0e7afdcbd2
-- 62058c9c008e23c787f35c1a5fe05851046a71f1 by Abseil Team <absl-team@google.com>: Fix some strange usage of INSTANTIATE_TEST_SUITE_P PiperOrigin-RevId: 264185105 -- 4400d84027d86415a2f9b81996ff22e7fd7aa30f by Derek Mauro <dmauro@google.com>: Disable testing std::string_view from nullptr on GCC >= GCC9. PiperOrigin-RevId: 264150587 -- 656d5a742ba48d025589709fad33ddae4b02c620 by Matt Calabrese <calabrese@google.com>: Fix `absl::any_cast` such that it properly works with qualifications. PiperOrigin-RevId: 263843429 -- 6ec89214a4ef2170bf069623a56ffd22863b748d by Abseil Team <absl-team@google.com>: Use macros to enable inline constexpr variables in compare.h when the compiler supports the feature. PiperOrigin-RevId: 263790677 -- a5171e0897195a0367fc08abce9504f813d027ff by Derek Mauro <dmauro@google.com>: Add the Apache License to files that are missing it. PiperOrigin-RevId: 263774164 -- 19e09a7ce8a0aac0a7d534e1799e4d73b63a1bb5 by Abseil Team <absl-team@google.com>: Update iter.position when moving up the tree in rebalance_after_delete. This field isn't read after the first iteration in rebalance_after_delete, and I think it's not a correctness issue, but it is read in try_merge_or_rebalance and potentially affects rebalancing decisions so it can affect performance. There's also an extremely unlikely potential for undefined behavior due to signed integer overflow since this field is only ever incremented in try_merge_or_rebalance (and position is an int). Basically though, I just don't think it makes sense to have this invalid iterator floating around here. PiperOrigin-RevId: 263770305 GitOrigin-RevId: 62058c9c008e23c787f35c1a5fe05851046a71f1 Change-Id: I1e2fb7cbfac7507dddedd181414ee35a5778f8f5
277 lines
9.5 KiB
C++
277 lines
9.5 KiB
C++
// Copyright 2017 The Abseil Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "absl/random/log_uniform_int_distribution.h"
|
|
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <random>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "gmock/gmock.h"
|
|
#include "gtest/gtest.h"
|
|
#include "absl/base/internal/raw_logging.h"
|
|
#include "absl/random/internal/chi_square.h"
|
|
#include "absl/random/internal/distribution_test_util.h"
|
|
#include "absl/random/internal/sequence_urbg.h"
|
|
#include "absl/random/random.h"
|
|
#include "absl/strings/str_cat.h"
|
|
#include "absl/strings/str_format.h"
|
|
#include "absl/strings/str_replace.h"
|
|
#include "absl/strings/strip.h"
|
|
|
|
namespace {
|
|
|
|
template <typename IntType>
|
|
class LogUniformIntDistributionTypeTest : public ::testing::Test {};
|
|
|
|
using IntTypes = ::testing::Types<int8_t, int16_t, int32_t, int64_t, //
|
|
uint8_t, uint16_t, uint32_t, uint64_t>;
|
|
TYPED_TEST_CASE(LogUniformIntDistributionTypeTest, IntTypes);
|
|
|
|
TYPED_TEST(LogUniformIntDistributionTypeTest, SerializeTest) {
|
|
using param_type =
|
|
typename absl::log_uniform_int_distribution<TypeParam>::param_type;
|
|
using Limits = std::numeric_limits<TypeParam>;
|
|
|
|
constexpr int kCount = 1000;
|
|
absl::InsecureBitGen gen;
|
|
for (const auto& param : {
|
|
param_type(0, 1), //
|
|
param_type(0, 2), //
|
|
param_type(0, 2, 10), //
|
|
param_type(9, 32, 4), //
|
|
param_type(1, 101, 10), //
|
|
param_type(1, Limits::max() / 2), //
|
|
param_type(0, Limits::max() - 1), //
|
|
param_type(0, Limits::max(), 2), //
|
|
param_type(0, Limits::max(), 10), //
|
|
param_type(Limits::min(), 0), //
|
|
param_type(Limits::lowest(), Limits::max()), //
|
|
param_type(Limits::min(), Limits::max()), //
|
|
}) {
|
|
// Validate parameters.
|
|
const auto min = param.min();
|
|
const auto max = param.max();
|
|
const auto base = param.base();
|
|
absl::log_uniform_int_distribution<TypeParam> before(min, max, base);
|
|
EXPECT_EQ(before.min(), param.min());
|
|
EXPECT_EQ(before.max(), param.max());
|
|
EXPECT_EQ(before.base(), param.base());
|
|
|
|
{
|
|
absl::log_uniform_int_distribution<TypeParam> via_param(param);
|
|
EXPECT_EQ(via_param, before);
|
|
}
|
|
|
|
// Validate stream serialization.
|
|
std::stringstream ss;
|
|
ss << before;
|
|
|
|
absl::log_uniform_int_distribution<TypeParam> after(3, 6, 17);
|
|
|
|
EXPECT_NE(before.max(), after.max());
|
|
EXPECT_NE(before.base(), after.base());
|
|
EXPECT_NE(before.param(), after.param());
|
|
EXPECT_NE(before, after);
|
|
|
|
ss >> after;
|
|
|
|
EXPECT_EQ(before.min(), after.min());
|
|
EXPECT_EQ(before.max(), after.max());
|
|
EXPECT_EQ(before.base(), after.base());
|
|
EXPECT_EQ(before.param(), after.param());
|
|
EXPECT_EQ(before, after);
|
|
|
|
// Smoke test.
|
|
auto sample_min = after.max();
|
|
auto sample_max = after.min();
|
|
for (int i = 0; i < kCount; i++) {
|
|
auto sample = after(gen);
|
|
EXPECT_GE(sample, after.min());
|
|
EXPECT_LE(sample, after.max());
|
|
if (sample > sample_max) sample_max = sample;
|
|
if (sample < sample_min) sample_min = sample;
|
|
}
|
|
ABSL_INTERNAL_LOG(INFO,
|
|
absl::StrCat("Range: ", +sample_min, ", ", +sample_max));
|
|
}
|
|
}
|
|
|
|
using log_uniform_i32 = absl::log_uniform_int_distribution<int32_t>;
|
|
|
|
class LogUniformIntChiSquaredTest
|
|
: public testing::TestWithParam<log_uniform_i32::param_type> {
|
|
public:
|
|
// The ChiSquaredTestImpl provides a chi-squared goodness of fit test for
|
|
// data generated by the log-uniform-int distribution.
|
|
double ChiSquaredTestImpl();
|
|
|
|
absl::InsecureBitGen rng_;
|
|
};
|
|
|
|
double LogUniformIntChiSquaredTest::ChiSquaredTestImpl() {
|
|
using absl::random_internal::kChiSquared;
|
|
|
|
const auto& param = GetParam();
|
|
|
|
// Check the distribution of L=log(log_uniform_int_distribution, base),
|
|
// expecting that L is roughly uniformly distributed, that is:
|
|
//
|
|
// P[L=0] ~= P[L=1] ~= ... ~= P[L=log(max)]
|
|
//
|
|
// For a total of X entries, each bucket should contain some number of samples
|
|
// in the interval [X/k - a, X/k + a].
|
|
//
|
|
// Where `a` is approximately sqrt(X/k). This is validated by bucketing
|
|
// according to the log function and using a chi-squared test for uniformity.
|
|
|
|
const bool is_2 = (param.base() == 2);
|
|
const double base_log = 1.0 / std::log(param.base());
|
|
const auto bucket_index = [base_log, is_2, ¶m](int32_t x) {
|
|
uint64_t y = static_cast<uint64_t>(x) - param.min();
|
|
return (y == 0) ? 0
|
|
: is_2 ? static_cast<int>(1 + std::log2(y))
|
|
: static_cast<int>(1 + std::log(y) * base_log);
|
|
};
|
|
const int max_bucket = bucket_index(param.max()); // inclusive
|
|
const size_t trials = 15 + (max_bucket + 1) * 10;
|
|
|
|
log_uniform_i32 dist(param);
|
|
|
|
std::vector<int64_t> buckets(max_bucket + 1);
|
|
for (size_t i = 0; i < trials; ++i) {
|
|
const auto sample = dist(rng_);
|
|
// Check the bounds.
|
|
ABSL_ASSERT(sample <= dist.max());
|
|
ABSL_ASSERT(sample >= dist.min());
|
|
// Convert the output of the generator to one of num_bucket buckets.
|
|
int bucket = bucket_index(sample);
|
|
ABSL_ASSERT(bucket <= max_bucket);
|
|
++buckets[bucket];
|
|
}
|
|
|
|
// The null-hypothesis is that the distribution is uniform with respect to
|
|
// log-uniform-int bucketization.
|
|
const int dof = buckets.size() - 1;
|
|
const double expected = trials / static_cast<double>(buckets.size());
|
|
|
|
const double threshold = absl::random_internal::ChiSquareValue(dof, 0.98);
|
|
|
|
double chi_square = absl::random_internal::ChiSquareWithExpected(
|
|
std::begin(buckets), std::end(buckets), expected);
|
|
|
|
const double p = absl::random_internal::ChiSquarePValue(chi_square, dof);
|
|
|
|
if (chi_square > threshold) {
|
|
ABSL_INTERNAL_LOG(INFO, "values");
|
|
for (size_t i = 0; i < buckets.size(); i++) {
|
|
ABSL_INTERNAL_LOG(INFO, absl::StrCat(i, ": ", buckets[i]));
|
|
}
|
|
ABSL_INTERNAL_LOG(INFO,
|
|
absl::StrFormat("trials=%d\n"
|
|
"%s(data, %d) = %f (%f)\n"
|
|
"%s @ 0.98 = %f",
|
|
trials, kChiSquared, dof, chi_square, p,
|
|
kChiSquared, threshold));
|
|
}
|
|
return p;
|
|
}
|
|
|
|
TEST_P(LogUniformIntChiSquaredTest, MultiTest) {
|
|
const int kTrials = 5;
|
|
|
|
int failures = 0;
|
|
for (int i = 0; i < kTrials; i++) {
|
|
double p_value = ChiSquaredTestImpl();
|
|
if (p_value < 0.005) {
|
|
failures++;
|
|
}
|
|
}
|
|
|
|
// There is a 0.10% chance of producing at least one failure, so raise the
|
|
// failure threshold high enough to allow for a flake rate < 10,000.
|
|
EXPECT_LE(failures, 4);
|
|
}
|
|
|
|
// Generate the parameters for the test.
|
|
std::vector<log_uniform_i32::param_type> GenParams() {
|
|
using Param = log_uniform_i32::param_type;
|
|
using Limits = std::numeric_limits<int32_t>;
|
|
|
|
return std::vector<Param>{
|
|
Param{0, 1, 2},
|
|
Param{1, 1, 2},
|
|
Param{0, 2, 2},
|
|
Param{0, 3, 2},
|
|
Param{0, 4, 2},
|
|
Param{0, 9, 10},
|
|
Param{0, 10, 10},
|
|
Param{0, 11, 10},
|
|
Param{1, 10, 10},
|
|
Param{0, (1 << 8) - 1, 2},
|
|
Param{0, (1 << 8), 2},
|
|
Param{0, (1 << 30) - 1, 2},
|
|
Param{-1000, 1000, 10},
|
|
Param{0, Limits::max(), 2},
|
|
Param{0, Limits::max(), 3},
|
|
Param{0, Limits::max(), 10},
|
|
Param{Limits::min(), 0},
|
|
Param{Limits::min(), Limits::max(), 2},
|
|
};
|
|
}
|
|
|
|
std::string ParamName(
|
|
const ::testing::TestParamInfo<log_uniform_i32::param_type>& info) {
|
|
const auto& p = info.param;
|
|
std::string name =
|
|
absl::StrCat("min_", p.min(), "__max_", p.max(), "__base_", p.base());
|
|
return absl::StrReplaceAll(name, {{"+", "_"}, {"-", "_"}, {".", "_"}});
|
|
}
|
|
|
|
INSTANTIATE_TEST_SUITE_P(All, LogUniformIntChiSquaredTest,
|
|
::testing::ValuesIn(GenParams()), ParamName);
|
|
|
|
// NOTE: absl::log_uniform_int_distribution is not guaranteed to be stable.
|
|
TEST(LogUniformIntDistributionTest, StabilityTest) {
|
|
using testing::ElementsAre;
|
|
// absl::uniform_int_distribution stability relies on
|
|
// absl::random_internal::LeadingSetBit, std::log, std::pow.
|
|
absl::random_internal::sequence_urbg urbg(
|
|
{0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
|
|
0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
|
|
0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
|
|
0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
|
|
|
|
std::vector<int> output(6);
|
|
|
|
{
|
|
absl::log_uniform_int_distribution<int32_t> dist(0, 256);
|
|
std::generate(std::begin(output), std::end(output),
|
|
[&] { return dist(urbg); });
|
|
EXPECT_THAT(output, ElementsAre(256, 66, 4, 6, 57, 103));
|
|
}
|
|
urbg.reset();
|
|
{
|
|
absl::log_uniform_int_distribution<int32_t> dist(0, 256, 10);
|
|
std::generate(std::begin(output), std::end(output),
|
|
[&] { return dist(urbg); });
|
|
EXPECT_THAT(output, ElementsAre(8, 4, 0, 0, 0, 69));
|
|
}
|
|
}
|
|
|
|
} // namespace
|