453 lines
14 KiB
C++
453 lines
14 KiB
C++
// Copyright 2017 The Abseil Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "absl/strings/internal/fastmem.h"
|
|
|
|
#include <memory>
|
|
#include <random>
|
|
#include <string>
|
|
|
|
#include "base/init_google.h"
|
|
#include "base/logging.h"
|
|
#include "testing/base/public/benchmark.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
namespace {
|
|
|
|
using RandomEngine = std::minstd_rand0;
|
|
|
|
void VerifyResults(const int r1, const int r2, const std::string& a,
|
|
const std::string& b) {
|
|
CHECK_EQ(a.size(), b.size());
|
|
if (r1 == 0) {
|
|
EXPECT_EQ(r2, 0) << a << " " << b;
|
|
} else if (r1 > 0) {
|
|
EXPECT_GT(r2, 0) << a << " " << b;
|
|
} else {
|
|
EXPECT_LT(r2, 0) << a << " " << b;
|
|
}
|
|
if ((r1 == 0) == (r2 == 0)) {
|
|
EXPECT_EQ(r1 == 0,
|
|
absl::strings_internal::memeq(a.data(), b.data(), a.size()))
|
|
<< r1 << " " << a << " " << b;
|
|
}
|
|
}
|
|
|
|
// Check correctness against glibc's memcmp implementation
|
|
void CheckSingle(const std::string& a, const std::string& b) {
|
|
CHECK_EQ(a.size(), b.size());
|
|
const int r1 = memcmp(a.data(), b.data(), a.size());
|
|
const int r2 =
|
|
absl::strings_internal::fastmemcmp_inlined(a.data(), b.data(), a.size());
|
|
VerifyResults(r1, r2, a, b);
|
|
}
|
|
|
|
void GenerateString(size_t len, std::string* s) {
|
|
s->clear();
|
|
for (int i = 0; i < len; i++) {
|
|
*s += ('a' + (i % 26));
|
|
}
|
|
}
|
|
|
|
void CheckCompare(const std::string& a, const std::string& b) {
|
|
CheckSingle(a, b);
|
|
for (int common = 0; common <= 32; common++) {
|
|
std::string extra;
|
|
GenerateString(common, &extra);
|
|
CheckSingle(extra + a, extra + b);
|
|
CheckSingle(a + extra, b + extra);
|
|
for (char c1 = 'a'; c1 <= 'c'; c1++) {
|
|
for (char c2 = 'a'; c2 <= 'c'; c2++) {
|
|
CheckSingle(extra + c1 + a, extra + c2 + b);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(FastCompare, Misc) {
|
|
CheckCompare("", "");
|
|
|
|
CheckCompare("a", "a");
|
|
CheckCompare("ab", "ab");
|
|
CheckCompare("abc", "abc");
|
|
CheckCompare("abcd", "abcd");
|
|
CheckCompare("abcde", "abcde");
|
|
|
|
CheckCompare("a", "x");
|
|
CheckCompare("ab", "xb");
|
|
CheckCompare("abc", "xbc");
|
|
CheckCompare("abcd", "xbcd");
|
|
CheckCompare("abcde", "xbcde");
|
|
|
|
CheckCompare("x", "a");
|
|
CheckCompare("xb", "ab");
|
|
CheckCompare("xbc", "abc");
|
|
CheckCompare("xbcd", "abcd");
|
|
CheckCompare("xbcde", "abcde");
|
|
|
|
CheckCompare("a", "x");
|
|
CheckCompare("ab", "ax");
|
|
CheckCompare("abc", "abx");
|
|
CheckCompare("abcd", "abcx");
|
|
CheckCompare("abcde", "abcdx");
|
|
|
|
CheckCompare("x", "a");
|
|
CheckCompare("ax", "ab");
|
|
CheckCompare("abx", "abc");
|
|
CheckCompare("abcx", "abcd");
|
|
CheckCompare("abcdx", "abcde");
|
|
|
|
for (int len = 0; len < 1000; len++) {
|
|
std::string p(len, 'z');
|
|
CheckCompare(p + "x", p + "a");
|
|
CheckCompare(p + "ax", p + "ab");
|
|
CheckCompare(p + "abx", p + "abc");
|
|
CheckCompare(p + "abcx", p + "abcd");
|
|
CheckCompare(p + "abcdx", p + "abcde");
|
|
}
|
|
}
|
|
|
|
TEST(FastCompare, TrailingByte) {
|
|
for (int i = 0; i < 256; i++) {
|
|
for (int j = 0; j < 256; j++) {
|
|
std::string a(1, i);
|
|
std::string b(1, j);
|
|
CheckSingle(a, b);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check correctness of memcpy_inlined.
|
|
void CheckSingleMemcpyInlined(const std::string& a) {
|
|
std::unique_ptr<char[]> destination(new char[a.size() + 2]);
|
|
destination[0] = 'x';
|
|
destination[a.size() + 1] = 'x';
|
|
absl::strings_internal::memcpy_inlined(destination.get() + 1, a.data(),
|
|
a.size());
|
|
CHECK_EQ('x', destination[0]);
|
|
CHECK_EQ('x', destination[a.size() + 1]);
|
|
CHECK_EQ(0, memcmp(a.data(), destination.get() + 1, a.size()));
|
|
}
|
|
|
|
TEST(MemCpyInlined, Misc) {
|
|
CheckSingleMemcpyInlined("");
|
|
CheckSingleMemcpyInlined("0");
|
|
CheckSingleMemcpyInlined("012");
|
|
CheckSingleMemcpyInlined("0123");
|
|
CheckSingleMemcpyInlined("01234");
|
|
CheckSingleMemcpyInlined("012345");
|
|
CheckSingleMemcpyInlined("0123456");
|
|
CheckSingleMemcpyInlined("01234567");
|
|
CheckSingleMemcpyInlined("012345678");
|
|
CheckSingleMemcpyInlined("0123456789");
|
|
CheckSingleMemcpyInlined("0123456789a");
|
|
CheckSingleMemcpyInlined("0123456789ab");
|
|
CheckSingleMemcpyInlined("0123456789abc");
|
|
CheckSingleMemcpyInlined("0123456789abcd");
|
|
CheckSingleMemcpyInlined("0123456789abcde");
|
|
CheckSingleMemcpyInlined("0123456789abcdef");
|
|
CheckSingleMemcpyInlined("0123456789abcdefg");
|
|
}
|
|
|
|
template <typename Function>
|
|
inline void CopyLoop(benchmark::State& state, int size, Function func) {
|
|
char* src = new char[size];
|
|
char* dst = new char[size];
|
|
memset(src, 'x', size);
|
|
memset(dst, 'y', size);
|
|
for (auto _ : state) {
|
|
func(dst, src, size);
|
|
}
|
|
state.SetBytesProcessed(static_cast<int64_t>(state.iterations()) * size);
|
|
CHECK_EQ(dst[0], 'x');
|
|
delete[] src;
|
|
delete[] dst;
|
|
}
|
|
|
|
void BM_memcpy(benchmark::State& state) {
|
|
CopyLoop(state, state.range(0), memcpy);
|
|
}
|
|
BENCHMARK(BM_memcpy)->DenseRange(1, 18)->Range(32, 8 << 20);
|
|
|
|
void BM_memcpy_inlined(benchmark::State& state) {
|
|
CopyLoop(state, state.range(0), absl::strings_internal::memcpy_inlined);
|
|
}
|
|
BENCHMARK(BM_memcpy_inlined)->DenseRange(1, 18)->Range(32, 8 << 20);
|
|
|
|
// unaligned memcpy
|
|
void BM_unaligned_memcpy(benchmark::State& state) {
|
|
const int n = state.range(0);
|
|
const int kMaxOffset = 32;
|
|
char* src = new char[n + kMaxOffset];
|
|
char* dst = new char[n + kMaxOffset];
|
|
memset(src, 'x', n + kMaxOffset);
|
|
int r = 0, i = 0;
|
|
for (auto _ : state) {
|
|
memcpy(dst + (i % kMaxOffset), src + ((i + 5) % kMaxOffset), n);
|
|
r += dst[0];
|
|
++i;
|
|
}
|
|
state.SetBytesProcessed(static_cast<int64_t>(state.iterations()) * n);
|
|
delete[] src;
|
|
delete[] dst;
|
|
benchmark::DoNotOptimize(r);
|
|
}
|
|
BENCHMARK(BM_unaligned_memcpy)->DenseRange(1, 18)->Range(32, 8 << 20);
|
|
|
|
// memmove worst case: heavy overlap, but not always by the same amount.
|
|
// Also, the source and destination will often be unaligned.
|
|
void BM_memmove_worst_case(benchmark::State& state) {
|
|
const int n = state.range(0);
|
|
const int32_t kDeterministicSeed = 301;
|
|
const int kMaxOffset = 32;
|
|
char* src = new char[n + kMaxOffset];
|
|
memset(src, 'x', n + kMaxOffset);
|
|
size_t offsets[64];
|
|
RandomEngine rng(kDeterministicSeed);
|
|
std::uniform_int_distribution<size_t> random_to_max_offset(0, kMaxOffset);
|
|
for (size_t& offset : offsets) {
|
|
offset = random_to_max_offset(rng);
|
|
}
|
|
int r = 0, i = 0;
|
|
for (auto _ : state) {
|
|
memmove(src + offsets[i], src + offsets[i + 1], n);
|
|
r += src[0];
|
|
i = (i + 2) % arraysize(offsets);
|
|
}
|
|
state.SetBytesProcessed(static_cast<int64_t>(state.iterations()) * n);
|
|
delete[] src;
|
|
benchmark::DoNotOptimize(r);
|
|
}
|
|
BENCHMARK(BM_memmove_worst_case)->DenseRange(1, 18)->Range(32, 8 << 20);
|
|
|
|
// memmove cache-friendly: aligned and overlapping with 4k
|
|
// between the source and destination addresses.
|
|
void BM_memmove_cache_friendly(benchmark::State& state) {
|
|
const int n = state.range(0);
|
|
char* src = new char[n + 4096];
|
|
memset(src, 'x', n);
|
|
int r = 0;
|
|
while (state.KeepRunningBatch(2)) { // count each memmove as an iteration
|
|
memmove(src + 4096, src, n);
|
|
memmove(src, src + 4096, n);
|
|
r += src[0];
|
|
}
|
|
state.SetBytesProcessed(static_cast<int64_t>(state.iterations()) * n);
|
|
delete[] src;
|
|
benchmark::DoNotOptimize(r);
|
|
}
|
|
BENCHMARK(BM_memmove_cache_friendly)
|
|
->Arg(5 * 1024)
|
|
->Arg(10 * 1024)
|
|
->Range(16 << 10, 8 << 20);
|
|
|
|
// memmove best(?) case: aligned and non-overlapping.
|
|
void BM_memmove_aligned_non_overlapping(benchmark::State& state) {
|
|
CopyLoop(state, state.range(0), memmove);
|
|
}
|
|
BENCHMARK(BM_memmove_aligned_non_overlapping)
|
|
->DenseRange(1, 18)
|
|
->Range(32, 8 << 20);
|
|
|
|
// memset speed
|
|
void BM_memset(benchmark::State& state) {
|
|
const int n = state.range(0);
|
|
char* dst = new char[n];
|
|
int r = 0;
|
|
for (auto _ : state) {
|
|
memset(dst, 'x', n);
|
|
r += dst[0];
|
|
}
|
|
state.SetBytesProcessed(static_cast<int64_t>(state.iterations()) * n);
|
|
delete[] dst;
|
|
benchmark::DoNotOptimize(r);
|
|
}
|
|
BENCHMARK(BM_memset)->Range(8, 4096 << 10);
|
|
|
|
// Bandwidth (vectorization?) test: the ideal generated code will be limited
|
|
// by memory bandwidth. Even so-so generated code will max out memory bandwidth
|
|
// on some machines.
|
|
void BM_membandwidth(benchmark::State& state) {
|
|
const int n = state.range(0);
|
|
CHECK_EQ(n % 32, 0); // We will read 32 bytes per iter.
|
|
char* dst = new char[n];
|
|
int r = 0;
|
|
for (auto _ : state) {
|
|
const uint32_t* p = reinterpret_cast<uint32_t*>(dst);
|
|
const uint32_t* limit = reinterpret_cast<uint32_t*>(dst + n);
|
|
uint32_t x = 0;
|
|
while (p < limit) {
|
|
x += p[0];
|
|
x += p[1];
|
|
x += p[2];
|
|
x += p[3];
|
|
x += p[4];
|
|
x += p[5];
|
|
x += p[6];
|
|
x += p[7];
|
|
p += 8;
|
|
}
|
|
r += x;
|
|
}
|
|
state.SetBytesProcessed(static_cast<int64_t>(state.iterations()) * n);
|
|
delete[] dst;
|
|
benchmark::DoNotOptimize(r);
|
|
}
|
|
BENCHMARK(BM_membandwidth)->Range(32, 16384 << 10);
|
|
|
|
// Helper for benchmarks. Repeatedly compares two strings that are
|
|
// either equal or different only in one character. If test_equal_strings
|
|
// is false then position_to_modify determines where the difference will be.
|
|
template <typename Function>
|
|
ABSL_ATTRIBUTE_ALWAYS_INLINE inline void StringCompareLoop(
|
|
benchmark::State& state, bool test_equal_strings,
|
|
std::string::size_type position_to_modify, int size, Function func) {
|
|
const int kIterMult = 4; // Iteration multiplier for better timing resolution
|
|
CHECK_GT(size, 0);
|
|
const bool position_to_modify_is_valid =
|
|
position_to_modify != std::string::npos && position_to_modify < size;
|
|
CHECK_NE(position_to_modify_is_valid, test_equal_strings);
|
|
if (!position_to_modify_is_valid) {
|
|
position_to_modify = 0;
|
|
}
|
|
std::string sa(size, 'a');
|
|
std::string sb = sa;
|
|
char last = sa[size - 1];
|
|
int num = 0;
|
|
for (auto _ : state) {
|
|
for (int i = 0; i < kIterMult; ++i) {
|
|
sb[position_to_modify] = test_equal_strings ? last : last ^ 1;
|
|
num += func(sa, sb);
|
|
}
|
|
}
|
|
state.SetBytesProcessed(static_cast<int64_t>(state.iterations()) * size);
|
|
benchmark::DoNotOptimize(num);
|
|
}
|
|
|
|
// Helper for benchmarks. Repeatedly compares two memory regions that are
|
|
// either equal or different only in their final character.
|
|
template <typename Function>
|
|
ABSL_ATTRIBUTE_ALWAYS_INLINE inline void CompareLoop(benchmark::State& state,
|
|
bool test_equal_strings,
|
|
int size, Function func) {
|
|
const int kIterMult = 4; // Iteration multiplier for better timing resolution
|
|
CHECK_GT(size, 0);
|
|
char* data = static_cast<char*>(malloc(size * 2));
|
|
memset(data, 'a', size * 2);
|
|
char* a = data;
|
|
char* b = data + size;
|
|
char last = a[size - 1];
|
|
int num = 0;
|
|
for (auto _ : state) {
|
|
for (int i = 0; i < kIterMult; ++i) {
|
|
b[size - 1] = test_equal_strings ? last : last ^ 1;
|
|
num += func(a, b, size);
|
|
}
|
|
}
|
|
state.SetBytesProcessed(static_cast<int64_t>(state.iterations()) * size);
|
|
benchmark::DoNotOptimize(num);
|
|
free(data);
|
|
}
|
|
|
|
void BM_memcmp(benchmark::State& state) {
|
|
CompareLoop(state, false, state.range(0), memcmp);
|
|
}
|
|
BENCHMARK(BM_memcmp)->DenseRange(1, 9)->Range(32, 8 << 20);
|
|
|
|
void BM_fastmemcmp_inlined(benchmark::State& state) {
|
|
CompareLoop(state, false, state.range(0),
|
|
absl::strings_internal::fastmemcmp_inlined);
|
|
}
|
|
BENCHMARK(BM_fastmemcmp_inlined)->DenseRange(1, 9)->Range(32, 8 << 20);
|
|
|
|
void BM_memeq(benchmark::State& state) {
|
|
CompareLoop(state, false, state.range(0), absl::strings_internal::memeq);
|
|
}
|
|
BENCHMARK(BM_memeq)->DenseRange(1, 9)->Range(32, 8 << 20);
|
|
|
|
void BM_memeq_equal(benchmark::State& state) {
|
|
CompareLoop(state, true, state.range(0), absl::strings_internal::memeq);
|
|
}
|
|
BENCHMARK(BM_memeq_equal)->DenseRange(1, 9)->Range(32, 8 << 20);
|
|
|
|
bool StringLess(const std::string& x, const std::string& y) { return x < y; }
|
|
bool StringEqual(const std::string& x, const std::string& y) { return x == y; }
|
|
bool StdEqual(const std::string& x, const std::string& y) {
|
|
return x.size() == y.size() &&
|
|
std::equal(x.data(), x.data() + x.size(), y.data());
|
|
}
|
|
|
|
// Benchmark for x < y, where x and y are strings that differ in only their
|
|
// final char. That should be more-or-less the worst case for <.
|
|
void BM_string_less(benchmark::State& state) {
|
|
StringCompareLoop(state, false, state.range(0) - 1, state.range(0),
|
|
StringLess);
|
|
}
|
|
BENCHMARK(BM_string_less)->DenseRange(1, 9)->Range(32, 1 << 20);
|
|
|
|
// Benchmark for x < y, where x and y are strings that differ in only their
|
|
// first char. That should be more-or-less the best case for <.
|
|
void BM_string_less_easy(benchmark::State& state) {
|
|
StringCompareLoop(state, false, 0, state.range(0), StringLess);
|
|
}
|
|
BENCHMARK(BM_string_less_easy)->DenseRange(1, 9)->Range(32, 1 << 20);
|
|
|
|
void BM_string_equal(benchmark::State& state) {
|
|
StringCompareLoop(state, false, state.range(0) - 1, state.range(0),
|
|
StringEqual);
|
|
}
|
|
BENCHMARK(BM_string_equal)->DenseRange(1, 9)->Range(32, 1 << 20);
|
|
|
|
void BM_string_equal_equal(benchmark::State& state) {
|
|
StringCompareLoop(state, true, std::string::npos, state.range(0), StringEqual);
|
|
}
|
|
BENCHMARK(BM_string_equal_equal)->DenseRange(1, 9)->Range(32, 1 << 20);
|
|
|
|
void BM_std_equal(benchmark::State& state) {
|
|
StringCompareLoop(state, false, state.range(0) - 1, state.range(0), StdEqual);
|
|
}
|
|
BENCHMARK(BM_std_equal)->DenseRange(1, 9)->Range(32, 1 << 20);
|
|
|
|
void BM_std_equal_equal(benchmark::State& state) {
|
|
StringCompareLoop(state, true, std::string::npos, state.range(0), StdEqual);
|
|
}
|
|
BENCHMARK(BM_std_equal_equal)->DenseRange(1, 9)->Range(32, 1 << 20);
|
|
|
|
void BM_string_equal_unequal_lengths(benchmark::State& state) {
|
|
const int size = state.range(0);
|
|
std::string a(size, 'a');
|
|
std::string b(size + 1, 'a');
|
|
int count = 0;
|
|
for (auto _ : state) {
|
|
b[size - 1] = 'a';
|
|
count += (a == b);
|
|
}
|
|
benchmark::DoNotOptimize(count);
|
|
}
|
|
BENCHMARK(BM_string_equal_unequal_lengths)->Arg(1)->Arg(1 << 20);
|
|
|
|
void BM_stdstring_equal_unequal_lengths(benchmark::State& state) {
|
|
const int size = state.range(0);
|
|
std::string a(size, 'a');
|
|
std::string b(size + 1, 'a');
|
|
int count = 0;
|
|
for (auto _ : state) {
|
|
b[size - 1] = 'a';
|
|
count += (a == b);
|
|
}
|
|
benchmark::DoNotOptimize(count);
|
|
}
|
|
BENCHMARK(BM_stdstring_equal_unequal_lengths)->Arg(1)->Arg(1 << 20);
|
|
|
|
} // namespace
|