure is held on the stack rather than directly in
|
|
// PerThreadSynch because a thread can be waiting on multiple Mutexes if,
|
|
// while waiting on one Mutex, the implementation calls a client callback
|
|
// (such as a Condition function) that acquires another Mutex. We don't
|
|
// strictly need to allow this, but programmers become confused if we do not
|
|
// allow them to use functions such a LOG() within Condition functions. The
|
|
// PerThreadSynch struct points at the most recent SynchWaitParams struct when
|
|
// the thread is on a Mutex's waiter queue.
|
|
struct SynchWaitParams {
|
|
SynchWaitParams(Mutex::MuHow how_arg, const Condition *cond_arg,
|
|
KernelTimeout timeout_arg, Mutex *cvmu_arg,
|
|
PerThreadSynch *thread_arg,
|
|
std::atomic<intptr_t> *cv_word_arg)
|
|
: how(how_arg),
|
|
cond(cond_arg),
|
|
timeout(timeout_arg),
|
|
cvmu(cvmu_arg),
|
|
thread(thread_arg),
|
|
cv_word(cv_word_arg),
|
|
contention_start_cycles(base_internal::CycleClock::Now()) {}
|
|
|
|
const Mutex::MuHow how; // How this thread needs to wait.
|
|
const Condition *cond; // The condition that this thread is waiting for.
|
|
// In Mutex, this field is set to zero if a timeout
|
|
// expires.
|
|
KernelTimeout timeout; // timeout expiry---absolute time
|
|
// In Mutex, this field is set to zero if a timeout
|
|
// expires.
|
|
Mutex *const cvmu; // used for transfer from cond var to mutex
|
|
PerThreadSynch *const thread; // thread that is waiting
|
|
|
|
// If not null, thread should be enqueued on the CondVar whose state
|
|
// word is cv_word instead of queueing normally on the Mutex.
|
|
std::atomic<intptr_t> *cv_word;
|
|
|
|
int64_t contention_start_cycles; // Time (in cycles) when this thread started
|
|
// to contend for the mutex.
|
|
};
|
|
|
|
struct SynchLocksHeld {
|
|
int n; // number of valid entries in locks[]
|
|
bool overflow; // true iff we overflowed the array at some point
|
|
struct {
|
|
Mutex *mu; // lock acquired
|
|
int32_t count; // times acquired
|
|
GraphId id; // deadlock_graph id of acquired lock
|
|
} locks[40];
|
|
// If a thread overfills the array during deadlock detection, we
|
|
// continue, discarding information as needed. If no overflow has
|
|
// taken place, we can provide more error checking, such as
|
|
// detecting when a thread releases a lock it does not hold.
|
|
};
|
|
|
|
// A sentinel value in lists that is not 0.
|
|
// A 0 value is used to mean "not on a list".
|
|
static PerThreadSynch *const kPerThreadSynchNull =
|
|
reinterpret_cast<PerThreadSynch *>(1);
|
|
|
|
static SynchLocksHeld *LocksHeldAlloc() {
|
|
SynchLocksHeld *ret = reinterpret_cast<SynchLocksHeld *>(
|
|
base_internal::LowLevelAlloc::Alloc(sizeof(SynchLocksHeld)));
|
|
ret->n = 0;
|
|
ret->overflow = false;
|
|
return ret;
|
|
}
|
|
|
|
// Return the PerThreadSynch-struct for this thread.
|
|
static PerThreadSynch *Synch_GetPerThread() {
|
|
ThreadIdentity *identity = GetOrCreateCurrentThreadIdentity();
|
|
return &identity->per_thread_synch;
|
|
}
|
|
|
|
static PerThreadSynch *Synch_GetPerThreadAnnotated(Mutex *mu) {
|
|
if (mu) {
|
|
ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
|
|
}
|
|
PerThreadSynch *w = Synch_GetPerThread();
|
|
if (mu) {
|
|
ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
|
|
}
|
|
return w;
|
|
}
|
|
|
|
static SynchLocksHeld *Synch_GetAllLocks() {
|
|
PerThreadSynch *s = Synch_GetPerThread();
|
|
if (s->all_locks == nullptr) {
|
|
s->all_locks = LocksHeldAlloc(); // Freed by ReclaimThreadIdentity.
|
|
}
|
|
return s->all_locks;
|
|
}
|
|
|
|
// Post on "w"'s associated PerThreadSem.
|
|
inline void Mutex::IncrementSynchSem(Mutex *mu, PerThreadSynch *w) {
|
|
if (mu) {
|
|
ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
|
|
}
|
|
PerThreadSem::Post(w->thread_identity());
|
|
if (mu) {
|
|
ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
|
|
}
|
|
}
|
|
|
|
// Wait on "w"'s associated PerThreadSem; returns false if timeout expired.
|
|
bool Mutex::DecrementSynchSem(Mutex *mu, PerThreadSynch *w, KernelTimeout t) {
|
|
if (mu) {
|
|
ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
|
|
}
|
|
assert(w == Synch_GetPerThread());
|
|
static_cast<void>(w);
|
|
bool res = PerThreadSem::Wait(t);
|
|
if (mu) {
|
|
ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
// We're in a fatal signal handler that hopes to use Mutex and to get
|
|
// lucky by not deadlocking. We try to improve its chances of success
|
|
// by effectively disabling some of the consistency checks. This will
|
|
// prevent certain ABSL_RAW_CHECK() statements from being triggered when
|
|
// re-rentry is detected. The ABSL_RAW_CHECK() statements are those in the
|
|
// Mutex code checking that the "waitp" field has not been reused.
|
|
void Mutex::InternalAttemptToUseMutexInFatalSignalHandler() {
|
|
// Fix the per-thread state only if it exists.
|
|
ThreadIdentity *identity = CurrentThreadIdentityIfPresent();
|
|
if (identity != nullptr) {
|
|
identity->per_thread_synch.suppress_fatal_errors = true;
|
|
}
|
|
// Don't do deadlock detection when we are already failing.
|
|
synch_deadlock_detection.store(OnDeadlockCycle::kIgnore,
|
|
std::memory_order_release);
|
|
}
|
|
|
|
// --------------------------time support
|
|
|
|
// Return the current time plus the timeout. Use the same clock as
|
|
// PerThreadSem::Wait() for consistency. Unfortunately, we don't have
|
|
// such a choice when a deadline is given directly.
|
|
static absl::Time DeadlineFromTimeout(absl::Duration timeout) {
|
|
#ifndef _WIN32
|
|
struct timeval tv;
|
|
gettimeofday(&tv, nullptr);
|
|
return absl::TimeFromTimeval(tv) + timeout;
|
|
#else
|
|
return absl::Now() + timeout;
|
|
#endif
|
|
}
|
|
|
|
// --------------------------Mutexes
|
|
|
|
// In the layout below, the msb of the bottom byte is currently unused. Also,
|
|
// the following constraints were considered in choosing the layout:
|
|
// o Both the debug allocator's "uninitialized" and "freed" patterns (0xab and
|
|
// 0xcd) are illegal: reader and writer lock both held.
|
|
// o kMuWriter and kMuEvent should exceed kMuDesig and kMuWait, to enable the
|
|
// bit-twiddling trick in Mutex::Unlock().
|
|
// o kMuWriter / kMuReader == kMuWrWait / kMuWait,
|
|
// to enable the bit-twiddling trick in CheckForMutexCorruption().
|
|
static const intptr_t kMuReader = 0x0001L; // a reader holds the lock
|
|
static const intptr_t kMuDesig = 0x0002L; // there's a designated waker
|
|
static const intptr_t kMuWait = 0x0004L; // threads are waiting
|
|
static const intptr_t kMuWriter = 0x0008L; // a writer holds the lock
|
|
static const intptr_t kMuEvent = 0x0010L; // record this mutex's events
|
|
// INVARIANT1: there's a thread that was blocked on the mutex, is
|
|
// no longer, yet has not yet acquired the mutex. If there's a
|
|
// designated waker, all threads can avoid taking the slow path in
|
|
// unlock because the designated waker will subsequently acquire
|
|
// the lock and wake someone. To maintain INVARIANT1 the bit is
|
|
// set when a thread is unblocked(INV1a), and threads that were
|
|
// unblocked reset the bit when they either acquire or re-block
|
|
// (INV1b).
|
|
static const intptr_t kMuWrWait = 0x0020L; // runnable writer is waiting
|
|
// for a reader
|
|
static const intptr_t kMuSpin = 0x0040L; // spinlock protects wait list
|
|
static const intptr_t kMuLow = 0x00ffL; // mask all mutex bits
|
|
static const intptr_t kMuHigh = ~kMuLow; // mask pointer/reader count
|
|
|
|
// Hack to make constant values available to gdb pretty printer
|
|
enum {
|
|
kGdbMuSpin = kMuSpin,
|
|
kGdbMuEvent = kMuEvent,
|
|
kGdbMuWait = kMuWait,
|
|
kGdbMuWriter = kMuWriter,
|
|
kGdbMuDesig = kMuDesig,
|
|
kGdbMuWrWait = kMuWrWait,
|
|
kGdbMuReader = kMuReader,
|
|
kGdbMuLow = kMuLow,
|
|
};
|
|
|
|
// kMuWrWait implies kMuWait.
|
|
// kMuReader and kMuWriter are mutually exclusive.
|
|
// If kMuReader is zero, there are no readers.
|
|
// Otherwise, if kMuWait is zero, the high order bits contain a count of the
|
|
// number of readers. Otherwise, the reader count is held in
|
|
// PerThreadSynch::readers of the most recently queued waiter, again in the
|
|
// bits above kMuLow.
|
|
static const intptr_t kMuOne = 0x0100; // a count of one reader
|
|
|
|
// flags passed to Enqueue and LockSlow{,WithTimeout,Loop}
|
|
static const int kMuHasBlocked = 0x01; // already blocked (MUST == 1)
|
|
static const int kMuIsCond = 0x02; // conditional waiter (CV or Condition)
|
|
|
|
static_assert(PerThreadSynch::kAlignment > kMuLow,
|
|
"PerThreadSynch::kAlignment must be greater than kMuLow");
|
|
|
|
// This struct contains various bitmasks to be used in
|
|
// acquiring and releasing a mutex in a particular mode.
|
|
struct MuHowS {
|
|
// if all the bits in fast_need_zero are zero, the lock can be acquired by
|
|
// adding fast_add and oring fast_or. The bit kMuDesig should be reset iff
|
|
// this is the designated waker.
|
|
intptr_t fast_need_zero;
|
|
intptr_t fast_or;
|
|
intptr_t fast_add;
|
|
|
|
intptr_t slow_need_zero; // fast_need_zero with events (e.g. logging)
|
|
|
|
intptr_t slow_inc_need_zero; // if all the bits in slow_inc_need_zero are
|
|
// zero a reader can acquire a read share by
|
|
// setting the reader bit and incrementing
|
|
// the reader count (in last waiter since
|
|
// we're now slow-path). kMuWrWait be may
|
|
// be ignored if we already waited once.
|
|
};
|
|
|
|
static const MuHowS kSharedS = {
|
|
// shared or read lock
|
|
kMuWriter | kMuWait | kMuEvent, // fast_need_zero
|
|
kMuReader, // fast_or
|
|
kMuOne, // fast_add
|
|
kMuWriter | kMuWait, // slow_need_zero
|
|
kMuSpin | kMuWriter | kMuWrWait, // slow_inc_need_zero
|
|
};
|
|
static const MuHowS kExclusiveS = {
|
|
// exclusive or write lock
|
|
kMuWriter | kMuReader | kMuEvent, // fast_need_zero
|
|
kMuWriter, // fast_or
|
|
0, // fast_add
|
|
kMuWriter | kMuReader, // slow_need_zero
|
|
~static_cast<intptr_t>(0), // slow_inc_need_zero
|
|
};
|
|
static const Mutex::MuHow kShared = &kSharedS; // shared lock
|
|
static const Mutex::MuHow kExclusive = &kExclusiveS; // exclusive lock
|
|
|
|
#ifdef NDEBUG
|
|
static constexpr bool kDebugMode = false;
|
|
#else
|
|
static constexpr bool kDebugMode = true;
|
|
#endif
|
|
|
|
#ifdef THREAD_SANITIZER
|
|
static unsigned TsanFlags(Mutex::MuHow how) {
|
|
return how == kShared ? __tsan_mutex_read_lock : 0;
|
|
}
|
|
#endif
|
|
|
|
Mutex::Mutex() : mu_(0) {
|
|
ABSL_TSAN_MUTEX_CREATE(this, 0);
|
|
}
|
|
|
|
static bool DebugOnlyIsExiting() {
|
|
return false;
|
|
}
|
|
|
|
Mutex::~Mutex() {
|
|
intptr_t v = mu_.load(std::memory_order_relaxed);
|
|
if ((v & kMuEvent) != 0 && !DebugOnlyIsExiting()) {
|
|
ForgetSynchEvent(&this->mu_, kMuEvent, kMuSpin);
|
|
}
|
|
if (kDebugMode) {
|
|
this->ForgetDeadlockInfo();
|
|
}
|
|
ABSL_TSAN_MUTEX_DESTROY(this, 0);
|
|
}
|
|
|
|
void Mutex::EnableDebugLog(const char *name) {
|
|
SynchEvent *e = EnsureSynchEvent(&this->mu_, name, kMuEvent, kMuSpin);
|
|
e->log = true;
|
|
UnrefSynchEvent(e);
|
|
}
|
|
|
|
void EnableMutexInvariantDebugging(bool enabled) {
|
|
synch_check_invariants.store(enabled, std::memory_order_release);
|
|
}
|
|
|
|
void Mutex::EnableInvariantDebugging(void (*invariant)(void *),
|
|
void *arg) {
|
|
if (synch_check_invariants.load(std::memory_order_acquire) &&
|
|
invariant != nullptr) {
|
|
SynchEvent *e = EnsureSynchEvent(&this->mu_, nullptr, kMuEvent, kMuSpin);
|
|
e->invariant = invariant;
|
|
e->arg = arg;
|
|
UnrefSynchEvent(e);
|
|
}
|
|
}
|
|
|
|
void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode) {
|
|
synch_deadlock_detection.store(mode, std::memory_order_release);
|
|
}
|
|
|
|
// Return true iff threads x and y are waiting on the same condition for the
|
|
// same type of lock. Requires that x and y be waiting on the same Mutex
|
|
// queue.
|
|
static bool MuSameCondition(PerThreadSynch *x, PerThreadSynch *y) {
|
|
return x->waitp->how == y->waitp->how &&
|
|
Condition::GuaranteedEqual(x->waitp->cond, y->waitp->cond);
|
|
}
|
|
|
|
// Given the contents of a mutex word containing a PerThreadSynch pointer,
|
|
// return the pointer.
|
|
static inline PerThreadSynch *GetPerThreadSynch(intptr_t v) {
|
|
return reinterpret_cast<PerThreadSynch *>(v & kMuHigh);
|
|
}
|
|
|
|
// The next several routines maintain the per-thread next and skip fields
|
|
// used in the Mutex waiter queue.
|
|
// The queue is a circular singly-linked list, of which the "head" is the
|
|
// last element, and head->next if the first element.
|
|
// The skip field has the invariant:
|
|
// For thread x, x->skip is one of:
|
|
// - invalid (iff x is not in a Mutex wait queue),
|
|
// - null, or
|
|
// - a pointer to a distinct thread waiting later in the same Mutex queue
|
|
// such that all threads in [x, x->skip] have the same condition and
|
|
// lock type (MuSameCondition() is true for all pairs in [x, x->skip]).
|
|
// In addition, if x->skip is valid, (x->may_skip || x->skip == null)
|
|
//
|
|
// By the spec of MuSameCondition(), it is not necessary when removing the
|
|
// first runnable thread y from the front a Mutex queue to adjust the skip
|
|
// field of another thread x because if x->skip==y, x->skip must (have) become
|
|
// invalid before y is removed. The function TryRemove can remove a specified
|
|
// thread from an arbitrary position in the queue whether runnable or not, so
|
|
// it fixes up skip fields that would otherwise be left dangling.
|
|
// The statement
|
|
// if (x->may_skip && MuSameCondition(x, x->next)) { x->skip = x->next; }
|
|
// maintains the invariant provided x is not the last waiter in a Mutex queue
|
|
// The statement
|
|
// if (x->skip != null) { x->skip = x->skip->skip; }
|
|
// maintains the invariant.
|
|
|
|
// Returns the last thread y in a mutex waiter queue such that all threads in
|
|
// [x, y] inclusive share the same condition. Sets skip fields of some threads
|
|
// in that range to optimize future evaluation of Skip() on x values in
|
|
// the range. Requires thread x is in a mutex waiter queue.
|
|
// The locking is unusual. Skip() is called under these conditions:
|
|
// - spinlock is held in call from Enqueue(), with maybe_unlocking == false
|
|
// - Mutex is held in call from UnlockSlow() by last unlocker, with
|
|
// maybe_unlocking == true
|
|
// - both Mutex and spinlock are held in call from DequeueAllWakeable() (from
|
|
// UnlockSlow()) and TryRemove()
|
|
// These cases are mutually exclusive, so Skip() never runs concurrently
|
|
// with itself on the same Mutex. The skip chain is used in these other places
|
|
// that cannot occur concurrently:
|
|
// - FixSkip() (from TryRemove()) - spinlock and Mutex are held)
|
|
// - Dequeue() (with spinlock and Mutex held)
|
|
// - UnlockSlow() (with spinlock and Mutex held)
|
|
// A more complex case is Enqueue()
|
|
// - Enqueue() (with spinlock held and maybe_unlocking == false)
|
|
// This is the first case in which Skip is called, above.
|
|
// - Enqueue() (without spinlock held; but queue is empty and being freshly
|
|
// formed)
|
|
// - Enqueue() (with spinlock held and maybe_unlocking == true)
|
|
// The first case has mutual exclusion, and the second isolation through
|
|
// working on an otherwise unreachable data structure.
|
|
// In the last case, Enqueue() is required to change no skip/next pointers
|
|
// except those in the added node and the former "head" node. This implies
|
|
// that the new node is added after head, and so must be the new head or the
|
|
// new front of the queue.
|
|
static PerThreadSynch *Skip(PerThreadSynch *x) {
|
|
PerThreadSynch *x0 = nullptr;
|
|
PerThreadSynch *x1 = x;
|
|
PerThreadSynch *x2 = x->skip;
|
|
if (x2 != nullptr) {
|
|
// Each iteration attempts to advance sequence (x0,x1,x2) to next sequence
|
|
// such that x1 == x0->skip && x2 == x1->skip
|
|
while ((x0 = x1, x1 = x2, x2 = x2->skip) != nullptr) {
|
|
x0->skip = x2; // short-circuit skip from x0 to x2
|
|
}
|
|
x->skip = x1; // short-circuit skip from x to result
|
|
}
|
|
return x1;
|
|
}
|
|
|
|
// "ancestor" appears before "to_be_removed" in the same Mutex waiter queue.
|
|
// The latter is going to be removed out of order, because of a timeout.
|
|
// Check whether "ancestor" has a skip field pointing to "to_be_removed",
|
|
// and fix it if it does.
|
|
static void FixSkip(PerThreadSynch *ancestor, PerThreadSynch *to_be_removed) {
|
|
if (ancestor->skip == to_be_removed) { // ancestor->skip left dangling
|
|
if (to_be_removed->skip != nullptr) {
|
|
ancestor->skip = to_be_removed->skip; // can skip past to_be_removed
|
|
} else if (ancestor->next != to_be_removed) { // they are not adjacent
|
|
ancestor->skip = ancestor->next; // can skip one past ancestor
|
|
} else {
|
|
ancestor->skip = nullptr; // can't skip at all
|
|
}
|
|
}
|
|
}
|
|
|
|
static void CondVarEnqueue(SynchWaitParams *waitp);
|
|
|
|
// Enqueue thread "waitp->thread" on a waiter queue.
|
|
// Called with mutex spinlock held if head != nullptr
|
|
// If head==nullptr and waitp->cv_word==nullptr, then Enqueue() is
|
|
// idempotent; it alters no state associated with the existing (empty)
|
|
// queue.
|
|
//
|
|
// If waitp->cv_word == nullptr, queue the thread at either the front or
|
|
// the end (according to its priority) of the circular mutex waiter queue whose
|
|
// head is "head", and return the new head. mu is the previous mutex state,
|
|
// which contains the reader count (perhaps adjusted for the operation in
|
|
// progress) if the list was empty and a read lock held, and the holder hint if
|
|
// the list was empty and a write lock held. (flags & kMuIsCond) indicates
|
|
// whether this thread was transferred from a CondVar or is waiting for a
|
|
// non-trivial condition. In this case, Enqueue() never returns nullptr
|
|
//
|
|
// If waitp->cv_word != nullptr, CondVarEnqueue() is called, and "head" is
|
|
// returned. This mechanism is used by CondVar to queue a thread on the
|
|
// condition variable queue instead of the mutex queue in implementing Wait().
|
|
// In this case, Enqueue() can return nullptr (if head==nullptr).
|
|
static PerThreadSynch *Enqueue(PerThreadSynch *head,
|
|
SynchWaitParams *waitp, intptr_t mu, int flags) {
|
|
// If we have been given a cv_word, call CondVarEnqueue() and return
|
|
// the previous head of the Mutex waiter queue.
|
|
if (waitp->cv_word != nullptr) {
|
|
CondVarEnqueue(waitp);
|
|
return head;
|
|
}
|
|
|
|
PerThreadSynch *s = waitp->thread;
|
|
ABSL_RAW_CHECK(
|
|
s->waitp == nullptr || // normal case
|
|
s->waitp == waitp || // Fer()---transfer from condition variable
|
|
s->suppress_fatal_errors,
|
|
"detected illegal recursion into Mutex code");
|
|
s->waitp = waitp;
|
|
s->skip = nullptr; // maintain skip invariant (see above)
|
|
s->may_skip = true; // always true on entering queue
|
|
s->wake = false; // not being woken
|
|
s->cond_waiter = ((flags & kMuIsCond) != 0);
|
|
if (head == nullptr) { // s is the only waiter
|
|
s->next = s; // it's the only entry in the cycle
|
|
s->readers = mu; // reader count is from mu word
|
|
s->maybe_unlocking = false; // no one is searching an empty list
|
|
head = s; // s is new head
|
|
} else {
|
|
PerThreadSynch *enqueue_after = nullptr; // we'll put s after this element
|
|
#ifdef ABSL_HAVE_PTHREAD_GETSCHEDPARAM
|
|
int64_t now_cycles = base_internal::CycleClock::Now();
|
|
if (s->next_priority_read_cycles < now_cycles) {
|
|
// Every so often, update our idea of the thread's priority.
|
|
// pthread_getschedparam() is 5% of the block/wakeup time;
|
|
// base_internal::CycleClock::Now() is 0.5%.
|
|
int policy;
|
|
struct sched_param param;
|
|
pthread_getschedparam(pthread_self(), &policy, ¶m);
|
|
s->priority = param.sched_priority;
|
|
s->next_priority_read_cycles =
|
|
now_cycles +
|
|
static_cast<int64_t>(base_internal::CycleClock::Frequency());
|
|
}
|
|
if (s->priority > head->priority) { // s's priority is above head's
|
|
// try to put s in priority-fifo order, or failing that at the front.
|
|
if (!head->maybe_unlocking) {
|
|
// No unlocker can be scanning the queue, so we can insert between
|
|
// skip-chains, and within a skip-chain if it has the same condition as
|
|
// s. We insert in priority-fifo order, examining the end of every
|
|
// skip-chain, plus every element with the same condition as s.
|
|
PerThreadSynch *advance_to = head; // next value of enqueue_after
|
|
PerThreadSynch *cur; // successor of enqueue_after
|
|
do {
|
|
enqueue_after = advance_to;
|
|
cur = enqueue_after->next; // this advance ensures progress
|
|
advance_to = Skip(cur); // normally, advance to end of skip chain
|
|
// (side-effect: optimizes skip chain)
|
|
if (advance_to != cur && s->priority > advance_to->priority &&
|
|
MuSameCondition(s, cur)) {
|
|
// but this skip chain is not a singleton, s has higher priority
|
|
// than its tail and has the same condition as the chain,
|
|
// so we can insert within the skip-chain
|
|
advance_to = cur; // advance by just one
|
|
}
|
|
} while (s->priority <= advance_to->priority);
|
|
// termination guaranteed because s->priority > head->priority
|
|
// and head is the end of a skip chain
|
|
} else if (waitp->how == kExclusive &&
|
|
Condition::GuaranteedEqual(waitp->cond, nullptr)) {
|
|
// An unlocker could be scanning the queue, but we know it will recheck
|
|
// the queue front for writers that have no condition, which is what s
|
|
// is, so an insert at front is safe.
|
|
enqueue_after = head; // add after head, at front
|
|
}
|
|
}
|
|
#endif
|
|
if (enqueue_after != nullptr) {
|
|
s->next = enqueue_after->next;
|
|
enqueue_after->next = s;
|
|
|
|
// enqueue_after can be: head, Skip(...), or cur.
|
|
// The first two imply enqueue_after->skip == nullptr, and
|
|
// the last is used only if MuSameCondition(s, cur).
|
|
// We require this because clearing enqueue_after->skip
|
|
// is impossible; enqueue_after's predecessors might also
|
|
// incorrectly skip over s if we were to allow other
|
|
// insertion points.
|
|
ABSL_RAW_CHECK(
|
|
enqueue_after->skip == nullptr || MuSameCondition(enqueue_after, s),
|
|
"Mutex Enqueue failure");
|
|
|
|
if (enqueue_after != head && enqueue_after->may_skip &&
|
|
MuSameCondition(enqueue_after, enqueue_after->next)) {
|
|
// enqueue_after can skip to its new successor, s
|
|
enqueue_after->skip = enqueue_after->next;
|
|
}
|
|
if (MuSameCondition(s, s->next)) { // s->may_skip is known to be true
|
|
s->skip = s->next; // s may skip to its successor
|
|
}
|
|
} else { // enqueue not done any other way, so
|
|
// we're inserting s at the back
|
|
// s will become new head; copy data from head into it
|
|
s->next = head->next; // add s after head
|
|
head->next = s;
|
|
s->readers = head->readers; // reader count is from previous head
|
|
s->maybe_unlocking = head->maybe_unlocking; // same for unlock hint
|
|
if (head->may_skip && MuSameCondition(head, s)) {
|
|
// head now has successor; may skip
|
|
head->skip = s;
|
|
}
|
|
head = s; // s is new head
|
|
}
|
|
}
|
|
s->state.store(PerThreadSynch::kQueued, std::memory_order_relaxed);
|
|
return head;
|
|
}
|
|
|
|
// Dequeue the successor pw->next of thread pw from the Mutex waiter queue
|
|
// whose last element is head. The new head element is returned, or null
|
|
// if the list is made empty.
|
|
// Dequeue is called with both spinlock and Mutex held.
|
|
static PerThreadSynch *Dequeue(PerThreadSynch *head, PerThreadSynch *pw) {
|
|
PerThreadSynch *w = pw->next;
|
|
pw->next = w->next; // snip w out of list
|
|
if (head == w) { // we removed the head
|
|
head = (pw == w) ? nullptr : pw; // either emptied list, or pw is new head
|
|
} else if (pw != head && MuSameCondition(pw, pw->next)) {
|
|
// pw can skip to its new successor
|
|
if (pw->next->skip !=
|
|
nullptr) { // either skip to its successors skip target
|
|
pw->skip = pw->next->skip;
|
|
} else { // or to pw's successor
|
|
pw->skip = pw->next;
|
|
}
|
|
}
|
|
return head;
|
|
}
|
|
|
|
// Traverse the elements [ pw->next, h] of the circular list whose last element
|
|
// is head.
|
|
// Remove all elements with wake==true and place them in the
|
|
// singly-linked list wake_list in the order found. Assumes that
|
|
// there is only one such element if the element has how == kExclusive.
|
|
// Return the new head.
|
|
static PerThreadSynch *DequeueAllWakeable(PerThreadSynch *head,
|
|
PerThreadSynch *pw,
|
|
PerThreadSynch **wake_tail) {
|
|
PerThreadSynch *orig_h = head;
|
|
PerThreadSynch *w = pw->next;
|
|
bool skipped = false;
|
|
do {
|
|
if (w->wake) { // remove this element
|
|
ABSL_RAW_CHECK(pw->skip == nullptr, "bad skip in DequeueAllWakeable");
|
|
// we're removing pw's successor so either pw->skip is zero or we should
|
|
// already have removed pw since if pw->skip!=null, pw has the same
|
|
// condition as w.
|
|
head = Dequeue(head, pw);
|
|
w->next = *wake_tail; // keep list terminated
|
|
*wake_tail = w; // add w to wake_list;
|
|
wake_tail = &w->next; // next addition to end
|
|
if (w->waitp->how == kExclusive) { // wake at most 1 writer
|
|
break;
|
|
}
|
|
} else { // not waking this one; skip
|
|
pw = Skip(w); // skip as much as possible
|
|
skipped = true;
|
|
}
|
|
w = pw->next;
|
|
// We want to stop processing after we've considered the original head,
|
|
// orig_h. We can't test for w==orig_h in the loop because w may skip over
|
|
// it; we are guaranteed only that w's predecessor will not skip over
|
|
// orig_h. When we've considered orig_h, either we've processed it and
|
|
// removed it (so orig_h != head), or we considered it and skipped it (so
|
|
// skipped==true && pw == head because skipping from head always skips by
|
|
// just one, leaving pw pointing at head). So we want to
|
|
// continue the loop with the negation of that expression.
|
|
} while (orig_h == head && (pw != head || !skipped));
|
|
return head;
|
|
}
|
|
|
|
// Try to remove thread s from the list of waiters on this mutex.
|
|
// Does nothing if s is not on the waiter list.
|
|
void Mutex::TryRemove(PerThreadSynch *s) {
|
|
intptr_t v = mu_.load(std::memory_order_relaxed);
|
|
// acquire spinlock & lock
|
|
if ((v & (kMuWait | kMuSpin | kMuWriter | kMuReader)) == kMuWait &&
|
|
mu_.compare_exchange_strong(v, v | kMuSpin | kMuWriter,
|
|
std::memory_order_acquire,
|
|
std::memory_order_relaxed)) {
|
|
PerThreadSynch *h = GetPerThreadSynch(v);
|
|
if (h != nullptr) {
|
|
PerThreadSynch *pw = h; // pw is w's predecessor
|
|
PerThreadSynch *w;
|
|
if ((w = pw->next) != s) { // search for thread,
|
|
do { // processing at least one element
|
|
if (!MuSameCondition(s, w)) { // seeking different condition
|
|
pw = Skip(w); // so skip all that won't match
|
|
// we don't have to worry about dangling skip fields
|
|
// in the threads we skipped; none can point to s
|
|
// because their condition differs from s
|
|
} else { // seeking same condition
|
|
FixSkip(w, s); // fix up any skip pointer from w to s
|
|
pw = w;
|
|
}
|
|
// don't search further if we found the thread, or we're about to
|
|
// process the first thread again.
|
|
} while ((w = pw->next) != s && pw != h);
|
|
}
|
|
if (w == s) { // found thread; remove it
|
|
// pw->skip may be non-zero here; the loop above ensured that
|
|
// no ancestor of s can skip to s, so removal is safe anyway.
|
|
h = Dequeue(h, pw);
|
|
s->next = nullptr;
|
|
s->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
|
|
}
|
|
}
|
|
intptr_t nv;
|
|
do { // release spinlock and lock
|
|
v = mu_.load(std::memory_order_relaxed);
|
|
nv = v & (kMuDesig | kMuEvent);
|
|
if (h != nullptr) {
|
|
nv |= kMuWait | reinterpret_cast<intptr_t>(h);
|
|
h->readers = 0; // we hold writer lock
|
|
h->maybe_unlocking = false; // finished unlocking
|
|
}
|
|
} while (!mu_.compare_exchange_weak(v, nv,
|
|
std::memory_order_release,
|
|
std::memory_order_relaxed));
|
|
}
|
|
}
|
|
|
|
// Wait until thread "s", which must be the current thread, is removed from the
|
|
// this mutex's waiter queue. If "s->waitp->timeout" has a timeout, wake up
|
|
// if the wait extends past the absolute time specified, even if "s" is still
|
|
// on the mutex queue. In this case, remove "s" from the queue and return
|
|
// true, otherwise return false.
|
|
void Mutex::Block(PerThreadSynch *s) {
|
|
while (s->state.load(std::memory_order_acquire) == PerThreadSynch::kQueued) {
|
|
if (!DecrementSynchSem(this, s, s->waitp->timeout)) {
|
|
// After a timeout, we go into a spin loop until we remove ourselves
|
|
// from the queue, or someone else removes us. We can't be sure to be
|
|
// able to remove ourselves in a single lock acquisition because this
|
|
// mutex may be held, and the holder has the right to read the centre
|
|
// of the waiter queue without holding the spinlock.
|
|
this->TryRemove(s);
|
|
int c = 0;
|
|
while (s->next != nullptr) {
|
|
c = Delay(c, GENTLE);
|
|
this->TryRemove(s);
|
|
}
|
|
if (kDebugMode) {
|
|
// This ensures that we test the case that TryRemove() is called when s
|
|
// is not on the queue.
|
|
this->TryRemove(s);
|
|
}
|
|
s->waitp->timeout = KernelTimeout::Never(); // timeout is satisfied
|
|
s->waitp->cond = nullptr; // condition no longer relevant for wakeups
|
|
}
|
|
}
|
|
ABSL_RAW_CHECK(s->waitp != nullptr || s->suppress_fatal_errors,
|
|
"detected illegal recursion in Mutex code");
|
|
s->waitp = nullptr;
|
|
}
|
|
|
|
// Wake thread w, and return the next thread in the list.
|
|
PerThreadSynch *Mutex::Wakeup(PerThreadSynch *w) {
|
|
PerThreadSynch *next = w->next;
|
|
w->next = nullptr;
|
|
w->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
|
|
IncrementSynchSem(this, w);
|
|
|
|
return next;
|
|
}
|
|
|
|
static GraphId GetGraphIdLocked(Mutex *mu)
|
|
EXCLUSIVE_LOCKS_REQUIRED(deadlock_graph_mu) {
|
|
if (!deadlock_graph) { // (re)create the deadlock graph.
|
|
deadlock_graph =
|
|
new (base_internal::LowLevelAlloc::Alloc(sizeof(*deadlock_graph)))
|
|
GraphCycles;
|
|
}
|
|
return deadlock_graph->GetId(mu);
|
|
}
|
|
|
|
static GraphId GetGraphId(Mutex *mu) LOCKS_EXCLUDED(deadlock_graph_mu) {
|
|
deadlock_graph_mu.Lock();
|
|
GraphId id = GetGraphIdLocked(mu);
|
|
deadlock_graph_mu.Unlock();
|
|
return id;
|
|
}
|
|
|
|
// Record a lock acquisition. This is used in debug mode for deadlock
|
|
// detection. The held_locks pointer points to the relevant data
|
|
// structure for each case.
|
|
static void LockEnter(Mutex* mu, GraphId id, SynchLocksHeld *held_locks) {
|
|
int n = held_locks->n;
|
|
int i = 0;
|
|
while (i != n && held_locks->locks[i].id != id) {
|
|
i++;
|
|
}
|
|
if (i == n) {
|
|
if (n == ABSL_ARRAYSIZE(held_locks->locks)) {
|
|
held_locks->overflow = true; // lost some data
|
|
} else { // we have room for lock
|
|
held_locks->locks[i].mu = mu;
|
|
held_locks->locks[i].count = 1;
|
|
held_locks->locks[i].id = id;
|
|
held_locks->n = n + 1;
|
|
}
|
|
} else {
|
|
held_locks->locks[i].count++;
|
|
}
|
|
}
|
|
|
|
// Record a lock release. Each call to LockEnter(mu, id, x) should be
|
|
// eventually followed by a call to LockLeave(mu, id, x) by the same thread.
|
|
// It does not process the event if is not needed when deadlock detection is
|
|
// disabled.
|
|
static void LockLeave(Mutex* mu, GraphId id, SynchLocksHeld *held_locks) {
|
|
int n = held_locks->n;
|
|
int i = 0;
|
|
while (i != n && held_locks->locks[i].id != id) {
|
|
i++;
|
|
}
|
|
if (i == n) {
|
|
if (!held_locks->overflow) {
|
|
// The deadlock id may have been reassigned after ForgetDeadlockInfo,
|
|
// but in that case mu should still be present.
|
|
i = 0;
|
|
while (i != n && held_locks->locks[i].mu != mu) {
|
|
i++;
|
|
}
|
|
if (i == n) { // mu missing means releasing unheld lock
|
|
SynchEvent *mu_events = GetSynchEvent(mu);
|
|
ABSL_RAW_LOG(FATAL,
|
|
"thread releasing lock it does not hold: %p %s; "
|
|
,
|
|
static_cast<void *>(mu),
|
|
mu_events == nullptr ? "" : mu_events->name);
|
|
}
|
|
}
|
|
} else if (held_locks->locks[i].count == 1) {
|
|
held_locks->n = n - 1;
|
|
held_locks->locks[i] = held_locks->locks[n - 1];
|
|
held_locks->locks[n - 1].id = InvalidGraphId();
|
|
held_locks->locks[n - 1].mu =
|
|
nullptr; // clear mu to please the leak detector.
|
|
} else {
|
|
assert(held_locks->locks[i].count > 0);
|
|
held_locks->locks[i].count--;
|
|
}
|
|
}
|
|
|
|
// Call LockEnter() if in debug mode and deadlock detection is enabled.
|
|
static inline void DebugOnlyLockEnter(Mutex *mu) {
|
|
if (kDebugMode) {
|
|
if (synch_deadlock_detection.load(std::memory_order_acquire) !=
|
|
OnDeadlockCycle::kIgnore) {
|
|
LockEnter(mu, GetGraphId(mu), Synch_GetAllLocks());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Call LockEnter() if in debug mode and deadlock detection is enabled.
|
|
static inline void DebugOnlyLockEnter(Mutex *mu, GraphId id) {
|
|
if (kDebugMode) {
|
|
if (synch_deadlock_detection.load(std::memory_order_acquire) !=
|
|
OnDeadlockCycle::kIgnore) {
|
|
LockEnter(mu, id, Synch_GetAllLocks());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Call LockLeave() if in debug mode and deadlock detection is enabled.
|
|
static inline void DebugOnlyLockLeave(Mutex *mu) {
|
|
if (kDebugMode) {
|
|
if (synch_deadlock_detection.load(std::memory_order_acquire) !=
|
|
OnDeadlockCycle::kIgnore) {
|
|
LockLeave(mu, GetGraphId(mu), Synch_GetAllLocks());
|
|
}
|
|
}
|
|
}
|
|
|
|
static char *StackString(void **pcs, int n, char *buf, int maxlen,
|
|
bool symbolize) {
|
|
static const int kSymLen = 200;
|
|
char sym[kSymLen];
|
|
int len = 0;
|
|
for (int i = 0; i != n; i++) {
|
|
if (symbolize) {
|
|
if (!symbolizer(pcs[i], sym, kSymLen)) {
|
|
sym[0] = '\0';
|
|
}
|
|
snprintf(buf + len, maxlen - len, "%s\t@ %p %s\n",
|
|
(i == 0 ? "\n" : ""),
|
|
pcs[i], sym);
|
|
} else {
|
|
snprintf(buf + len, maxlen - len, " %p", pcs[i]);
|
|
}
|
|
len += strlen(&buf[len]);
|
|
}
|
|
return buf;
|
|
}
|
|
|
|
static char *CurrentStackString(char *buf, int maxlen, bool symbolize) {
|
|
void *pcs[40];
|
|
return StackString(pcs, absl::GetStackTrace(pcs, ABSL_ARRAYSIZE(pcs), 2), buf,
|
|
maxlen, symbolize);
|
|
}
|
|
|
|
namespace {
|
|
enum { kMaxDeadlockPathLen = 10 }; // maximum length of a deadlock cycle;
|
|
// a path this long would be remarkable
|
|
// Buffers required to report a deadlock.
|
|
// We do not allocate them on stack to avoid large stack frame.
|
|
struct DeadlockReportBuffers {
|
|
char buf[6100];
|
|
GraphId path[kMaxDeadlockPathLen];
|
|
};
|
|
|
|
struct ScopedDeadlockReportBuffers {
|
|
ScopedDeadlockReportBuffers() {
|
|
b = reinterpret_cast<DeadlockReportBuffers *>(
|
|
base_internal::LowLevelAlloc::Alloc(sizeof(*b)));
|
|
}
|
|
~ScopedDeadlockReportBuffers() { base_internal::LowLevelAlloc::Free(b); }
|
|
DeadlockReportBuffers *b;
|
|
};
|
|
|
|
// Helper to pass to GraphCycles::UpdateStackTrace.
|
|
int GetStack(void** stack, int max_depth) {
|
|
return absl::GetStackTrace(stack, max_depth, 3);
|
|
}
|
|
} // anonymous namespace
|
|
|
|
// Called in debug mode when a thread is about to acquire a lock in a way that
|
|
// may block.
|
|
static GraphId DeadlockCheck(Mutex *mu) {
|
|
if (synch_deadlock_detection.load(std::memory_order_acquire) ==
|
|
OnDeadlockCycle::kIgnore) {
|
|
return InvalidGraphId();
|
|
}
|
|
|
|
SynchLocksHeld *all_locks = Synch_GetAllLocks();
|
|
|
|
absl::base_internal::SpinLockHolder lock(&deadlock_graph_mu);
|
|
const GraphId mu_id = GetGraphIdLocked(mu);
|
|
|
|
if (all_locks->n == 0) {
|
|
// There are no other locks held. Return now so that we don't need to
|
|
// call GetSynchEvent(). This way we do not record the stack trace
|
|
// for this Mutex. It's ok, since if this Mutex is involved in a deadlock,
|
|
// it can't always be the first lock acquired by a thread.
|
|
return mu_id;
|
|
}
|
|
|
|
// We prefer to keep stack traces that show a thread holding and acquiring
|
|
// as many locks as possible. This increases the chances that a given edge
|
|
// in the acquires-before graph will be represented in the stack traces
|
|
// recorded for the locks.
|
|
deadlock_graph->UpdateStackTrace(mu_id, all_locks->n + 1, GetStack);
|
|
|
|
// For each other mutex already held by this thread:
|
|
for (int i = 0; i != all_locks->n; i++) {
|
|
const GraphId other_node_id = all_locks->locks[i].id;
|
|
const Mutex *other =
|
|
static_cast<const Mutex *>(deadlock_graph->Ptr(other_node_id));
|
|
if (other == nullptr) {
|
|
// Ignore stale lock
|
|
continue;
|
|
}
|
|
|
|
// Add the acquired-before edge to the graph.
|
|
if (!deadlock_graph->InsertEdge(other_node_id, mu_id)) {
|
|
ScopedDeadlockReportBuffers scoped_buffers;
|
|
DeadlockReportBuffers *b = scoped_buffers.b;
|
|
static int number_of_reported_deadlocks = 0;
|
|
number_of_reported_deadlocks++;
|
|
// Symbolize only 2 first deadlock report to avoid huge slowdowns.
|
|
bool symbolize = number_of_reported_deadlocks <= 2;
|
|
ABSL_RAW_LOG(ERROR, "Potential Mutex deadlock: %s",
|
|
CurrentStackString(b->buf, sizeof (b->buf), symbolize));
|
|
int len = 0;
|
|
for (int j = 0; j != all_locks->n; j++) {
|
|
void* pr = deadlock_graph->Ptr(all_locks->locks[j].id);
|
|
if (pr != nullptr) {
|
|
snprintf(b->buf + len, sizeof (b->buf) - len, " %p", pr);
|
|
len += static_cast<int>(strlen(&b->buf[len]));
|
|
}
|
|
}
|
|
ABSL_RAW_LOG(ERROR, "Acquiring %p Mutexes held: %s",
|
|
static_cast<void *>(mu), b->buf);
|
|
ABSL_RAW_LOG(ERROR, "Cycle: ");
|
|
int path_len = deadlock_graph->FindPath(
|
|
mu_id, other_node_id, ABSL_ARRAYSIZE(b->path), b->path);
|
|
for (int j = 0; j != path_len; j++) {
|
|
GraphId id = b->path[j];
|
|
Mutex *path_mu = static_cast<Mutex *>(deadlock_graph->Ptr(id));
|
|
if (path_mu == nullptr) continue;
|
|
void** stack;
|
|
int depth = deadlock_graph->GetStackTrace(id, &stack);
|
|
snprintf(b->buf, sizeof(b->buf),
|
|
"mutex@%p stack: ", static_cast<void *>(path_mu));
|
|
StackString(stack, depth, b->buf + strlen(b->buf),
|
|
static_cast<int>(sizeof(b->buf) - strlen(b->buf)),
|
|
symbolize);
|
|
ABSL_RAW_LOG(ERROR, "%s", b->buf);
|
|
}
|
|
if (synch_deadlock_detection.load(std::memory_order_acquire) ==
|
|
OnDeadlockCycle::kAbort) {
|
|
deadlock_graph_mu.Unlock(); // avoid deadlock in fatal sighandler
|
|
ABSL_RAW_LOG(FATAL, "dying due to potential deadlock");
|
|
return mu_id;
|
|
}
|
|
break; // report at most one potential deadlock per acquisition
|
|
}
|
|
}
|
|
|
|
return mu_id;
|
|
}
|
|
|
|
// Invoke DeadlockCheck() iff we're in debug mode and
|
|
// deadlock checking has been enabled.
|
|
static inline GraphId DebugOnlyDeadlockCheck(Mutex *mu) {
|
|
if (kDebugMode && synch_deadlock_detection.load(std::memory_order_acquire) !=
|
|
OnDeadlockCycle::kIgnore) {
|
|
return DeadlockCheck(mu);
|
|
} else {
|
|
return InvalidGraphId();
|
|
}
|
|
}
|
|
|
|
void Mutex::ForgetDeadlockInfo() {
|
|
if (kDebugMode && synch_deadlock_detection.load(std::memory_order_acquire) !=
|
|
OnDeadlockCycle::kIgnore) {
|
|
deadlock_graph_mu.Lock();
|
|
if (deadlock_graph != nullptr) {
|
|
deadlock_graph->RemoveNode(this);
|
|
}
|
|
deadlock_graph_mu.Unlock();
|
|
}
|
|
}
|
|
|
|
void Mutex::AssertNotHeld() const {
|
|
// We have the data to allow this check only if in debug mode and deadlock
|
|
// detection is enabled.
|
|
if (kDebugMode &&
|
|
(mu_.load(std::memory_order_relaxed) & (kMuWriter | kMuReader)) != 0 &&
|
|
synch_deadlock_detection.load(std::memory_order_acquire) !=
|
|
OnDeadlockCycle::kIgnore) {
|
|
GraphId id = GetGraphId(const_cast<Mutex *>(this));
|
|
SynchLocksHeld *locks = Synch_GetAllLocks();
|
|
for (int i = 0; i != locks->n; i++) {
|
|
if (locks->locks[i].id == id) {
|
|
SynchEvent *mu_events = GetSynchEvent(this);
|
|
ABSL_RAW_LOG(FATAL, "thread should not hold mutex %p %s",
|
|
static_cast<const void *>(this),
|
|
(mu_events == nullptr ? "" : mu_events->name));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Attempt to acquire *mu, and return whether successful. The implementation
|
|
// may spin for a short while if the lock cannot be acquired immediately.
|
|
static bool TryAcquireWithSpinning(std::atomic<intptr_t>* mu) {
|
|
int c = mutex_globals.spinloop_iterations;
|
|
int result = -1; // result of operation: 0=false, 1=true, -1=unknown
|
|
|
|
do { // do/while somewhat faster on AMD
|
|
intptr_t v = mu->load(std::memory_order_relaxed);
|
|
if ((v & (kMuReader|kMuEvent)) != 0) { // a reader or tracing -> give up
|
|
result = 0;
|
|
} else if (((v & kMuWriter) == 0) && // no holder -> try to acquire
|
|
mu->compare_exchange_strong(v, kMuWriter | v,
|
|
std::memory_order_acquire,
|
|
std::memory_order_relaxed)) {
|
|
result = 1;
|
|
}
|
|
} while (result == -1 && --c > 0);
|
|
return result == 1;
|
|
}
|
|
|
|
ABSL_XRAY_LOG_ARGS(1) void Mutex::Lock() {
|
|
ABSL_TSAN_MUTEX_PRE_LOCK(this, 0);
|
|
GraphId id = DebugOnlyDeadlockCheck(this);
|
|
intptr_t v = mu_.load(std::memory_order_relaxed);
|
|
// try fast acquire, then spin loop
|
|
if ((v & (kMuWriter | kMuReader | kMuEvent)) != 0 ||
|
|
!mu_.compare_exchange_strong(v, kMuWriter | v,
|
|
std::memory_order_acquire,
|
|
std::memory_order_relaxed)) {
|
|
// try spin acquire, then slow loop
|
|
if (!TryAcquireWithSpinning(&this->mu_)) {
|
|
this->LockSlow(kExclusive, nullptr, 0);
|
|
}
|
|
}
|
|
DebugOnlyLockEnter(this, id);
|
|
ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0);
|
|
}
|
|
|
|
ABSL_XRAY_LOG_ARGS(1) void Mutex::ReaderLock() {
|
|
ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock);
|
|
GraphId id = DebugOnlyDeadlockCheck(this);
|
|
intptr_t v = mu_.load(std::memory_order_relaxed);
|
|
// try fast acquire, then slow loop
|
|
if ((v & (kMuWriter | kMuWait | kMuEvent)) != 0 ||
|
|
!mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne,
|
|
std::memory_order_acquire,
|
|
std::memory_order_relaxed)) {
|
|
this->LockSlow(kShared, nullptr, 0);
|
|
}
|
|
DebugOnlyLockEnter(this, id);
|
|
ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0);
|
|
}
|
|
|
|
void Mutex::LockWhen(const Condition &cond) {
|
|
ABSL_TSAN_MUTEX_PRE_LOCK(this, 0);
|
|
GraphId id = DebugOnlyDeadlockCheck(this);
|
|
this->LockSlow(kExclusive, &cond, 0);
|
|
DebugOnlyLockEnter(this, id);
|
|
ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0);
|
|
}
|
|
|
|
bool Mutex::LockWhenWithTimeout(const Condition &cond, absl::Duration timeout) {
|
|
return LockWhenWithDeadline(cond, DeadlineFromTimeout(timeout));
|
|
}
|
|
|
|
bool Mutex::LockWhenWithDeadline(const Condition &cond, absl::Time deadline) {
|
|
ABSL_TSAN_MUTEX_PRE_LOCK(this, 0);
|
|
GraphId id = DebugOnlyDeadlockCheck(this);
|
|
bool res = LockSlowWithDeadline(kExclusive, &cond,
|
|
KernelTimeout(deadline), 0);
|
|
DebugOnlyLockEnter(this, id);
|
|
ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0);
|
|
return res;
|
|
}
|
|
|
|
void Mutex::ReaderLockWhen(const Condition &cond) {
|
|
ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock);
|
|
GraphId id = DebugOnlyDeadlockCheck(this);
|
|
this->LockSlow(kShared, &cond, 0);
|
|
DebugOnlyLockEnter(this, id);
|
|
ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0);
|
|
}
|
|
|
|
bool Mutex::ReaderLockWhenWithTimeout(const Condition &cond,
|
|
absl::Duration timeout) {
|
|
return ReaderLockWhenWithDeadline(cond, DeadlineFromTimeout(timeout));
|
|
}
|
|
|
|
bool Mutex::ReaderLockWhenWithDeadline(const Condition &cond,
|
|
absl::Time deadline) {
|
|
ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock);
|
|
GraphId id = DebugOnlyDeadlockCheck(this);
|
|
bool res = LockSlowWithDeadline(kShared, &cond, KernelTimeout(deadline), 0);
|
|
DebugOnlyLockEnter(this, id);
|
|
ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0);
|
|
return res;
|
|
}
|
|
|
|
void Mutex::Await(const Condition &cond) {
|
|
if (cond.Eval()) { // condition already true; nothing to do
|
|
if (kDebugMode) {
|
|
this->AssertReaderHeld();
|
|
}
|
|
} else { // normal case
|
|
ABSL_RAW_CHECK(this->AwaitCommon(cond, KernelTimeout::Never()),
|
|
"condition untrue on return from Await");
|
|
}
|
|
}
|
|
|
|
bool Mutex::AwaitWithTimeout(const Condition &cond, absl::Duration timeout) {
|
|
return AwaitWithDeadline(cond, DeadlineFromTimeout(timeout));
|
|
}
|
|
|
|
bool Mutex::AwaitWithDeadline(const Condition &cond, absl::Time deadline) {
|
|
if (cond.Eval()) { // condition already true; nothing to do
|
|
if (kDebugMode) {
|
|
this->AssertReaderHeld();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
KernelTimeout t{deadline};
|
|
bool res = this->AwaitCommon(cond, t);
|
|
ABSL_RAW_CHECK(res || t.has_timeout(),
|
|
"condition untrue on return from Await");
|
|
return res;
|
|
}
|
|
|
|
bool Mutex::AwaitCommon(const Condition &cond, KernelTimeout t) {
|
|
this->AssertReaderHeld();
|
|
MuHow how =
|
|
(mu_.load(std::memory_order_relaxed) & kMuWriter) ? kExclusive : kShared;
|
|
ABSL_TSAN_MUTEX_PRE_UNLOCK(this, TsanFlags(how));
|
|
SynchWaitParams waitp(
|
|
how, &cond, t, nullptr /*no cvmu*/, Synch_GetPerThreadAnnotated(this),
|
|
nullptr /*no cv_word*/);
|
|
int flags = kMuHasBlocked;
|
|
if (!Condition::GuaranteedEqual(&cond, nullptr)) {
|
|
flags |= kMuIsCond;
|
|
}
|
|
this->UnlockSlow(&waitp);
|
|
this->Block(waitp.thread);
|
|
ABSL_TSAN_MUTEX_POST_UNLOCK(this, TsanFlags(how));
|
|
ABSL_TSAN_MUTEX_PRE_LOCK(this, TsanFlags(how));
|
|
this->LockSlowLoop(&waitp, flags);
|
|
bool res = waitp.cond != nullptr || // => cond known true from LockSlowLoop
|
|
cond.Eval();
|
|
ABSL_TSAN_MUTEX_POST_LOCK(this, TsanFlags(how), 0);
|
|
return res;
|
|
}
|
|
|
|
ABSL_XRAY_LOG_ARGS(1) bool Mutex::TryLock() {
|
|
ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_try_lock);
|
|
intptr_t v = mu_.load(std::memory_order_relaxed);
|
|
if ((v & (kMuWriter | kMuReader | kMuEvent)) == 0 && // try fast acquire
|
|
mu_.compare_exchange_strong(v, kMuWriter | v,
|
|
std::memory_order_acquire,
|
|
std::memory_order_relaxed)) {
|
|
DebugOnlyLockEnter(this);
|
|
ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_try_lock, 0);
|
|
return true;
|
|
}
|
|
if ((v & kMuEvent) != 0) { // we're recording events
|
|
if ((v & kExclusive->slow_need_zero) == 0 && // try fast acquire
|
|
mu_.compare_exchange_strong(
|
|
v, (kExclusive->fast_or | v) + kExclusive->fast_add,
|
|
std::memory_order_acquire, std::memory_order_relaxed)) {
|
|
DebugOnlyLockEnter(this);
|
|
PostSynchEvent(this, SYNCH_EV_TRYLOCK_SUCCESS);
|
|
ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_try_lock, 0);
|
|
return true;
|
|
} else {
|
|
PostSynchEvent(this, SYNCH_EV_TRYLOCK_FAILED);
|
|
}
|
|
}
|
|
ABSL_TSAN_MUTEX_POST_LOCK(
|
|
this, __tsan_mutex_try_lock | __tsan_mutex_try_lock_failed, 0);
|
|
return false;
|
|
}
|
|
|
|
ABSL_XRAY_LOG_ARGS(1) bool Mutex::ReaderTryLock() {
|
|
ABSL_TSAN_MUTEX_PRE_LOCK(this,
|
|
__tsan_mutex_read_lock | __tsan_mutex_try_lock);
|
|
intptr_t v = mu_.load(std::memory_order_relaxed);
|
|
// The while-loops (here and below) iterate only if the mutex word keeps
|
|
// changing (typically because the reader count changes) under the CAS. We
|
|
// limit the number of attempts to avoid having to think about livelock.
|
|
int loop_limit = 5;
|
|
while ((v & (kMuWriter|kMuWait|kMuEvent)) == 0 && loop_limit != 0) {
|
|
if (mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne,
|
|
std::memory_order_acquire,
|
|
std::memory_order_relaxed)) {
|
|
DebugOnlyLockEnter(this);
|
|
ABSL_TSAN_MUTEX_POST_LOCK(
|
|
this, __tsan_mutex_read_lock | __tsan_mutex_try_lock, 0);
|
|
return true;
|
|
}
|
|
loop_limit--;
|
|
v = mu_.load(std::memory_order_relaxed);
|
|
}
|
|
if ((v & kMuEvent) != 0) { // we're recording events
|
|
loop_limit = 5;
|
|
while ((v & kShared->slow_need_zero) == 0 && loop_limit != 0) {
|
|
if (mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne,
|
|
std::memory_order_acquire,
|
|
std::memory_order_relaxed)) {
|
|
DebugOnlyLockEnter(this);
|
|
PostSynchEvent(this, SYNCH_EV_READERTRYLOCK_SUCCESS);
|
|
ABSL_TSAN_MUTEX_POST_LOCK(
|
|
this, __tsan_mutex_read_lock | __tsan_mutex_try_lock, 0);
|
|
return true;
|
|
}
|
|
loop_limit--;
|
|
v = mu_.load(std::memory_order_relaxed);
|
|
}
|
|
if ((v & kMuEvent) != 0) {
|
|
PostSynchEvent(this, SYNCH_EV_READERTRYLOCK_FAILED);
|
|
}
|
|
}
|
|
ABSL_TSAN_MUTEX_POST_LOCK(this,
|
|
__tsan_mutex_read_lock | __tsan_mutex_try_lock |
|
|
__tsan_mutex_try_lock_failed,
|
|
0);
|
|
return false;
|
|
}
|
|
|
|
ABSL_XRAY_LOG_ARGS(1) void Mutex::Unlock() {
|
|
ABSL_TSAN_MUTEX_PRE_UNLOCK(this, 0);
|
|
DebugOnlyLockLeave(this);
|
|
intptr_t v = mu_.load(std::memory_order_relaxed);
|
|
|
|
if (kDebugMode && ((v & (kMuWriter | kMuReader)) != kMuWriter)) {
|
|
ABSL_RAW_LOG(FATAL, "Mutex unlocked when destroyed or not locked: v=0x%x",
|
|
static_cast<unsigned>(v));
|
|
}
|
|
|
|
// should_try_cas is whether we'll try a compare-and-swap immediately.
|
|
// NOTE: optimized out when kDebugMode is false.
|
|
bool should_try_cas = ((v & (kMuEvent | kMuWriter)) == kMuWriter &&
|
|
(v & (kMuWait | kMuDesig)) != kMuWait);
|
|
// But, we can use an alternate computation of it, that compilers
|
|
// currently don't find on their own. When that changes, this function
|
|
// can be simplified.
|
|
intptr_t x = (v ^ (kMuWriter | kMuWait)) & (kMuWriter | kMuEvent);
|
|
intptr_t y = (v ^ (kMuWriter | kMuWait)) & (kMuWait | kMuDesig);
|
|
// Claim: "x == 0 && y > 0" is equal to should_try_cas.
|
|
// Also, because kMuWriter and kMuEvent exceed kMuDesig and kMuWait,
|
|
// all possible non-zero values for x exceed all possible values for y.
|
|
// Therefore, (x == 0 && y > 0) == (x < y).
|
|
if (kDebugMode && should_try_cas != (x < y)) {
|
|
// We would usually use PRIdPTR here, but is not correctly implemented
|
|
// within the android toolchain.
|
|
ABSL_RAW_LOG(FATAL, "internal logic error %llx %llx %llx\n",
|
|
static_cast<long long>(v), static_cast<long long>(x),
|
|
static_cast<long long>(y));
|
|
}
|
|
if (x < y &&
|
|
mu_.compare_exchange_strong(v, v & ~(kMuWrWait | kMuWriter),
|
|
std::memory_order_release,
|
|
std::memory_order_relaxed)) {
|
|
// fast writer release (writer with no waiters or with designated waker)
|
|
} else {
|
|
this->UnlockSlow(nullptr /*no waitp*/); // take slow path
|
|
}
|
|
ABSL_TSAN_MUTEX_POST_UNLOCK(this, 0);
|
|
}
|
|
|
|
// Requires v to represent a reader-locked state.
|
|
static bool ExactlyOneReader(intptr_t v) {
|
|
assert((v & (kMuWriter|kMuReader)) == kMuReader);
|
|
assert((v & kMuHigh) != 0);
|
|
// The more straightforward "(v & kMuHigh) == kMuOne" also works, but
|
|
// on some architectures the following generates slightly smaller code.
|
|
// It may be faster too.
|
|
constexpr intptr_t kMuMultipleWaitersMask = kMuHigh ^ kMuOne;
|
|
return (v & kMuMultipleWaitersMask) == 0;
|
|
}
|
|
|
|
ABSL_XRAY_LOG_ARGS(1) void Mutex::ReaderUnlock() {
|
|
ABSL_TSAN_MUTEX_PRE_UNLOCK(this, __tsan_mutex_read_lock);
|
|
DebugOnlyLockLeave(this);
|
|
intptr_t v = mu_.load(std::memory_order_relaxed);
|
|
assert((v & (kMuWriter|kMuReader)) == kMuReader);
|
|
if ((v & (kMuReader|kMuWait|kMuEvent)) == kMuReader) {
|
|
// fast reader release (reader with no waiters)
|
|
intptr_t clear = ExactlyOneReader(v) ? kMuReader|kMuOne : kMuOne;
|
|
if (mu_.compare_exchange_strong(v, v - clear,
|
|
std::memory_order_release,
|
|
std::memory_order_relaxed)) {
|
|
ABSL_TSAN_MUTEX_POST_UNLOCK(this, __tsan_mutex_read_lock);
|
|
return;
|
|
}
|
|
}
|
|
this->UnlockSlow(nullptr /*no waitp*/); // take slow path
|
|
ABSL_TSAN_MUTEX_POST_UNLOCK(this, __tsan_mutex_read_lock);
|
|
}
|
|
|
|
// The zap_desig_waker bitmask is used to clear the designated waker flag in
|
|
// the mutex if this thread has blocked, and therefore may be the designated
|
|
// waker.
|
|
static const intptr_t zap_desig_waker[] = {
|
|
~static_cast<intptr_t>(0), // not blocked
|
|
~static_cast<intptr_t>(
|
|
kMuDesig) // blocked; turn off the designated waker bit
|
|
};
|
|
|
|
// The ignore_waiting_writers bitmask is used to ignore the existence
|
|
// of waiting writers if a reader that has already blocked once
|
|
// wakes up.
|
|
static const intptr_t ignore_waiting_writers[] = {
|
|
~static_cast<intptr_t>(0), // not blocked
|
|
~static_cast<intptr_t>(
|
|
kMuWrWait) // blocked; pretend there are no waiting writers
|
|
};
|
|
|
|
// Internal version of LockWhen(). See LockSlowWithDeadline()
|
|
void Mutex::LockSlow(MuHow how, const Condition *cond, int flags) {
|
|
ABSL_RAW_CHECK(
|
|
this->LockSlowWithDeadline(how, cond, KernelTimeout::Never(), flags),
|
|
"condition untrue on return from LockSlow");
|
|
}
|
|
|
|
// Compute cond->Eval() and tell race detectors that we do it under mutex mu.
|
|
static inline bool EvalConditionAnnotated(const Condition *cond, Mutex *mu,
|
|
bool locking, Mutex::MuHow how) {
|
|
// Delicate annotation dance.
|
|
// We are currently inside of read/write lock/unlock operation.
|
|
// All memory accesses are ignored inside of mutex operations + for unlock
|
|
// operation tsan considers that we've already released the mutex.
|
|
bool res = false;
|
|
if (locking) {
|
|
// For lock we pretend that we have finished the operation,
|
|
// evaluate the predicate, then unlock the mutex and start locking it again
|
|
// to match the annotation at the end of outer lock operation.
|
|
// Note: we can't simply do POST_LOCK, Eval, PRE_LOCK, because then tsan
|
|
// will think the lock acquisition is recursive which will trigger
|
|
// deadlock detector.
|
|
ABSL_TSAN_MUTEX_POST_LOCK(mu, TsanFlags(how), 0);
|
|
res = cond->Eval();
|
|
ABSL_TSAN_MUTEX_PRE_UNLOCK(mu, TsanFlags(how));
|
|
ABSL_TSAN_MUTEX_POST_UNLOCK(mu, TsanFlags(how));
|
|
ABSL_TSAN_MUTEX_PRE_LOCK(mu, TsanFlags(how));
|
|
} else {
|
|
// Similarly, for unlock we pretend that we have unlocked the mutex,
|
|
// lock the mutex, evaluate the predicate, and start unlocking it again
|
|
// to match the annotation at the end of outer unlock operation.
|
|
ABSL_TSAN_MUTEX_POST_UNLOCK(mu, TsanFlags(how));
|
|
ABSL_TSAN_MUTEX_PRE_LOCK(mu, TsanFlags(how));
|
|
ABSL_TSAN_MUTEX_POST_LOCK(mu, TsanFlags(how), 0);
|
|
res = cond->Eval();
|
|
ABSL_TSAN_MUTEX_PRE_UNLOCK(mu, TsanFlags(how));
|
|
}
|
|
// Prevent unused param warnings in non-TSAN builds.
|
|
static_cast<void>(mu);
|
|
static_cast<void>(how);
|
|
return res;
|
|
}
|
|
|
|
// Compute cond->Eval() hiding it from race detectors.
|
|
// We are hiding it because inside of UnlockSlow we can evaluate a predicate
|
|
// that was just added by a concurrent Lock operation; Lock adds the predicate
|
|
// to the internal Mutex list without actually acquiring the Mutex
|
|
// (it only acquires the internal spinlock, which is rightfully invisible for
|
|
// tsan). As the result there is no tsan-visible synchronization between the
|
|
// addition and this thread. So if we would enable race detection here,
|
|
// it would race with the predicate initialization.
|
|
static inline bool EvalConditionIgnored(Mutex *mu, const Condition *cond) {
|
|
// Memory accesses are already ignored inside of lock/unlock operations,
|
|
// but synchronization operations are also ignored. When we evaluate the
|
|
// predicate we must ignore only memory accesses but not synchronization,
|
|
// because missed synchronization can lead to false reports later.
|
|
// So we "divert" (which un-ignores both memory accesses and synchronization)
|
|
// and then separately turn on ignores of memory accesses.
|
|
ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
|
|
ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN();
|
|
bool res = cond->Eval();
|
|
ANNOTATE_IGNORE_READS_AND_WRITES_END();
|
|
ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
|
|
static_cast<void>(mu); // Prevent unused param warning in non-TSAN builds.
|
|
return res;
|
|
}
|
|
|
|
// Internal equivalent of *LockWhenWithDeadline(), where
|
|
// "t" represents the absolute timeout; !t.has_timeout() means "forever".
|
|
// "how" is "kShared" (for ReaderLockWhen) or "kExclusive" (for LockWhen)
|
|
// In flags, bits are ored together:
|
|
// - kMuHasBlocked indicates that the client has already blocked on the call so
|
|
// the designated waker bit must be cleared and waiting writers should not
|
|
// obstruct this call
|
|
// - kMuIsCond indicates that this is a conditional acquire (condition variable,
|
|
// Await, LockWhen) so contention profiling should be suppressed.
|
|
bool Mutex::LockSlowWithDeadline(MuHow how, const Condition *cond,
|
|
KernelTimeout t, int flags) {
|
|
intptr_t v = mu_.load(std::memory_order_relaxed);
|
|
bool unlock = false;
|
|
if ((v & how->fast_need_zero) == 0 && // try fast acquire
|
|
mu_.compare_exchange_strong(
|
|
v, (how->fast_or | (v & zap_desig_waker[flags & kMuHasBlocked])) +
|
|
how->fast_add,
|
|
std::memory_order_acquire, std::memory_order_relaxed)) {
|
|
if (cond == nullptr || EvalConditionAnnotated(cond, this, true, how)) {
|
|
return true;
|
|
}
|
|
unlock = true;
|
|
}
|
|
SynchWaitParams waitp(
|
|
how, cond, t, nullptr /*no cvmu*/, Synch_GetPerThreadAnnotated(this),
|
|
nullptr /*no cv_word*/);
|
|
if (!Condition::GuaranteedEqual(cond, nullptr)) {
|
|
flags |= kMuIsCond;
|
|
}
|
|
if (unlock) {
|
|
this->UnlockSlow(&waitp);
|
|
this->Block(waitp.thread);
|
|
flags |= kMuHasBlocked;
|
|
}
|
|
this->LockSlowLoop(&waitp, flags);
|
|
return waitp.cond != nullptr || // => cond known true from LockSlowLoop
|
|
cond == nullptr || EvalConditionAnnotated(cond, this, true, how);
|
|
}
|
|
|
|
// RAW_CHECK_FMT() takes a condition, a printf-style format std::string, and
|
|
// the printf-style argument list. The format std::string must be a literal.
|
|
// Arguments after the first are not evaluated unless the condition is true.
|
|
#define RAW_CHECK_FMT(cond, ...) \
|
|
do { \
|
|
if (ABSL_PREDICT_FALSE(!(cond))) { \
|
|
ABSL_RAW_LOG(FATAL, "Check " #cond " failed: " __VA_ARGS__); \
|
|
} \
|
|
} while (0)
|
|
|
|
static void CheckForMutexCorruption(intptr_t v, const char* label) {
|
|
// Test for either of two situations that should not occur in v:
|
|
// kMuWriter and kMuReader
|
|
// kMuWrWait and !kMuWait
|
|
const intptr_t w = v ^ kMuWait;
|
|
// By flipping that bit, we can now test for:
|
|
// kMuWriter and kMuReader in w
|
|
// kMuWrWait and kMuWait in w
|
|
// We've chosen these two pairs of values to be so that they will overlap,
|
|
// respectively, when the word is left shifted by three. This allows us to
|
|
// save a branch in the common (correct) case of them not being coincident.
|
|
static_assert(kMuReader << 3 == kMuWriter, "must match");
|
|
static_assert(kMuWait << 3 == kMuWrWait, "must match");
|
|
if (ABSL_PREDICT_TRUE((w & (w << 3) & (kMuWriter | kMuWrWait)) == 0)) return;
|
|
RAW_CHECK_FMT((v & (kMuWriter | kMuReader)) != (kMuWriter | kMuReader),
|
|
"%s: Mutex corrupt: both reader and writer lock held: %p",
|
|
label, reinterpret_cast<void *>(v));
|
|
RAW_CHECK_FMT((v & (kMuWait | kMuWrWait)) != kMuWrWait,
|
|
"%s: Mutex corrupt: waiting writer with no waiters: %p",
|
|
label, reinterpret_cast<void *>(v));
|
|
assert(false);
|
|
}
|
|
|
|
void Mutex::LockSlowLoop(SynchWaitParams *waitp, int flags) {
|
|
int c = 0;
|
|
intptr_t v = mu_.load(std::memory_order_relaxed);
|
|
if ((v & kMuEvent) != 0) {
|
|
PostSynchEvent(this,
|
|
waitp->how == kExclusive? SYNCH_EV_LOCK: SYNCH_EV_READERLOCK);
|
|
}
|
|
ABSL_RAW_CHECK(
|
|
waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors,
|
|
"detected illegal recursion into Mutex code");
|
|
for (;;) {
|
|
v = mu_.load(std::memory_order_relaxed);
|
|
CheckForMutexCorruption(v, "Lock");
|
|
if ((v & waitp->how->slow_need_zero) == 0) {
|
|
if (mu_.compare_exchange_strong(
|
|
v, (waitp->how->fast_or |
|
|
(v & zap_desig_waker[flags & kMuHasBlocked])) +
|
|
waitp->how->fast_add,
|
|
std::memory_order_acquire, std::memory_order_relaxed)) {
|
|
if (waitp->cond == nullptr ||
|
|
EvalConditionAnnotated(waitp->cond, this, true, waitp->how)) {
|
|
break; // we timed out, or condition true, so return
|
|
}
|
|
this->UnlockSlow(waitp); // got lock but condition false
|
|
this->Block(waitp->thread);
|
|
flags |= kMuHasBlocked;
|
|
c = 0;
|
|
}
|
|
} else { // need to access waiter list
|
|
bool dowait = false;
|
|
if ((v & (kMuSpin|kMuWait)) == 0) { // no waiters
|
|
// This thread tries to become the one and only waiter.
|
|
PerThreadSynch *new_h = Enqueue(nullptr, waitp, v, flags);
|
|
intptr_t nv = (v & zap_desig_waker[flags & kMuHasBlocked] & kMuLow) |
|
|
kMuWait;
|
|
ABSL_RAW_CHECK(new_h != nullptr, "Enqueue to empty list failed");
|
|
if (waitp->how == kExclusive && (v & kMuReader) != 0) {
|
|
nv |= kMuWrWait;
|
|
}
|
|
if (mu_.compare_exchange_strong(
|
|
v, reinterpret_cast<intptr_t>(new_h) | nv,
|
|
std::memory_order_release, std::memory_order_relaxed)) {
|
|
dowait = true;
|
|
} else { // attempted Enqueue() failed
|
|
// zero out the waitp field set by Enqueue()
|
|
waitp->thread->waitp = nullptr;
|
|
}
|
|
} else if ((v & waitp->how->slow_inc_need_zero &
|
|
ignore_waiting_writers[flags & kMuHasBlocked]) == 0) {
|
|
// This is a reader that needs to increment the reader count,
|
|
// but the count is currently held in the last waiter.
|
|
if (mu_.compare_exchange_strong(
|
|
v, (v & zap_desig_waker[flags & kMuHasBlocked]) | kMuSpin |
|
|
kMuReader,
|
|
std::memory_order_acquire, std::memory_order_relaxed)) {
|
|
PerThreadSynch *h = GetPerThreadSynch(v);
|
|
h->readers += kMuOne; // inc reader count in waiter
|
|
do { // release spinlock
|
|
v = mu_.load(std::memory_order_relaxed);
|
|
} while (!mu_.compare_exchange_weak(v, (v & ~kMuSpin) | kMuReader,
|
|
std::memory_order_release,
|
|
std::memory_order_relaxed));
|
|
if (waitp->cond == nullptr ||
|
|
EvalConditionAnnotated(waitp->cond, this, true, waitp->how)) {
|
|
break; // we timed out, or condition true, so return
|
|
}
|
|
this->UnlockSlow(waitp); // got lock but condition false
|
|
this->Block(waitp->thread);
|
|
flags |= kMuHasBlocked;
|
|
c = 0;
|
|
}
|
|
} else if ((v & kMuSpin) == 0 && // attempt to queue ourselves
|
|
mu_.compare_exchange_strong(
|
|
v, (v & zap_desig_waker[flags & kMuHasBlocked]) | kMuSpin |
|
|
kMuWait,
|
|
std::memory_order_acquire, std::memory_order_relaxed)) {
|
|
PerThreadSynch *h = GetPerThreadSynch(v);
|
|
PerThreadSynch *new_h = Enqueue(h, waitp, v, flags);
|
|
intptr_t wr_wait = 0;
|
|
ABSL_RAW_CHECK(new_h != nullptr, "Enqueue to list failed");
|
|
if (waitp->how == kExclusive && (v & kMuReader) != 0) {
|
|
wr_wait = kMuWrWait; // give priority to a waiting writer
|
|
}
|
|
do { // release spinlock
|
|
v = mu_.load(std::memory_order_relaxed);
|
|
} while (!mu_.compare_exchange_weak(
|
|
v, (v & (kMuLow & ~kMuSpin)) | kMuWait | wr_wait |
|
|
reinterpret_cast<intptr_t>(new_h),
|
|
std::memory_order_release, std::memory_order_relaxed));
|
|
dowait = true;
|
|
}
|
|
if (dowait) {
|
|
this->Block(waitp->thread); // wait until removed from list or timeout
|
|
flags |= kMuHasBlocked;
|
|
c = 0;
|
|
}
|
|
}
|
|
ABSL_RAW_CHECK(
|
|
waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors,
|
|
"detected illegal recursion into Mutex code");
|
|
c = Delay(c, GENTLE); // delay, then try again
|
|
}
|
|
ABSL_RAW_CHECK(
|
|
waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors,
|
|
"detected illegal recursion into Mutex code");
|
|
if ((v & kMuEvent) != 0) {
|
|
PostSynchEvent(this,
|
|
waitp->how == kExclusive? SYNCH_EV_LOCK_RETURNING :
|
|
SYNCH_EV_READERLOCK_RETURNING);
|
|
}
|
|
}
|
|
|
|
// Unlock this mutex, which is held by the current thread.
|
|
// If waitp is non-zero, it must be the wait parameters for the current thread
|
|
// which holds the lock but is not runnable because its condition is false
|
|
// or it n the process of blocking on a condition variable; it must requeue
|
|
// itself on the mutex/condvar to wait for its condition to become true.
|
|
void Mutex::UnlockSlow(SynchWaitParams *waitp) {
|
|
intptr_t v = mu_.load(std::memory_order_relaxed);
|
|
this->AssertReaderHeld();
|
|
CheckForMutexCorruption(v, "Unlock");
|
|
if ((v & kMuEvent) != 0) {
|
|
PostSynchEvent(this,
|
|
(v & kMuWriter) != 0? SYNCH_EV_UNLOCK: SYNCH_EV_READERUNLOCK);
|
|
}
|
|
int c = 0;
|
|
// the waiter under consideration to wake, or zero
|
|
PerThreadSynch *w = nullptr;
|
|
// the predecessor to w or zero
|
|
PerThreadSynch *pw = nullptr;
|
|
// head of the list searched previously, or zero
|
|
PerThreadSynch *old_h = nullptr;
|
|
// a condition that's known to be false.
|
|
const Condition *known_false = nullptr;
|
|
PerThreadSynch *wake_list = kPerThreadSynchNull; // list of threads to wake
|
|
intptr_t wr_wait = 0; // set to kMuWrWait if we wake a reader and a
|
|
// later writer could have acquired the lock
|
|
// (starvation avoidance)
|
|
ABSL_RAW_CHECK(waitp == nullptr || waitp->thread->waitp == nullptr ||
|
|
waitp->thread->suppress_fatal_errors,
|
|
"detected illegal recursion into Mutex code");
|
|
// This loop finds threads wake_list to wakeup if any, and removes them from
|
|
// the list of waiters. In addition, it places waitp.thread on the queue of
|
|
// waiters if waitp is non-zero.
|
|
for (;;) {
|
|
v = mu_.load(std::memory_order_relaxed);
|
|
if ((v & kMuWriter) != 0 && (v & (kMuWait | kMuDesig)) != kMuWait &&
|
|
waitp == nullptr) {
|
|
// fast writer release (writer with no waiters or with designated waker)
|
|
if (mu_.compare_exchange_strong(v, v & ~(kMuWrWait | kMuWriter),
|
|
std::memory_order_release,
|
|
std::memory_order_relaxed)) {
|
|
return;
|
|
}
|
|
} else if ((v & (kMuReader | kMuWait)) == kMuReader && waitp == nullptr) {
|
|
// fast reader release (reader with no waiters)
|
|
intptr_t clear = ExactlyOneReader(v) ? kMuReader | kMuOne : kMuOne;
|
|
if (mu_.compare_exchange_strong(v, v - clear,
|
|
std::memory_order_release,
|
|
std::memory_order_relaxed)) {
|
|
return;
|
|
}
|
|
} else if ((v & kMuSpin) == 0 && // attempt to get spinlock
|
|
mu_.compare_exchange_strong(v, v | kMuSpin,
|
|
std::memory_order_acquire,
|
|
std::memory_order_relaxed)) {
|
|
if ((v & kMuWait) == 0) { // no one to wake
|
|
intptr_t nv;
|
|
bool do_enqueue = true; // always Enqueue() the first time
|
|
ABSL_RAW_CHECK(waitp != nullptr,
|
|
"UnlockSlow is confused"); // about to sleep
|
|
do { // must loop to release spinlock as reader count may change
|
|
v = mu_.load(std::memory_order_relaxed);
|
|
// decrement reader count if there are readers
|
|
intptr_t new_readers = (v >= kMuOne)? v - kMuOne : v;
|
|
PerThreadSynch *new_h = nullptr;
|
|
if (do_enqueue) {
|
|
// If we are enqueuing on a CondVar (waitp->cv_word != nullptr) then
|
|
// we must not retry here. The initial attempt will always have
|
|
// succeeded, further attempts would enqueue us against *this due to
|
|
// Fer() handling.
|
|
do_enqueue = (waitp->cv_word == nullptr);
|
|
new_h = Enqueue(nullptr, waitp, new_readers, kMuIsCond);
|
|
}
|
|
intptr_t clear = kMuWrWait | kMuWriter; // by default clear write bit
|
|
if ((v & kMuWriter) == 0 && ExactlyOneReader(v)) { // last reader
|
|
clear = kMuWrWait | kMuReader; // clear read bit
|
|
}
|
|
nv = (v & kMuLow & ~clear & ~kMuSpin);
|
|
if (new_h != nullptr) {
|
|
nv |= kMuWait | reinterpret_cast<intptr_t>(new_h);
|
|
} else { // new_h could be nullptr if we queued ourselves on a
|
|
// CondVar
|
|
// In that case, we must place the reader count back in the mutex
|
|
// word, as Enqueue() did not store it in the new waiter.
|
|
nv |= new_readers & kMuHigh;
|
|
}
|
|
// release spinlock & our lock; retry if reader-count changed
|
|
// (writer count cannot change since we hold lock)
|
|
} while (!mu_.compare_exchange_weak(v, nv,
|
|
std::memory_order_release,
|
|
std::memory_order_relaxed));
|
|
break;
|
|
}
|
|
|
|
// There are waiters.
|
|
// Set h to the head of the circular waiter list.
|
|
PerThreadSynch *h = GetPerThreadSynch(v);
|
|
if ((v & kMuReader) != 0 && (h->readers & kMuHigh) > kMuOne) {
|
|
// a reader but not the last
|
|
h->readers -= kMuOne; // release our lock
|
|
intptr_t nv = v; // normally just release spinlock
|
|
if (waitp != nullptr) { // but waitp!=nullptr => must queue ourselves
|
|
PerThreadSynch *new_h = Enqueue(h, waitp, v, kMuIsCond);
|
|
ABSL_RAW_CHECK(new_h != nullptr,
|
|
"waiters disappeared during Enqueue()!");
|
|
nv &= kMuLow;
|
|
nv |= kMuWait | reinterpret_cast<intptr_t>(new_h);
|
|
}
|
|
mu_.store(nv, std::memory_order_release); // release spinlock
|
|
// can release with a store because there were waiters
|
|
break;
|
|
}
|
|
|
|
// Either we didn't search before, or we marked the queue
|
|
// as "maybe_unlocking" and no one else should have changed it.
|
|
ABSL_RAW_CHECK(old_h == nullptr || h->maybe_unlocking,
|
|
"Mutex queue changed beneath us");
|
|
|
|
// The lock is becoming free, and there's a waiter
|
|
if (old_h != nullptr &&
|
|
!old_h->may_skip) { // we used old_h as a terminator
|
|
old_h->may_skip = true; // allow old_h to skip once more
|
|
ABSL_RAW_CHECK(old_h->skip == nullptr, "illegal skip from head");
|
|
if (h != old_h && MuSameCondition(old_h, old_h->next)) {
|
|
old_h->skip = old_h->next; // old_h not head & can skip to successor
|
|
}
|
|
}
|
|
if (h->next->waitp->how == kExclusive &&
|
|
Condition::GuaranteedEqual(h->next->waitp->cond, nullptr)) {
|
|
// easy case: writer with no condition; no need to search
|
|
pw = h; // wake w, the successor of h (=pw)
|
|
w = h->next;
|
|
w->wake = true;
|
|
// We are waking up a writer. This writer may be racing against
|
|
// an already awake reader for the lock. We want the
|
|
// writer to usually win this race,
|
|
// because if it doesn't, we can potentially keep taking a reader
|
|
// perpetually and writers will starve. Worse than
|
|
// that, this can also starve other readers if kMuWrWait gets set
|
|
// later.
|
|
wr_wait = kMuWrWait;
|
|
} else if (w != nullptr && (w->waitp->how == kExclusive || h == old_h)) {
|
|
// we found a waiter w to wake on a previous iteration and either it's
|
|
// a writer, or we've searched the entire list so we have all the
|
|
// readers.
|
|
if (pw == nullptr) { // if w's predecessor is unknown, it must be h
|
|
pw = h;
|
|
}
|
|
} else {
|
|
// At this point we don't know all the waiters to wake, and the first
|
|
// waiter has a condition or is a reader. We avoid searching over
|
|
// waiters we've searched on previous iterations by starting at
|
|
// old_h if it's set. If old_h==h, there's no one to wakeup at all.
|
|
if (old_h == h) { // we've searched before, and nothing's new
|
|
// so there's no one to wake.
|
|
intptr_t nv = (v & ~(kMuReader|kMuWriter|kMuWrWait));
|
|
h->readers = 0;
|
|
h->maybe_unlocking = false; // finished unlocking
|
|
if (waitp != nullptr) { // we must queue ourselves and sleep
|
|
PerThreadSynch *new_h = Enqueue(h, waitp, v, kMuIsCond);
|
|
nv &= kMuLow;
|
|
if (new_h != nullptr) {
|
|
nv |= kMuWait | reinterpret_cast<intptr_t>(new_h);
|
|
} // else new_h could be nullptr if we queued ourselves on a
|
|
// CondVar
|
|
}
|
|
// release spinlock & lock
|
|
// can release with a store because there were waiters
|
|
mu_.store(nv, std::memory_order_release);
|
|
break;
|
|
}
|
|
|
|
// set up to walk the list
|
|
PerThreadSynch *w_walk; // current waiter during list walk
|
|
PerThreadSynch *pw_walk; // previous waiter during list walk
|
|
if (old_h != nullptr) { // we've searched up to old_h before
|
|
pw_walk = old_h;
|
|
w_walk = old_h->next;
|
|
} else { // no prior search, start at beginning
|
|
pw_walk =
|
|
nullptr; // h->next's predecessor may change; don't record it
|
|
w_walk = h->next;
|
|
}
|
|
|
|
h->may_skip = false; // ensure we never skip past h in future searches
|
|
// even if other waiters are queued after it.
|
|
ABSL_RAW_CHECK(h->skip == nullptr, "illegal skip from head");
|
|
|
|
h->maybe_unlocking = true; // we're about to scan the waiter list
|
|
// without the spinlock held.
|
|
// Enqueue must be conservative about
|
|
// priority queuing.
|
|
|
|
// We must release the spinlock to evaluate the conditions.
|
|
mu_.store(v, std::memory_order_release); // release just spinlock
|
|
// can release with a store because there were waiters
|
|
|
|
// h is the last waiter queued, and w_walk the first unsearched waiter.
|
|
// Without the spinlock, the locations mu_ and h->next may now change
|
|
// underneath us, but since we hold the lock itself, the only legal
|
|
// change is to add waiters between h and w_walk. Therefore, it's safe
|
|
// to walk the path from w_walk to h inclusive. (TryRemove() can remove
|
|
// a waiter anywhere, but it acquires both the spinlock and the Mutex)
|
|
|
|
old_h = h; // remember we searched to here
|
|
|
|
// Walk the path upto and including h looking for waiters we can wake.
|
|
while (pw_walk != h) {
|
|
w_walk->wake = false;
|
|
if (w_walk->waitp->cond ==
|
|
nullptr || // no condition => vacuously true OR
|
|
(w_walk->waitp->cond != known_false &&
|
|
// this thread's condition is not known false, AND
|
|
// is in fact true
|
|
EvalConditionIgnored(this, w_walk->waitp->cond))) {
|
|
if (w == nullptr) {
|
|
w_walk->wake = true; // can wake this waiter
|
|
w = w_walk;
|
|
pw = pw_walk;
|
|
if (w_walk->waitp->how == kExclusive) {
|
|
wr_wait = kMuWrWait;
|
|
break; // bail if waking this writer
|
|
}
|
|
} else if (w_walk->waitp->how == kShared) { // wake if a reader
|
|
w_walk->wake = true;
|
|
} else { // writer with true condition
|
|
wr_wait = kMuWrWait;
|
|
}
|
|
} else { // can't wake; condition false
|
|
known_false = w_walk->waitp->cond; // remember last false condition
|
|
}
|
|
if (w_walk->wake) { // we're waking reader w_walk
|
|
pw_walk = w_walk; // don't skip similar waiters
|
|
} else { // not waking; skip as much as possible
|
|
pw_walk = Skip(w_walk);
|
|
}
|
|
// If pw_walk == h, then load of pw_walk->next can race with
|
|
// concurrent write in Enqueue(). However, at the same time
|
|
// we do not need to do the load, because we will bail out
|
|
// from the loop anyway.
|
|
if (pw_walk != h) {
|
|
w_walk = pw_walk->next;
|
|
}
|
|
}
|
|
|
|
continue; // restart for(;;)-loop to wakeup w or to find more waiters
|
|
}
|
|
ABSL_RAW_CHECK(pw->next == w, "pw not w's predecessor");
|
|
// The first (and perhaps only) waiter we've chosen to wake is w, whose
|
|
// predecessor is pw. If w is a reader, we must wake all the other
|
|
// waiters with wake==true as well. We may also need to queue
|
|
// ourselves if waitp != null. The spinlock and the lock are still
|
|
// held.
|
|
|
|
// This traverses the list in [ pw->next, h ], where h is the head,
|
|
// removing all elements with wake==true and placing them in the
|
|
// singly-linked list wake_list. Returns the new head.
|
|
h = DequeueAllWakeable(h, pw, &wake_list);
|
|
|
|
intptr_t nv = (v & kMuEvent) | kMuDesig;
|
|
// assume no waiters left,
|
|
// set kMuDesig for INV1a
|
|
|
|
if (waitp != nullptr) { // we must queue ourselves and sleep
|
|
h = Enqueue(h, waitp, v, kMuIsCond);
|
|
// h is new last waiter; could be null if we queued ourselves on a
|
|
// CondVar
|
|
}
|
|
|
|
ABSL_RAW_CHECK(wake_list != kPerThreadSynchNull,
|
|
"unexpected empty wake list");
|
|
|
|
if (h != nullptr) { // there are waiters left
|
|
h->readers = 0;
|
|
h->maybe_unlocking = false; // finished unlocking
|
|
nv |= wr_wait | kMuWait | reinterpret_cast<intptr_t>(h);
|
|
}
|
|
|
|
// release both spinlock & lock
|
|
// can release with a store because there were waiters
|
|
mu_.store(nv, std::memory_order_release);
|
|
break; // out of for(;;)-loop
|
|
}
|
|
c = Delay(c, AGGRESSIVE); // aggressive here; no one can proceed till we do
|
|
} // end of for(;;)-loop
|
|
|
|
if (wake_list != kPerThreadSynchNull) {
|
|
int64_t enqueue_timestamp = wake_list->waitp->contention_start_cycles;
|
|
bool cond_waiter = wake_list->cond_waiter;
|
|
do {
|
|
wake_list = Wakeup(wake_list); // wake waiters
|
|
} while (wake_list != kPerThreadSynchNull);
|
|
if (!cond_waiter) {
|
|
// Sample lock contention events only if the (first) waiter was trying to
|
|
// acquire the lock, not waiting on a condition variable or Condition.
|
|
int64_t wait_cycles = base_internal::CycleClock::Now() - enqueue_timestamp;
|
|
mutex_tracer("slow release", this, wait_cycles);
|
|
ABSL_TSAN_MUTEX_PRE_DIVERT(this, 0);
|
|
submit_profile_data(enqueue_timestamp);
|
|
ABSL_TSAN_MUTEX_POST_DIVERT(this, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Used by CondVar implementation to reacquire mutex after waking from
|
|
// condition variable. This routine is used instead of Lock() because the
|
|
// waiting thread may have been moved from the condition variable queue to the
|
|
// mutex queue without a wakeup, by Trans(). In that case, when the thread is
|
|
// finally woken, the woken thread will believe it has been woken from the
|
|
// condition variable (i.e. its PC will be in when in the CondVar code), when
|
|
// in fact it has just been woken from the mutex. Thus, it must enter the slow
|
|
// path of the mutex in the same state as if it had just woken from the mutex.
|
|
// That is, it must ensure to clear kMuDesig (INV1b).
|
|
void Mutex::Trans(MuHow how) {
|
|
this->LockSlow(how, nullptr, kMuHasBlocked | kMuIsCond);
|
|
}
|
|
|
|
// Used by CondVar implementation to effectively wake thread w from the
|
|
// condition variable. If this mutex is free, we simply wake the thread.
|
|
// It will later acquire the mutex with high probability. Otherwise, we
|
|
// enqueue thread w on this mutex.
|
|
void Mutex::Fer(PerThreadSynch *w) {
|
|
int c = 0;
|
|
ABSL_RAW_CHECK(w->waitp->cond == nullptr,
|
|
"Mutex::Fer while waiting on Condition");
|
|
ABSL_RAW_CHECK(!w->waitp->timeout.has_timeout(),
|
|
"Mutex::Fer while in timed wait");
|
|
ABSL_RAW_CHECK(w->waitp->cv_word == nullptr,
|
|
"Mutex::Fer with pending CondVar queueing");
|
|
for (;;) {
|
|
intptr_t v = mu_.load(std::memory_order_relaxed);
|
|
// Note: must not queue if the mutex is unlocked (nobody will wake it).
|
|
// For example, we can have only kMuWait (conditional) or maybe
|
|
// kMuWait|kMuWrWait.
|
|
// conflicting != 0 implies that the waking thread cannot currently take
|
|
// the mutex, which in turn implies that someone else has it and can wake
|
|
// us if we queue.
|
|
const intptr_t conflicting =
|
|
kMuWriter | (w->waitp->how == kShared ? 0 : kMuReader);
|
|
if ((v & conflicting) == 0) {
|
|
w->next = nullptr;
|
|
w->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
|
|
IncrementSynchSem(this, w);
|
|
return;
|
|
} else {
|
|
if ((v & (kMuSpin|kMuWait)) == 0) { // no waiters
|
|
// This thread tries to become the one and only waiter.
|
|
PerThreadSynch *new_h = Enqueue(nullptr, w->waitp, v, kMuIsCond);
|
|
ABSL_RAW_CHECK(new_h != nullptr,
|
|
"Enqueue failed"); // we must queue ourselves
|
|
if (mu_.compare_exchange_strong(
|
|
v, reinterpret_cast<intptr_t>(new_h) | (v & kMuLow) | kMuWait,
|
|
std::memory_order_release, std::memory_order_relaxed)) {
|
|
return;
|
|
}
|
|
} else if ((v & kMuSpin) == 0 &&
|
|
mu_.compare_exchange_strong(v, v | kMuSpin | kMuWait)) {
|
|
PerThreadSynch *h = GetPerThreadSynch(v);
|
|
PerThreadSynch *new_h = Enqueue(h, w->waitp, v, kMuIsCond);
|
|
ABSL_RAW_CHECK(new_h != nullptr,
|
|
"Enqueue failed"); // we must queue ourselves
|
|
do {
|
|
v = mu_.load(std::memory_order_relaxed);
|
|
} while (!mu_.compare_exchange_weak(
|
|
v,
|
|
(v & kMuLow & ~kMuSpin) | kMuWait |
|
|
reinterpret_cast<intptr_t>(new_h),
|
|
std::memory_order_release, std::memory_order_relaxed));
|
|
return;
|
|
}
|
|
}
|
|
c = Delay(c, GENTLE);
|
|
}
|
|
}
|
|
|
|
void Mutex::AssertHeld() const {
|
|
if ((mu_.load(std::memory_order_relaxed) & kMuWriter) == 0) {
|
|
SynchEvent *e = GetSynchEvent(this);
|
|
ABSL_RAW_LOG(FATAL, "thread should hold write lock on Mutex %p %s",
|
|
static_cast<const void *>(this),
|
|
(e == nullptr ? "" : e->name));
|
|
}
|
|
}
|
|
|
|
void Mutex::AssertReaderHeld() const {
|
|
if ((mu_.load(std::memory_order_relaxed) & (kMuReader | kMuWriter)) == 0) {
|
|
SynchEvent *e = GetSynchEvent(this);
|
|
ABSL_RAW_LOG(
|
|
FATAL, "thread should hold at least a read lock on Mutex %p %s",
|
|
static_cast<const void *>(this), (e == nullptr ? "" : e->name));
|
|
}
|
|
}
|
|
|
|
// -------------------------------- condition variables
|
|
static const intptr_t kCvSpin = 0x0001L; // spinlock protects waiter list
|
|
static const intptr_t kCvEvent = 0x0002L; // record events
|
|
|
|
static const intptr_t kCvLow = 0x0003L; // low order bits of CV
|
|
|
|
// Hack to make constant values available to gdb pretty printer
|
|
enum { kGdbCvSpin = kCvSpin, kGdbCvEvent = kCvEvent, kGdbCvLow = kCvLow, };
|
|
|
|
static_assert(PerThreadSynch::kAlignment > kCvLow,
|
|
"PerThreadSynch::kAlignment must be greater than kCvLow");
|
|
|
|
void CondVar::EnableDebugLog(const char *name) {
|
|
SynchEvent *e = EnsureSynchEvent(&this->cv_, name, kCvEvent, kCvSpin);
|
|
e->log = true;
|
|
UnrefSynchEvent(e);
|
|
}
|
|
|
|
CondVar::~CondVar() {
|
|
if ((cv_.load(std::memory_order_relaxed) & kCvEvent) != 0) {
|
|
ForgetSynchEvent(&this->cv_, kCvEvent, kCvSpin);
|
|
}
|
|
}
|
|
|
|
|
|
// Remove thread s from the list of waiters on this condition variable.
|
|
void CondVar::Remove(PerThreadSynch *s) {
|
|
intptr_t v;
|
|
int c = 0;
|
|
for (v = cv_.load(std::memory_order_relaxed);;
|
|
v = cv_.load(std::memory_order_relaxed)) {
|
|
if ((v & kCvSpin) == 0 && // attempt to acquire spinlock
|
|
cv_.compare_exchange_strong(v, v | kCvSpin,
|
|
std::memory_order_acquire,
|
|
std::memory_order_relaxed)) {
|
|
PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
|
|
if (h != nullptr) {
|
|
PerThreadSynch *w = h;
|
|
while (w->next != s && w->next != h) { // search for thread
|
|
w = w->next;
|
|
}
|
|
if (w->next == s) { // found thread; remove it
|
|
w->next = s->next;
|
|
if (h == s) {
|
|
h = (w == s) ? nullptr : w;
|
|
}
|
|
s->next = nullptr;
|
|
s->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
|
|
}
|
|
}
|
|
// release spinlock
|
|
cv_.store((v & kCvEvent) | reinterpret_cast<intptr_t>(h),
|
|
std::memory_order_release);
|
|
return;
|
|
} else {
|
|
c = Delay(c, GENTLE); // try again after a delay
|
|
}
|
|
}
|
|
}
|
|
|
|
// Queue thread waitp->thread on condition variable word cv_word using
|
|
// wait parameters waitp.
|
|
// We split this into a separate routine, rather than simply doing it as part
|
|
// of WaitCommon(). If we were to queue ourselves on the condition variable
|
|
// before calling Mutex::UnlockSlow(), the Mutex code might be re-entered (via
|
|
// the logging code, or via a Condition function) and might potentially attempt
|
|
// to block this thread. That would be a problem if the thread were already on
|
|
// a the condition variable waiter queue. Thus, we use the waitp->cv_word
|
|
// to tell the unlock code to call CondVarEnqueue() to queue the thread on the
|
|
// condition variable queue just before the mutex is to be unlocked, and (most
|
|
// importantly) after any call to an external routine that might re-enter the
|
|
// mutex code.
|
|
static void CondVarEnqueue(SynchWaitParams *waitp) {
|
|
// This thread might be transferred to the Mutex queue by Fer() when
|
|
// we are woken. To make sure that is what happens, Enqueue() doesn't
|
|
// call CondVarEnqueue() again but instead uses its normal code. We
|
|
// must do this before we queue ourselves so that cv_word will be null
|
|
// when seen by the dequeuer, who may wish immediately to requeue
|
|
// this thread on another queue.
|
|
std::atomic<intptr_t> *cv_word = waitp->cv_word;
|
|
waitp->cv_word = nullptr;
|
|
|
|
intptr_t v = cv_word->load(std::memory_order_relaxed);
|
|
int c = 0;
|
|
while ((v & kCvSpin) != 0 || // acquire spinlock
|
|
!cv_word->compare_exchange_weak(v, v | kCvSpin,
|
|
std::memory_order_acquire,
|
|
std::memory_order_relaxed)) {
|
|
c = Delay(c, GENTLE);
|
|
v = cv_word->load(std::memory_order_relaxed);
|
|
}
|
|
ABSL_RAW_CHECK(waitp->thread->waitp == nullptr, "waiting when shouldn't be");
|
|
waitp->thread->waitp = waitp; // prepare ourselves for waiting
|
|
PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
|
|
if (h == nullptr) { // add this thread to waiter list
|
|
waitp->thread->next = waitp->thread;
|
|
} else {
|
|
waitp->thread->next = h->next;
|
|
h->next = waitp->thread;
|
|
}
|
|
waitp->thread->state.store(PerThreadSynch::kQueued,
|
|
std::memory_order_relaxed);
|
|
cv_word->store((v & kCvEvent) | reinterpret_cast<intptr_t>(waitp->thread),
|
|
std::memory_order_release);
|
|
}
|
|
|
|
bool CondVar::WaitCommon(Mutex *mutex, KernelTimeout t) {
|
|
bool rc = false; // return value; true iff we timed-out
|
|
|
|
intptr_t mutex_v = mutex->mu_.load(std::memory_order_relaxed);
|
|
Mutex::MuHow mutex_how = ((mutex_v & kMuWriter) != 0) ? kExclusive : kShared;
|
|
ABSL_TSAN_MUTEX_PRE_UNLOCK(mutex, TsanFlags(mutex_how));
|
|
|
|
// maybe trace this call
|
|
intptr_t v = cv_.load(std::memory_order_relaxed);
|
|
cond_var_tracer("Wait", this);
|
|
if ((v & kCvEvent) != 0) {
|
|
PostSynchEvent(this, SYNCH_EV_WAIT);
|
|
}
|
|
|
|
// Release mu and wait on condition variable.
|
|
SynchWaitParams waitp(mutex_how, nullptr, t, mutex,
|
|
Synch_GetPerThreadAnnotated(mutex), &cv_);
|
|
// UnlockSlow() will call CondVarEnqueue() just before releasing the
|
|
// Mutex, thus queuing this thread on the condition variable. See
|
|
// CondVarEnqueue() for the reasons.
|
|
mutex->UnlockSlow(&waitp);
|
|
|
|
// wait for signal
|
|
while (waitp.thread->state.load(std::memory_order_acquire) ==
|
|
PerThreadSynch::kQueued) {
|
|
if (!Mutex::DecrementSynchSem(mutex, waitp.thread, t)) {
|
|
this->Remove(waitp.thread);
|
|
rc = true;
|
|
}
|
|
}
|
|
|
|
ABSL_RAW_CHECK(waitp.thread->waitp != nullptr, "not waiting when should be");
|
|
waitp.thread->waitp = nullptr; // cleanup
|
|
|
|
// maybe trace this call
|
|
cond_var_tracer("Unwait", this);
|
|
if ((v & kCvEvent) != 0) {
|
|
PostSynchEvent(this, SYNCH_EV_WAIT_RETURNING);
|
|
}
|
|
|
|
// From synchronization point of view Wait is unlock of the mutex followed
|
|
// by lock of the mutex. We've annotated start of unlock in the beginning
|
|
// of the function. Now, finish unlock and annotate lock of the mutex.
|
|
// (Trans is effectively lock).
|
|
ABSL_TSAN_MUTEX_POST_UNLOCK(mutex, TsanFlags(mutex_how));
|
|
ABSL_TSAN_MUTEX_PRE_LOCK(mutex, TsanFlags(mutex_how));
|
|
mutex->Trans(mutex_how); // Reacquire mutex
|
|
ABSL_TSAN_MUTEX_POST_LOCK(mutex, TsanFlags(mutex_how), 0);
|
|
return rc;
|
|
}
|
|
|
|
bool CondVar::WaitWithTimeout(Mutex *mu, absl::Duration timeout) {
|
|
return WaitWithDeadline(mu, DeadlineFromTimeout(timeout));
|
|
}
|
|
|
|
bool CondVar::WaitWithDeadline(Mutex *mu, absl::Time deadline) {
|
|
return WaitCommon(mu, KernelTimeout(deadline));
|
|
}
|
|
|
|
void CondVar::Wait(Mutex *mu) {
|
|
WaitCommon(mu, KernelTimeout::Never());
|
|
}
|
|
|
|
// Wake thread w
|
|
// If it was a timed wait, w will be waiting on w->cv
|
|
// Otherwise, if it was not a Mutex mutex, w will be waiting on w->sem
|
|
// Otherwise, w is transferred to the Mutex mutex via Mutex::Fer().
|
|
void CondVar::Wakeup(PerThreadSynch *w) {
|
|
if (w->waitp->timeout.has_timeout() || w->waitp->cvmu == nullptr) {
|
|
// The waiting thread only needs to observe "w->state == kAvailable" to be
|
|
// released, we must cache "cvmu" before clearing "next".
|
|
Mutex *mu = w->waitp->cvmu;
|
|
w->next = nullptr;
|
|
w->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
|
|
Mutex::IncrementSynchSem(mu, w);
|
|
} else {
|
|
w->waitp->cvmu->Fer(w);
|
|
}
|
|
}
|
|
|
|
void CondVar::Signal() {
|
|
ABSL_TSAN_MUTEX_PRE_SIGNAL(0, 0);
|
|
intptr_t v;
|
|
int c = 0;
|
|
for (v = cv_.load(std::memory_order_relaxed); v != 0;
|
|
v = cv_.load(std::memory_order_relaxed)) {
|
|
if ((v & kCvSpin) == 0 && // attempt to acquire spinlock
|
|
cv_.compare_exchange_strong(v, v | kCvSpin,
|
|
std::memory_order_acquire,
|
|
std::memory_order_relaxed)) {
|
|
PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
|
|
PerThreadSynch *w = nullptr;
|
|
if (h != nullptr) { // remove first waiter
|
|
w = h->next;
|
|
if (w == h) {
|
|
h = nullptr;
|
|
} else {
|
|
h->next = w->next;
|
|
}
|
|
}
|
|
// release spinlock
|
|
cv_.store((v & kCvEvent) | reinterpret_cast<intptr_t>(h),
|
|
std::memory_order_release);
|
|
if (w != nullptr) {
|
|
CondVar::Wakeup(w); // wake waiter, if there was one
|
|
cond_var_tracer("Signal wakeup", this);
|
|
}
|
|
if ((v & kCvEvent) != 0) {
|
|
PostSynchEvent(this, SYNCH_EV_SIGNAL);
|
|
}
|
|
ABSL_TSAN_MUTEX_POST_SIGNAL(0, 0);
|
|
return;
|
|
} else {
|
|
c = Delay(c, GENTLE);
|
|
}
|
|
}
|
|
ABSL_TSAN_MUTEX_POST_SIGNAL(0, 0);
|
|
}
|
|
|
|
void CondVar::SignalAll () {
|
|
ABSL_TSAN_MUTEX_PRE_SIGNAL(0, 0);
|
|
intptr_t v;
|
|
int c = 0;
|
|
for (v = cv_.load(std::memory_order_relaxed); v != 0;
|
|
v = cv_.load(std::memory_order_relaxed)) {
|
|
// empty the list if spinlock free
|
|
// We do this by simply setting the list to empty using
|
|
// compare and swap. We then have the entire list in our hands,
|
|
// which cannot be changing since we grabbed it while no one
|
|
// held the lock.
|
|
if ((v & kCvSpin) == 0 &&
|
|
cv_.compare_exchange_strong(v, v & kCvEvent, std::memory_order_acquire,
|
|
std::memory_order_relaxed)) {
|
|
PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
|
|
if (h != nullptr) {
|
|
PerThreadSynch *w;
|
|
PerThreadSynch *n = h->next;
|
|
do { // for every thread, wake it up
|
|
w = n;
|
|
n = n->next;
|
|
CondVar::Wakeup(w);
|
|
} while (w != h);
|
|
cond_var_tracer("SignalAll wakeup", this);
|
|
}
|
|
if ((v & kCvEvent) != 0) {
|
|
PostSynchEvent(this, SYNCH_EV_SIGNALALL);
|
|
}
|
|
ABSL_TSAN_MUTEX_POST_SIGNAL(0, 0);
|
|
return;
|
|
} else {
|
|
c = Delay(c, GENTLE); // try again after a delay
|
|
}
|
|
}
|
|
ABSL_TSAN_MUTEX_POST_SIGNAL(0, 0);
|
|
}
|
|
|
|
void ReleasableMutexLock::Release() {
|
|
ABSL_RAW_CHECK(this->mu_ != nullptr,
|
|
"ReleasableMutexLock::Release may only be called once");
|
|
this->mu_->Unlock();
|
|
this->mu_ = nullptr;
|
|
}
|
|
|
|
#ifdef THREAD_SANITIZER
|
|
extern "C" void __tsan_read1(void *addr);
|
|
#else
|
|
#define __tsan_read1(addr) // do nothing if TSan not enabled
|
|
#endif
|
|
|
|
// A function that just returns its argument, dereferenced
|
|
static bool Dereference(void *arg) {
|
|
// ThreadSanitizer does not instrument this file for memory accesses.
|
|
// This function dereferences a user variable that can participate
|
|
// in a data race, so we need to manually tell TSan about this memory access.
|
|
__tsan_read1(arg);
|
|
return *(static_cast<bool *>(arg));
|
|
}
|
|
|
|
Condition::Condition() {} // null constructor, used for kTrue only
|
|
const Condition Condition::kTrue;
|
|
|
|
Condition::Condition(bool (*func)(void *), void *arg)
|
|
: eval_(&CallVoidPtrFunction),
|
|
function_(func),
|
|
method_(nullptr),
|
|
arg_(arg) {}
|
|
|
|
bool Condition::CallVoidPtrFunction(const Condition *c) {
|
|
return (*c->function_)(c->arg_);
|
|
}
|
|
|
|
Condition::Condition(const bool *cond)
|
|
: eval_(CallVoidPtrFunction),
|
|
function_(Dereference),
|
|
method_(nullptr),
|
|
// const_cast is safe since Dereference does not modify arg
|
|
arg_(const_cast<bool *>(cond)) {}
|
|
|
|
bool Condition::Eval() const {
|
|
// eval_ == null for kTrue
|
|
return (this->eval_ == nullptr) || (*this->eval_)(this);
|
|
}
|
|
|
|
bool Condition::GuaranteedEqual(const Condition *a, const Condition *b) {
|
|
if (a == nullptr) {
|
|
return b == nullptr || b->eval_ == nullptr;
|
|
}
|
|
if (b == nullptr || b->eval_ == nullptr) {
|
|
return a->eval_ == nullptr;
|
|
}
|
|
return a->eval_ == b->eval_ && a->function_ == b->function_ &&
|
|
a->arg_ == b->arg_ && a->method_ == b->method_;
|
|
}
|
|
|
|
} // namespace absl
|