d43b7997c0
-- 7a9e8d95f795be037aa2dce4e44809ad0166aaec by Samuel Benzaquen <sbenza@google.com>: Make end() iterator be nullptr. This makes the creation of and comparison with end() smaller and faster. `find()!=end()` becomes leaner. PiperOrigin-RevId: 304681605 -- 8f3024979446b391b79b1b60ada7d00a504d6aa6 by Derek Mauro <dmauro@google.com>: Fix Bazel's distdir detection and prefer double brackets (bash recommendation) PiperOrigin-RevId: 304615725 -- f1d709cb4b2b3743d548b814dd19602fb057a5e6 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 304570545 -- 2bbfa5bda52057e1938a96c286ad33ff64e535e0 by Gennadiy Rozental <rogeeff@google.com>: Implement general storage case as aligned buffer. Aside from eliminating dynamic memory allocation for flag storage, we also saving 11 bytes per int flag, 15 bytes per double and string flag. PiperOrigin-RevId: 304511965 -- 9e1aed2a95d7d060f8b906fe8c67fc3ba537b521 by Derek Mauro <dmauro@google.com>: Use reserve to make a bad_alloc less likely in endian_test This happened once and shouldn't have happened, so it was probably just a flake, but might as well make this change. PiperOrigin-RevId: 304505572 -- c2faf22ba2d4d66753390e6959494214895581f0 by Gennadiy Rozental <rogeeff@google.com>: Use anonymous bit fields to enforce separation between const and mutable bit fields. We also move init_control field (which is now safe) to save 8 bytes per flag (based on size_tester output) PiperOrigin-RevId: 304505215 -- 7ec51250a84bb03e826b3caad64431e91748186a by Krzysztof Kosiński <krzysio@google.com>: Change the buffer size in AppendNumberUnit to constexpr. PiperOrigin-RevId: 304492779 -- a6c8db1be4f421ea7b7c02f7a01b4f48bad61883 by Gennadiy Rozental <rogeeff@google.com>: Add test cases for two word storage. Some additional tests were added for other storage kinds as well. These came about after I started to look into a coverage output and noticed that some cases (like reading flag values via reflection) were not covered by this test at all. It does not make sense to just add tests for two word values, so I've covered other storage kinds as well. PiperOrigin-RevId: 304432511 -- 2644ecc32e1215cd6451efcb2f1054fd77e7c812 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 304254681 -- 4949a6b20c2bb4b9b2c811f439ccb893abc08df5 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 304250274 GitOrigin-RevId: 7a9e8d95f795be037aa2dce4e44809ad0166aaec Change-Id: I01623de87355bec5cf87cc5932a1ca44cade9aae
922 lines
30 KiB
C++
922 lines
30 KiB
C++
// Copyright 2017 The Abseil Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
// The implementation of the absl::Duration class, which is declared in
|
|
// //absl/time.h. This class behaves like a numeric type; it has no public
|
|
// methods and is used only through the operators defined here.
|
|
//
|
|
// Implementation notes:
|
|
//
|
|
// An absl::Duration is represented as
|
|
//
|
|
// rep_hi_ : (int64_t) Whole seconds
|
|
// rep_lo_ : (uint32_t) Fractions of a second
|
|
//
|
|
// The seconds value (rep_hi_) may be positive or negative as appropriate.
|
|
// The fractional seconds (rep_lo_) is always a positive offset from rep_hi_.
|
|
// The API for Duration guarantees at least nanosecond resolution, which
|
|
// means rep_lo_ could have a max value of 1B - 1 if it stored nanoseconds.
|
|
// However, to utilize more of the available 32 bits of space in rep_lo_,
|
|
// we instead store quarters of a nanosecond in rep_lo_ resulting in a max
|
|
// value of 4B - 1. This allows us to correctly handle calculations like
|
|
// 0.5 nanos + 0.5 nanos = 1 nano. The following example shows the actual
|
|
// Duration rep using quarters of a nanosecond.
|
|
//
|
|
// 2.5 sec = {rep_hi_=2, rep_lo_=2000000000} // lo = 4 * 500000000
|
|
// -2.5 sec = {rep_hi_=-3, rep_lo_=2000000000}
|
|
//
|
|
// Infinite durations are represented as Durations with the rep_lo_ field set
|
|
// to all 1s.
|
|
//
|
|
// +InfiniteDuration:
|
|
// rep_hi_ : kint64max
|
|
// rep_lo_ : ~0U
|
|
//
|
|
// -InfiniteDuration:
|
|
// rep_hi_ : kint64min
|
|
// rep_lo_ : ~0U
|
|
//
|
|
// Arithmetic overflows/underflows to +/- infinity and saturates.
|
|
|
|
#if defined(_MSC_VER)
|
|
#include <winsock2.h> // for timeval
|
|
#endif
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cctype>
|
|
#include <cerrno>
|
|
#include <cmath>
|
|
#include <cstdint>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <ctime>
|
|
#include <functional>
|
|
#include <limits>
|
|
#include <string>
|
|
|
|
#include "absl/base/casts.h"
|
|
#include "absl/numeric/int128.h"
|
|
#include "absl/time/time.h"
|
|
|
|
namespace absl {
|
|
ABSL_NAMESPACE_BEGIN
|
|
|
|
namespace {
|
|
|
|
using time_internal::kTicksPerNanosecond;
|
|
using time_internal::kTicksPerSecond;
|
|
|
|
constexpr int64_t kint64max = std::numeric_limits<int64_t>::max();
|
|
constexpr int64_t kint64min = std::numeric_limits<int64_t>::min();
|
|
|
|
// Can't use std::isinfinite() because it doesn't exist on windows.
|
|
inline bool IsFinite(double d) {
|
|
if (std::isnan(d)) return false;
|
|
return d != std::numeric_limits<double>::infinity() &&
|
|
d != -std::numeric_limits<double>::infinity();
|
|
}
|
|
|
|
inline bool IsValidDivisor(double d) {
|
|
if (std::isnan(d)) return false;
|
|
return d != 0.0;
|
|
}
|
|
|
|
// Can't use std::round() because it is only available in C++11.
|
|
// Note that we ignore the possibility of floating-point over/underflow.
|
|
template <typename Double>
|
|
inline double Round(Double d) {
|
|
return d < 0 ? std::ceil(d - 0.5) : std::floor(d + 0.5);
|
|
}
|
|
|
|
// *sec may be positive or negative. *ticks must be in the range
|
|
// -kTicksPerSecond < *ticks < kTicksPerSecond. If *ticks is negative it
|
|
// will be normalized to a positive value by adjusting *sec accordingly.
|
|
inline void NormalizeTicks(int64_t* sec, int64_t* ticks) {
|
|
if (*ticks < 0) {
|
|
--*sec;
|
|
*ticks += kTicksPerSecond;
|
|
}
|
|
}
|
|
|
|
// Makes a uint128 from the absolute value of the given scalar.
|
|
inline uint128 MakeU128(int64_t a) {
|
|
uint128 u128 = 0;
|
|
if (a < 0) {
|
|
++u128;
|
|
++a; // Makes it safe to negate 'a'
|
|
a = -a;
|
|
}
|
|
u128 += static_cast<uint64_t>(a);
|
|
return u128;
|
|
}
|
|
|
|
// Makes a uint128 count of ticks out of the absolute value of the Duration.
|
|
inline uint128 MakeU128Ticks(Duration d) {
|
|
int64_t rep_hi = time_internal::GetRepHi(d);
|
|
uint32_t rep_lo = time_internal::GetRepLo(d);
|
|
if (rep_hi < 0) {
|
|
++rep_hi;
|
|
rep_hi = -rep_hi;
|
|
rep_lo = kTicksPerSecond - rep_lo;
|
|
}
|
|
uint128 u128 = static_cast<uint64_t>(rep_hi);
|
|
u128 *= static_cast<uint64_t>(kTicksPerSecond);
|
|
u128 += rep_lo;
|
|
return u128;
|
|
}
|
|
|
|
// Breaks a uint128 of ticks into a Duration.
|
|
inline Duration MakeDurationFromU128(uint128 u128, bool is_neg) {
|
|
int64_t rep_hi;
|
|
uint32_t rep_lo;
|
|
const uint64_t h64 = Uint128High64(u128);
|
|
const uint64_t l64 = Uint128Low64(u128);
|
|
if (h64 == 0) { // fastpath
|
|
const uint64_t hi = l64 / kTicksPerSecond;
|
|
rep_hi = static_cast<int64_t>(hi);
|
|
rep_lo = static_cast<uint32_t>(l64 - hi * kTicksPerSecond);
|
|
} else {
|
|
// kMaxRepHi64 is the high 64 bits of (2^63 * kTicksPerSecond).
|
|
// Any positive tick count whose high 64 bits are >= kMaxRepHi64
|
|
// is not representable as a Duration. A negative tick count can
|
|
// have its high 64 bits == kMaxRepHi64 but only when the low 64
|
|
// bits are all zero, otherwise it is not representable either.
|
|
const uint64_t kMaxRepHi64 = 0x77359400UL;
|
|
if (h64 >= kMaxRepHi64) {
|
|
if (is_neg && h64 == kMaxRepHi64 && l64 == 0) {
|
|
// Avoid trying to represent -kint64min below.
|
|
return time_internal::MakeDuration(kint64min);
|
|
}
|
|
return is_neg ? -InfiniteDuration() : InfiniteDuration();
|
|
}
|
|
const uint128 kTicksPerSecond128 = static_cast<uint64_t>(kTicksPerSecond);
|
|
const uint128 hi = u128 / kTicksPerSecond128;
|
|
rep_hi = static_cast<int64_t>(Uint128Low64(hi));
|
|
rep_lo =
|
|
static_cast<uint32_t>(Uint128Low64(u128 - hi * kTicksPerSecond128));
|
|
}
|
|
if (is_neg) {
|
|
rep_hi = -rep_hi;
|
|
if (rep_lo != 0) {
|
|
--rep_hi;
|
|
rep_lo = kTicksPerSecond - rep_lo;
|
|
}
|
|
}
|
|
return time_internal::MakeDuration(rep_hi, rep_lo);
|
|
}
|
|
|
|
// Convert between int64_t and uint64_t, preserving representation. This
|
|
// allows us to do arithmetic in the unsigned domain, where overflow has
|
|
// well-defined behavior. See operator+=() and operator-=().
|
|
//
|
|
// C99 7.20.1.1.1, as referenced by C++11 18.4.1.2, says, "The typedef
|
|
// name intN_t designates a signed integer type with width N, no padding
|
|
// bits, and a two's complement representation." So, we can convert to
|
|
// and from the corresponding uint64_t value using a bit cast.
|
|
inline uint64_t EncodeTwosComp(int64_t v) {
|
|
return absl::bit_cast<uint64_t>(v);
|
|
}
|
|
inline int64_t DecodeTwosComp(uint64_t v) { return absl::bit_cast<int64_t>(v); }
|
|
|
|
// Note: The overflow detection in this function is done using greater/less *or
|
|
// equal* because kint64max/min is too large to be represented exactly in a
|
|
// double (which only has 53 bits of precision). In order to avoid assigning to
|
|
// rep->hi a double value that is too large for an int64_t (and therefore is
|
|
// undefined), we must consider computations that equal kint64max/min as a
|
|
// double as overflow cases.
|
|
inline bool SafeAddRepHi(double a_hi, double b_hi, Duration* d) {
|
|
double c = a_hi + b_hi;
|
|
if (c >= static_cast<double>(kint64max)) {
|
|
*d = InfiniteDuration();
|
|
return false;
|
|
}
|
|
if (c <= static_cast<double>(kint64min)) {
|
|
*d = -InfiniteDuration();
|
|
return false;
|
|
}
|
|
*d = time_internal::MakeDuration(c, time_internal::GetRepLo(*d));
|
|
return true;
|
|
}
|
|
|
|
// A functor that's similar to std::multiplies<T>, except this returns the max
|
|
// T value instead of overflowing. This is only defined for uint128.
|
|
template <typename Ignored>
|
|
struct SafeMultiply {
|
|
uint128 operator()(uint128 a, uint128 b) const {
|
|
// b hi is always zero because it originated as an int64_t.
|
|
assert(Uint128High64(b) == 0);
|
|
// Fastpath to avoid the expensive overflow check with division.
|
|
if (Uint128High64(a) == 0) {
|
|
return (((Uint128Low64(a) | Uint128Low64(b)) >> 32) == 0)
|
|
? static_cast<uint128>(Uint128Low64(a) * Uint128Low64(b))
|
|
: a * b;
|
|
}
|
|
return b == 0 ? b : (a > kuint128max / b) ? kuint128max : a * b;
|
|
}
|
|
};
|
|
|
|
// Scales (i.e., multiplies or divides, depending on the Operation template)
|
|
// the Duration d by the int64_t r.
|
|
template <template <typename> class Operation>
|
|
inline Duration ScaleFixed(Duration d, int64_t r) {
|
|
const uint128 a = MakeU128Ticks(d);
|
|
const uint128 b = MakeU128(r);
|
|
const uint128 q = Operation<uint128>()(a, b);
|
|
const bool is_neg = (time_internal::GetRepHi(d) < 0) != (r < 0);
|
|
return MakeDurationFromU128(q, is_neg);
|
|
}
|
|
|
|
// Scales (i.e., multiplies or divides, depending on the Operation template)
|
|
// the Duration d by the double r.
|
|
template <template <typename> class Operation>
|
|
inline Duration ScaleDouble(Duration d, double r) {
|
|
Operation<double> op;
|
|
double hi_doub = op(time_internal::GetRepHi(d), r);
|
|
double lo_doub = op(time_internal::GetRepLo(d), r);
|
|
|
|
double hi_int = 0;
|
|
double hi_frac = std::modf(hi_doub, &hi_int);
|
|
|
|
// Moves hi's fractional bits to lo.
|
|
lo_doub /= kTicksPerSecond;
|
|
lo_doub += hi_frac;
|
|
|
|
double lo_int = 0;
|
|
double lo_frac = std::modf(lo_doub, &lo_int);
|
|
|
|
// Rolls lo into hi if necessary.
|
|
int64_t lo64 = Round(lo_frac * kTicksPerSecond);
|
|
|
|
Duration ans;
|
|
if (!SafeAddRepHi(hi_int, lo_int, &ans)) return ans;
|
|
int64_t hi64 = time_internal::GetRepHi(ans);
|
|
if (!SafeAddRepHi(hi64, lo64 / kTicksPerSecond, &ans)) return ans;
|
|
hi64 = time_internal::GetRepHi(ans);
|
|
lo64 %= kTicksPerSecond;
|
|
NormalizeTicks(&hi64, &lo64);
|
|
return time_internal::MakeDuration(hi64, lo64);
|
|
}
|
|
|
|
// Tries to divide num by den as fast as possible by looking for common, easy
|
|
// cases. If the division was done, the quotient is in *q and the remainder is
|
|
// in *rem and true will be returned.
|
|
inline bool IDivFastPath(const Duration num, const Duration den, int64_t* q,
|
|
Duration* rem) {
|
|
// Bail if num or den is an infinity.
|
|
if (time_internal::IsInfiniteDuration(num) ||
|
|
time_internal::IsInfiniteDuration(den))
|
|
return false;
|
|
|
|
int64_t num_hi = time_internal::GetRepHi(num);
|
|
uint32_t num_lo = time_internal::GetRepLo(num);
|
|
int64_t den_hi = time_internal::GetRepHi(den);
|
|
uint32_t den_lo = time_internal::GetRepLo(den);
|
|
|
|
if (den_hi == 0 && den_lo == kTicksPerNanosecond) {
|
|
// Dividing by 1ns
|
|
if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000000000) {
|
|
*q = num_hi * 1000000000 + num_lo / kTicksPerNanosecond;
|
|
*rem = time_internal::MakeDuration(0, num_lo % den_lo);
|
|
return true;
|
|
}
|
|
} else if (den_hi == 0 && den_lo == 100 * kTicksPerNanosecond) {
|
|
// Dividing by 100ns (common when converting to Universal time)
|
|
if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 10000000) {
|
|
*q = num_hi * 10000000 + num_lo / (100 * kTicksPerNanosecond);
|
|
*rem = time_internal::MakeDuration(0, num_lo % den_lo);
|
|
return true;
|
|
}
|
|
} else if (den_hi == 0 && den_lo == 1000 * kTicksPerNanosecond) {
|
|
// Dividing by 1us
|
|
if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000000) {
|
|
*q = num_hi * 1000000 + num_lo / (1000 * kTicksPerNanosecond);
|
|
*rem = time_internal::MakeDuration(0, num_lo % den_lo);
|
|
return true;
|
|
}
|
|
} else if (den_hi == 0 && den_lo == 1000000 * kTicksPerNanosecond) {
|
|
// Dividing by 1ms
|
|
if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000) {
|
|
*q = num_hi * 1000 + num_lo / (1000000 * kTicksPerNanosecond);
|
|
*rem = time_internal::MakeDuration(0, num_lo % den_lo);
|
|
return true;
|
|
}
|
|
} else if (den_hi > 0 && den_lo == 0) {
|
|
// Dividing by positive multiple of 1s
|
|
if (num_hi >= 0) {
|
|
if (den_hi == 1) {
|
|
*q = num_hi;
|
|
*rem = time_internal::MakeDuration(0, num_lo);
|
|
return true;
|
|
}
|
|
*q = num_hi / den_hi;
|
|
*rem = time_internal::MakeDuration(num_hi % den_hi, num_lo);
|
|
return true;
|
|
}
|
|
if (num_lo != 0) {
|
|
num_hi += 1;
|
|
}
|
|
int64_t quotient = num_hi / den_hi;
|
|
int64_t rem_sec = num_hi % den_hi;
|
|
if (rem_sec > 0) {
|
|
rem_sec -= den_hi;
|
|
quotient += 1;
|
|
}
|
|
if (num_lo != 0) {
|
|
rem_sec -= 1;
|
|
}
|
|
*q = quotient;
|
|
*rem = time_internal::MakeDuration(rem_sec, num_lo);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
namespace time_internal {
|
|
|
|
// The 'satq' argument indicates whether the quotient should saturate at the
|
|
// bounds of int64_t. If it does saturate, the difference will spill over to
|
|
// the remainder. If it does not saturate, the remainder remain accurate,
|
|
// but the returned quotient will over/underflow int64_t and should not be used.
|
|
int64_t IDivDuration(bool satq, const Duration num, const Duration den,
|
|
Duration* rem) {
|
|
int64_t q = 0;
|
|
if (IDivFastPath(num, den, &q, rem)) {
|
|
return q;
|
|
}
|
|
|
|
const bool num_neg = num < ZeroDuration();
|
|
const bool den_neg = den < ZeroDuration();
|
|
const bool quotient_neg = num_neg != den_neg;
|
|
|
|
if (time_internal::IsInfiniteDuration(num) || den == ZeroDuration()) {
|
|
*rem = num_neg ? -InfiniteDuration() : InfiniteDuration();
|
|
return quotient_neg ? kint64min : kint64max;
|
|
}
|
|
if (time_internal::IsInfiniteDuration(den)) {
|
|
*rem = num;
|
|
return 0;
|
|
}
|
|
|
|
const uint128 a = MakeU128Ticks(num);
|
|
const uint128 b = MakeU128Ticks(den);
|
|
uint128 quotient128 = a / b;
|
|
|
|
if (satq) {
|
|
// Limits the quotient to the range of int64_t.
|
|
if (quotient128 > uint128(static_cast<uint64_t>(kint64max))) {
|
|
quotient128 = quotient_neg ? uint128(static_cast<uint64_t>(kint64min))
|
|
: uint128(static_cast<uint64_t>(kint64max));
|
|
}
|
|
}
|
|
|
|
const uint128 remainder128 = a - quotient128 * b;
|
|
*rem = MakeDurationFromU128(remainder128, num_neg);
|
|
|
|
if (!quotient_neg || quotient128 == 0) {
|
|
return Uint128Low64(quotient128) & kint64max;
|
|
}
|
|
// The quotient needs to be negated, but we need to carefully handle
|
|
// quotient128s with the top bit on.
|
|
return -static_cast<int64_t>(Uint128Low64(quotient128 - 1) & kint64max) - 1;
|
|
}
|
|
|
|
} // namespace time_internal
|
|
|
|
//
|
|
// Additive operators.
|
|
//
|
|
|
|
Duration& Duration::operator+=(Duration rhs) {
|
|
if (time_internal::IsInfiniteDuration(*this)) return *this;
|
|
if (time_internal::IsInfiniteDuration(rhs)) return *this = rhs;
|
|
const int64_t orig_rep_hi = rep_hi_;
|
|
rep_hi_ =
|
|
DecodeTwosComp(EncodeTwosComp(rep_hi_) + EncodeTwosComp(rhs.rep_hi_));
|
|
if (rep_lo_ >= kTicksPerSecond - rhs.rep_lo_) {
|
|
rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_) + 1);
|
|
rep_lo_ -= kTicksPerSecond;
|
|
}
|
|
rep_lo_ += rhs.rep_lo_;
|
|
if (rhs.rep_hi_ < 0 ? rep_hi_ > orig_rep_hi : rep_hi_ < orig_rep_hi) {
|
|
return *this = rhs.rep_hi_ < 0 ? -InfiniteDuration() : InfiniteDuration();
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
Duration& Duration::operator-=(Duration rhs) {
|
|
if (time_internal::IsInfiniteDuration(*this)) return *this;
|
|
if (time_internal::IsInfiniteDuration(rhs)) {
|
|
return *this = rhs.rep_hi_ >= 0 ? -InfiniteDuration() : InfiniteDuration();
|
|
}
|
|
const int64_t orig_rep_hi = rep_hi_;
|
|
rep_hi_ =
|
|
DecodeTwosComp(EncodeTwosComp(rep_hi_) - EncodeTwosComp(rhs.rep_hi_));
|
|
if (rep_lo_ < rhs.rep_lo_) {
|
|
rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_) - 1);
|
|
rep_lo_ += kTicksPerSecond;
|
|
}
|
|
rep_lo_ -= rhs.rep_lo_;
|
|
if (rhs.rep_hi_ < 0 ? rep_hi_ < orig_rep_hi : rep_hi_ > orig_rep_hi) {
|
|
return *this = rhs.rep_hi_ >= 0 ? -InfiniteDuration() : InfiniteDuration();
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
//
|
|
// Multiplicative operators.
|
|
//
|
|
|
|
Duration& Duration::operator*=(int64_t r) {
|
|
if (time_internal::IsInfiniteDuration(*this)) {
|
|
const bool is_neg = (r < 0) != (rep_hi_ < 0);
|
|
return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();
|
|
}
|
|
return *this = ScaleFixed<SafeMultiply>(*this, r);
|
|
}
|
|
|
|
Duration& Duration::operator*=(double r) {
|
|
if (time_internal::IsInfiniteDuration(*this) || !IsFinite(r)) {
|
|
const bool is_neg = (std::signbit(r) != 0) != (rep_hi_ < 0);
|
|
return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();
|
|
}
|
|
return *this = ScaleDouble<std::multiplies>(*this, r);
|
|
}
|
|
|
|
Duration& Duration::operator/=(int64_t r) {
|
|
if (time_internal::IsInfiniteDuration(*this) || r == 0) {
|
|
const bool is_neg = (r < 0) != (rep_hi_ < 0);
|
|
return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();
|
|
}
|
|
return *this = ScaleFixed<std::divides>(*this, r);
|
|
}
|
|
|
|
Duration& Duration::operator/=(double r) {
|
|
if (time_internal::IsInfiniteDuration(*this) || !IsValidDivisor(r)) {
|
|
const bool is_neg = (std::signbit(r) != 0) != (rep_hi_ < 0);
|
|
return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();
|
|
}
|
|
return *this = ScaleDouble<std::divides>(*this, r);
|
|
}
|
|
|
|
Duration& Duration::operator%=(Duration rhs) {
|
|
time_internal::IDivDuration(false, *this, rhs, this);
|
|
return *this;
|
|
}
|
|
|
|
double FDivDuration(Duration num, Duration den) {
|
|
// Arithmetic with infinity is sticky.
|
|
if (time_internal::IsInfiniteDuration(num) || den == ZeroDuration()) {
|
|
return (num < ZeroDuration()) == (den < ZeroDuration())
|
|
? std::numeric_limits<double>::infinity()
|
|
: -std::numeric_limits<double>::infinity();
|
|
}
|
|
if (time_internal::IsInfiniteDuration(den)) return 0.0;
|
|
|
|
double a =
|
|
static_cast<double>(time_internal::GetRepHi(num)) * kTicksPerSecond +
|
|
time_internal::GetRepLo(num);
|
|
double b =
|
|
static_cast<double>(time_internal::GetRepHi(den)) * kTicksPerSecond +
|
|
time_internal::GetRepLo(den);
|
|
return a / b;
|
|
}
|
|
|
|
//
|
|
// Trunc/Floor/Ceil.
|
|
//
|
|
|
|
Duration Trunc(Duration d, Duration unit) {
|
|
return d - (d % unit);
|
|
}
|
|
|
|
Duration Floor(const Duration d, const Duration unit) {
|
|
const absl::Duration td = Trunc(d, unit);
|
|
return td <= d ? td : td - AbsDuration(unit);
|
|
}
|
|
|
|
Duration Ceil(const Duration d, const Duration unit) {
|
|
const absl::Duration td = Trunc(d, unit);
|
|
return td >= d ? td : td + AbsDuration(unit);
|
|
}
|
|
|
|
//
|
|
// Factory functions.
|
|
//
|
|
|
|
Duration DurationFromTimespec(timespec ts) {
|
|
if (static_cast<uint64_t>(ts.tv_nsec) < 1000 * 1000 * 1000) {
|
|
int64_t ticks = ts.tv_nsec * kTicksPerNanosecond;
|
|
return time_internal::MakeDuration(ts.tv_sec, ticks);
|
|
}
|
|
return Seconds(ts.tv_sec) + Nanoseconds(ts.tv_nsec);
|
|
}
|
|
|
|
Duration DurationFromTimeval(timeval tv) {
|
|
if (static_cast<uint64_t>(tv.tv_usec) < 1000 * 1000) {
|
|
int64_t ticks = tv.tv_usec * 1000 * kTicksPerNanosecond;
|
|
return time_internal::MakeDuration(tv.tv_sec, ticks);
|
|
}
|
|
return Seconds(tv.tv_sec) + Microseconds(tv.tv_usec);
|
|
}
|
|
|
|
//
|
|
// Conversion to other duration types.
|
|
//
|
|
|
|
int64_t ToInt64Nanoseconds(Duration d) {
|
|
if (time_internal::GetRepHi(d) >= 0 &&
|
|
time_internal::GetRepHi(d) >> 33 == 0) {
|
|
return (time_internal::GetRepHi(d) * 1000 * 1000 * 1000) +
|
|
(time_internal::GetRepLo(d) / kTicksPerNanosecond);
|
|
}
|
|
return d / Nanoseconds(1);
|
|
}
|
|
int64_t ToInt64Microseconds(Duration d) {
|
|
if (time_internal::GetRepHi(d) >= 0 &&
|
|
time_internal::GetRepHi(d) >> 43 == 0) {
|
|
return (time_internal::GetRepHi(d) * 1000 * 1000) +
|
|
(time_internal::GetRepLo(d) / (kTicksPerNanosecond * 1000));
|
|
}
|
|
return d / Microseconds(1);
|
|
}
|
|
int64_t ToInt64Milliseconds(Duration d) {
|
|
if (time_internal::GetRepHi(d) >= 0 &&
|
|
time_internal::GetRepHi(d) >> 53 == 0) {
|
|
return (time_internal::GetRepHi(d) * 1000) +
|
|
(time_internal::GetRepLo(d) / (kTicksPerNanosecond * 1000 * 1000));
|
|
}
|
|
return d / Milliseconds(1);
|
|
}
|
|
int64_t ToInt64Seconds(Duration d) {
|
|
int64_t hi = time_internal::GetRepHi(d);
|
|
if (time_internal::IsInfiniteDuration(d)) return hi;
|
|
if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi;
|
|
return hi;
|
|
}
|
|
int64_t ToInt64Minutes(Duration d) {
|
|
int64_t hi = time_internal::GetRepHi(d);
|
|
if (time_internal::IsInfiniteDuration(d)) return hi;
|
|
if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi;
|
|
return hi / 60;
|
|
}
|
|
int64_t ToInt64Hours(Duration d) {
|
|
int64_t hi = time_internal::GetRepHi(d);
|
|
if (time_internal::IsInfiniteDuration(d)) return hi;
|
|
if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi;
|
|
return hi / (60 * 60);
|
|
}
|
|
|
|
double ToDoubleNanoseconds(Duration d) {
|
|
return FDivDuration(d, Nanoseconds(1));
|
|
}
|
|
double ToDoubleMicroseconds(Duration d) {
|
|
return FDivDuration(d, Microseconds(1));
|
|
}
|
|
double ToDoubleMilliseconds(Duration d) {
|
|
return FDivDuration(d, Milliseconds(1));
|
|
}
|
|
double ToDoubleSeconds(Duration d) {
|
|
return FDivDuration(d, Seconds(1));
|
|
}
|
|
double ToDoubleMinutes(Duration d) {
|
|
return FDivDuration(d, Minutes(1));
|
|
}
|
|
double ToDoubleHours(Duration d) {
|
|
return FDivDuration(d, Hours(1));
|
|
}
|
|
|
|
timespec ToTimespec(Duration d) {
|
|
timespec ts;
|
|
if (!time_internal::IsInfiniteDuration(d)) {
|
|
int64_t rep_hi = time_internal::GetRepHi(d);
|
|
uint32_t rep_lo = time_internal::GetRepLo(d);
|
|
if (rep_hi < 0) {
|
|
// Tweak the fields so that unsigned division of rep_lo
|
|
// maps to truncation (towards zero) for the timespec.
|
|
rep_lo += kTicksPerNanosecond - 1;
|
|
if (rep_lo >= kTicksPerSecond) {
|
|
rep_hi += 1;
|
|
rep_lo -= kTicksPerSecond;
|
|
}
|
|
}
|
|
ts.tv_sec = rep_hi;
|
|
if (ts.tv_sec == rep_hi) { // no time_t narrowing
|
|
ts.tv_nsec = rep_lo / kTicksPerNanosecond;
|
|
return ts;
|
|
}
|
|
}
|
|
if (d >= ZeroDuration()) {
|
|
ts.tv_sec = std::numeric_limits<time_t>::max();
|
|
ts.tv_nsec = 1000 * 1000 * 1000 - 1;
|
|
} else {
|
|
ts.tv_sec = std::numeric_limits<time_t>::min();
|
|
ts.tv_nsec = 0;
|
|
}
|
|
return ts;
|
|
}
|
|
|
|
timeval ToTimeval(Duration d) {
|
|
timeval tv;
|
|
timespec ts = ToTimespec(d);
|
|
if (ts.tv_sec < 0) {
|
|
// Tweak the fields so that positive division of tv_nsec
|
|
// maps to truncation (towards zero) for the timeval.
|
|
ts.tv_nsec += 1000 - 1;
|
|
if (ts.tv_nsec >= 1000 * 1000 * 1000) {
|
|
ts.tv_sec += 1;
|
|
ts.tv_nsec -= 1000 * 1000 * 1000;
|
|
}
|
|
}
|
|
tv.tv_sec = ts.tv_sec;
|
|
if (tv.tv_sec != ts.tv_sec) { // narrowing
|
|
if (ts.tv_sec < 0) {
|
|
tv.tv_sec = std::numeric_limits<decltype(tv.tv_sec)>::min();
|
|
tv.tv_usec = 0;
|
|
} else {
|
|
tv.tv_sec = std::numeric_limits<decltype(tv.tv_sec)>::max();
|
|
tv.tv_usec = 1000 * 1000 - 1;
|
|
}
|
|
return tv;
|
|
}
|
|
tv.tv_usec = static_cast<int>(ts.tv_nsec / 1000); // suseconds_t
|
|
return tv;
|
|
}
|
|
|
|
std::chrono::nanoseconds ToChronoNanoseconds(Duration d) {
|
|
return time_internal::ToChronoDuration<std::chrono::nanoseconds>(d);
|
|
}
|
|
std::chrono::microseconds ToChronoMicroseconds(Duration d) {
|
|
return time_internal::ToChronoDuration<std::chrono::microseconds>(d);
|
|
}
|
|
std::chrono::milliseconds ToChronoMilliseconds(Duration d) {
|
|
return time_internal::ToChronoDuration<std::chrono::milliseconds>(d);
|
|
}
|
|
std::chrono::seconds ToChronoSeconds(Duration d) {
|
|
return time_internal::ToChronoDuration<std::chrono::seconds>(d);
|
|
}
|
|
std::chrono::minutes ToChronoMinutes(Duration d) {
|
|
return time_internal::ToChronoDuration<std::chrono::minutes>(d);
|
|
}
|
|
std::chrono::hours ToChronoHours(Duration d) {
|
|
return time_internal::ToChronoDuration<std::chrono::hours>(d);
|
|
}
|
|
|
|
//
|
|
// To/From string formatting.
|
|
//
|
|
|
|
namespace {
|
|
|
|
// Formats a positive 64-bit integer in the given field width. Note that
|
|
// it is up to the caller of Format64() to ensure that there is sufficient
|
|
// space before ep to hold the conversion.
|
|
char* Format64(char* ep, int width, int64_t v) {
|
|
do {
|
|
--width;
|
|
*--ep = '0' + (v % 10); // contiguous digits
|
|
} while (v /= 10);
|
|
while (--width >= 0) *--ep = '0'; // zero pad
|
|
return ep;
|
|
}
|
|
|
|
// Helpers for FormatDuration() that format 'n' and append it to 'out'
|
|
// followed by the given 'unit'. If 'n' formats to "0", nothing is
|
|
// appended (not even the unit).
|
|
|
|
// A type that encapsulates how to display a value of a particular unit. For
|
|
// values that are displayed with fractional parts, the precision indicates
|
|
// where to round the value. The precision varies with the display unit because
|
|
// a Duration can hold only quarters of a nanosecond, so displaying information
|
|
// beyond that is just noise.
|
|
//
|
|
// For example, a microsecond value of 42.00025xxxxx should not display beyond 5
|
|
// fractional digits, because it is in the noise of what a Duration can
|
|
// represent.
|
|
struct DisplayUnit {
|
|
const char* abbr;
|
|
int prec;
|
|
double pow10;
|
|
};
|
|
const DisplayUnit kDisplayNano = {"ns", 2, 1e2};
|
|
const DisplayUnit kDisplayMicro = {"us", 5, 1e5};
|
|
const DisplayUnit kDisplayMilli = {"ms", 8, 1e8};
|
|
const DisplayUnit kDisplaySec = {"s", 11, 1e11};
|
|
const DisplayUnit kDisplayMin = {"m", -1, 0.0}; // prec ignored
|
|
const DisplayUnit kDisplayHour = {"h", -1, 0.0}; // prec ignored
|
|
|
|
void AppendNumberUnit(std::string* out, int64_t n, DisplayUnit unit) {
|
|
char buf[sizeof("2562047788015216")]; // hours in max duration
|
|
char* const ep = buf + sizeof(buf);
|
|
char* bp = Format64(ep, 0, n);
|
|
if (*bp != '0' || bp + 1 != ep) {
|
|
out->append(bp, ep - bp);
|
|
out->append(unit.abbr);
|
|
}
|
|
}
|
|
|
|
// Note: unit.prec is limited to double's digits10 value (typically 15) so it
|
|
// always fits in buf[].
|
|
void AppendNumberUnit(std::string* out, double n, DisplayUnit unit) {
|
|
constexpr int kBufferSize = std::numeric_limits<double>::digits10;
|
|
const int prec = std::min(kBufferSize, unit.prec);
|
|
char buf[kBufferSize]; // also large enough to hold integer part
|
|
char* ep = buf + sizeof(buf);
|
|
double d = 0;
|
|
int64_t frac_part = Round(std::modf(n, &d) * unit.pow10);
|
|
int64_t int_part = d;
|
|
if (int_part != 0 || frac_part != 0) {
|
|
char* bp = Format64(ep, 0, int_part); // always < 1000
|
|
out->append(bp, ep - bp);
|
|
if (frac_part != 0) {
|
|
out->push_back('.');
|
|
bp = Format64(ep, prec, frac_part);
|
|
while (ep[-1] == '0') --ep;
|
|
out->append(bp, ep - bp);
|
|
}
|
|
out->append(unit.abbr);
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// From Go's doc at https://golang.org/pkg/time/#Duration.String
|
|
// [FormatDuration] returns a string representing the duration in the
|
|
// form "72h3m0.5s". Leading zero units are omitted. As a special
|
|
// case, durations less than one second format use a smaller unit
|
|
// (milli-, micro-, or nanoseconds) to ensure that the leading digit
|
|
// is non-zero. The zero duration formats as 0, with no unit.
|
|
std::string FormatDuration(Duration d) {
|
|
const Duration min_duration = Seconds(kint64min);
|
|
if (d == min_duration) {
|
|
// Avoid needing to negate kint64min by directly returning what the
|
|
// following code should produce in that case.
|
|
return "-2562047788015215h30m8s";
|
|
}
|
|
std::string s;
|
|
if (d < ZeroDuration()) {
|
|
s.append("-");
|
|
d = -d;
|
|
}
|
|
if (d == InfiniteDuration()) {
|
|
s.append("inf");
|
|
} else if (d < Seconds(1)) {
|
|
// Special case for durations with a magnitude < 1 second. The duration
|
|
// is printed as a fraction of a single unit, e.g., "1.2ms".
|
|
if (d < Microseconds(1)) {
|
|
AppendNumberUnit(&s, FDivDuration(d, Nanoseconds(1)), kDisplayNano);
|
|
} else if (d < Milliseconds(1)) {
|
|
AppendNumberUnit(&s, FDivDuration(d, Microseconds(1)), kDisplayMicro);
|
|
} else {
|
|
AppendNumberUnit(&s, FDivDuration(d, Milliseconds(1)), kDisplayMilli);
|
|
}
|
|
} else {
|
|
AppendNumberUnit(&s, IDivDuration(d, Hours(1), &d), kDisplayHour);
|
|
AppendNumberUnit(&s, IDivDuration(d, Minutes(1), &d), kDisplayMin);
|
|
AppendNumberUnit(&s, FDivDuration(d, Seconds(1)), kDisplaySec);
|
|
}
|
|
if (s.empty() || s == "-") {
|
|
s = "0";
|
|
}
|
|
return s;
|
|
}
|
|
|
|
namespace {
|
|
|
|
// A helper for ParseDuration() that parses a leading number from the given
|
|
// string and stores the result in *int_part/*frac_part/*frac_scale. The
|
|
// given string pointer is modified to point to the first unconsumed char.
|
|
bool ConsumeDurationNumber(const char** dpp, int64_t* int_part,
|
|
int64_t* frac_part, int64_t* frac_scale) {
|
|
*int_part = 0;
|
|
*frac_part = 0;
|
|
*frac_scale = 1; // invariant: *frac_part < *frac_scale
|
|
const char* start = *dpp;
|
|
for (; std::isdigit(**dpp); *dpp += 1) {
|
|
const int d = **dpp - '0'; // contiguous digits
|
|
if (*int_part > kint64max / 10) return false;
|
|
*int_part *= 10;
|
|
if (*int_part > kint64max - d) return false;
|
|
*int_part += d;
|
|
}
|
|
const bool int_part_empty = (*dpp == start);
|
|
if (**dpp != '.') return !int_part_empty;
|
|
for (*dpp += 1; std::isdigit(**dpp); *dpp += 1) {
|
|
const int d = **dpp - '0'; // contiguous digits
|
|
if (*frac_scale <= kint64max / 10) {
|
|
*frac_part *= 10;
|
|
*frac_part += d;
|
|
*frac_scale *= 10;
|
|
}
|
|
}
|
|
return !int_part_empty || *frac_scale != 1;
|
|
}
|
|
|
|
// A helper for ParseDuration() that parses a leading unit designator (e.g.,
|
|
// ns, us, ms, s, m, h) from the given string and stores the resulting unit
|
|
// in "*unit". The given string pointer is modified to point to the first
|
|
// unconsumed char.
|
|
bool ConsumeDurationUnit(const char** start, Duration* unit) {
|
|
const char *s = *start;
|
|
bool ok = true;
|
|
if (strncmp(s, "ns", 2) == 0) {
|
|
s += 2;
|
|
*unit = Nanoseconds(1);
|
|
} else if (strncmp(s, "us", 2) == 0) {
|
|
s += 2;
|
|
*unit = Microseconds(1);
|
|
} else if (strncmp(s, "ms", 2) == 0) {
|
|
s += 2;
|
|
*unit = Milliseconds(1);
|
|
} else if (strncmp(s, "s", 1) == 0) {
|
|
s += 1;
|
|
*unit = Seconds(1);
|
|
} else if (strncmp(s, "m", 1) == 0) {
|
|
s += 1;
|
|
*unit = Minutes(1);
|
|
} else if (strncmp(s, "h", 1) == 0) {
|
|
s += 1;
|
|
*unit = Hours(1);
|
|
} else {
|
|
ok = false;
|
|
}
|
|
*start = s;
|
|
return ok;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// From Go's doc at https://golang.org/pkg/time/#ParseDuration
|
|
// [ParseDuration] parses a duration string. A duration string is
|
|
// a possibly signed sequence of decimal numbers, each with optional
|
|
// fraction and a unit suffix, such as "300ms", "-1.5h" or "2h45m".
|
|
// Valid time units are "ns", "us" "ms", "s", "m", "h".
|
|
bool ParseDuration(const std::string& dur_string, Duration* d) {
|
|
const char* start = dur_string.c_str();
|
|
int sign = 1;
|
|
|
|
if (*start == '-' || *start == '+') {
|
|
sign = *start == '-' ? -1 : 1;
|
|
++start;
|
|
}
|
|
|
|
// Can't parse a duration from an empty string.
|
|
if (*start == '\0') {
|
|
return false;
|
|
}
|
|
|
|
// Special case for a string of "0".
|
|
if (*start == '0' && *(start + 1) == '\0') {
|
|
*d = ZeroDuration();
|
|
return true;
|
|
}
|
|
|
|
if (strcmp(start, "inf") == 0) {
|
|
*d = sign * InfiniteDuration();
|
|
return true;
|
|
}
|
|
|
|
Duration dur;
|
|
while (*start != '\0') {
|
|
int64_t int_part;
|
|
int64_t frac_part;
|
|
int64_t frac_scale;
|
|
Duration unit;
|
|
if (!ConsumeDurationNumber(&start, &int_part, &frac_part, &frac_scale) ||
|
|
!ConsumeDurationUnit(&start, &unit)) {
|
|
return false;
|
|
}
|
|
if (int_part != 0) dur += sign * int_part * unit;
|
|
if (frac_part != 0) dur += sign * frac_part * unit / frac_scale;
|
|
}
|
|
*d = dur;
|
|
return true;
|
|
}
|
|
|
|
bool AbslParseFlag(absl::string_view text, Duration* dst, std::string*) {
|
|
return ParseDuration(std::string(text), dst);
|
|
}
|
|
|
|
std::string AbslUnparseFlag(Duration d) { return FormatDuration(d); }
|
|
bool ParseFlag(const std::string& text, Duration* dst, std::string* ) {
|
|
return ParseDuration(text, dst);
|
|
}
|
|
|
|
std::string UnparseFlag(Duration d) { return FormatDuration(d); }
|
|
|
|
ABSL_NAMESPACE_END
|
|
} // namespace absl
|