tvl-depot/absl/strings/cord.cc
Abseil Team c6954897f7 Export of internal Abseil changes
--
66a0a46462692378f77518f9db766a218bfac40b by Derek Mauro <dmauro@google.com>:

Internal change

PiperOrigin-RevId: 300565981

--
2a1ad67662b2e22beec7d3be019e6bba23c41c7f by Derek Mauro <dmauro@google.com>:

Fix CompressedTuple move constructor on MSVC
Imports GitHub #637

PiperOrigin-RevId: 300545840

--
a3ee3ad036bbb6b0031121fd58299e5c59a243e1 by Derek Mauro <dmauro@google.com>:

Disable LLVM's XRay instrumentation on Android
Fixes #626

PiperOrigin-RevId: 300540906

--
87999244b1f825e585ec12a431086cb60daeb24f by Gennadiy Rozental <rogeeff@google.com>:

Increase max cord depth by 2.
After reviewing of the paper we can prove that the algorithm in fact can lead to slightly larger max depth.

PiperOrigin-RevId: 300422376

--
98de175ee8ad33290ef883c167c2de4414a11007 by Abseil Team <absl-team@google.com>:

Use *opt/opt-> instead of opt.value() in an example, after checking the optional has a value.

PiperOrigin-RevId: 300253502

--
1107aa0acf0fe743ef50173e02e48f0d4eb572ef by Derek Mauro <dmauro@google.com>:

Stop overriding the default system C++ dialect in CMake

CMake on MacOS has some very strange defaults, like Wno-c++11-extensions,
and doesn't seem to respect CMAKE_CXX_STANDARD, so use CMAKE_CXX_FLAGS instead.

PiperOrigin-RevId: 300180753
GitOrigin-RevId: 66a0a46462692378f77518f9db766a218bfac40b
Change-Id: Icd7b84c49306441b012cb87f244cc92a11697db8
2020-03-12 12:46:00 -04:00

2012 lines
65 KiB
C++

// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/strings/cord.h"
#include <algorithm>
#include <cstddef>
#include <cstdio>
#include <cstdlib>
#include <iomanip>
#include <limits>
#include <ostream>
#include <sstream>
#include <type_traits>
#include <unordered_set>
#include <vector>
#include "absl/base/casts.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/port.h"
#include "absl/container/fixed_array.h"
#include "absl/strings/escaping.h"
#include "absl/strings/internal/cord_internal.h"
#include "absl/strings/internal/resize_uninitialized.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_format.h"
#include "absl/strings/str_join.h"
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
using ::absl::cord_internal::CordRep;
using ::absl::cord_internal::CordRepConcat;
using ::absl::cord_internal::CordRepExternal;
using ::absl::cord_internal::CordRepSubstring;
// Various representations that we allow
enum CordRepKind {
CONCAT = 0,
EXTERNAL = 1,
SUBSTRING = 2,
// We have different tags for different sized flat arrays,
// starting with FLAT
FLAT = 3,
};
namespace {
// Type used with std::allocator for allocating and deallocating
// `CordRepExternal`. std::allocator is used because it opaquely handles the
// different new / delete overloads available on a given platform.
struct alignas(absl::cord_internal::ExternalRepAlignment()) ExternalAllocType {
unsigned char value[absl::cord_internal::ExternalRepAlignment()];
};
// Returns the number of objects to pass in to std::allocator<ExternalAllocType>
// allocate() and deallocate() to create enough room for `CordRepExternal` with
// `releaser_size` bytes on the end.
constexpr size_t GetExternalAllocNumObjects(size_t releaser_size) {
// Be sure to round up since `releaser_size` could be smaller than
// `sizeof(ExternalAllocType)`.
return (sizeof(CordRepExternal) + releaser_size + sizeof(ExternalAllocType) -
1) /
sizeof(ExternalAllocType);
}
// Allocates enough memory for `CordRepExternal` and a releaser with size
// `releaser_size` bytes.
void* AllocateExternal(size_t releaser_size) {
return std::allocator<ExternalAllocType>().allocate(
GetExternalAllocNumObjects(releaser_size));
}
// Deallocates the memory for a `CordRepExternal` assuming it was allocated with
// a releaser of given size and alignment.
void DeallocateExternal(CordRepExternal* p, size_t releaser_size) {
std::allocator<ExternalAllocType>().deallocate(
reinterpret_cast<ExternalAllocType*>(p),
GetExternalAllocNumObjects(releaser_size));
}
// Returns a pointer to the type erased releaser for the given CordRepExternal.
void* GetExternalReleaser(CordRepExternal* rep) {
return rep + 1;
}
} // namespace
namespace cord_internal {
inline CordRepConcat* CordRep::concat() {
assert(tag == CONCAT);
return static_cast<CordRepConcat*>(this);
}
inline const CordRepConcat* CordRep::concat() const {
assert(tag == CONCAT);
return static_cast<const CordRepConcat*>(this);
}
inline CordRepSubstring* CordRep::substring() {
assert(tag == SUBSTRING);
return static_cast<CordRepSubstring*>(this);
}
inline const CordRepSubstring* CordRep::substring() const {
assert(tag == SUBSTRING);
return static_cast<const CordRepSubstring*>(this);
}
inline CordRepExternal* CordRep::external() {
assert(tag == EXTERNAL);
return static_cast<CordRepExternal*>(this);
}
inline const CordRepExternal* CordRep::external() const {
assert(tag == EXTERNAL);
return static_cast<const CordRepExternal*>(this);
}
using CordTreeConstPath = CordTreePath<const CordRep*, MaxCordDepth()>;
// This type is used to store the list of pending nodes during re-balancing.
// Its maximum size is 2 * MaxCordDepth() because the tree has a maximum
// possible depth of MaxCordDepth() and every concat node along a tree path
// could theoretically be split during rebalancing.
using RebalancingStack = CordTreePath<CordRep*, 2 * MaxCordDepth()>;
} // namespace cord_internal
static const size_t kFlatOverhead = offsetof(CordRep, data);
// Largest and smallest flat node lengths we are willing to allocate
// Flat allocation size is stored in tag, which currently can encode sizes up
// to 4K, encoded as multiple of either 8 or 32 bytes.
// If we allow for larger sizes, we need to change this to 8/64, 16/128, etc.
static constexpr size_t kMaxFlatSize = 4096;
static constexpr size_t kMaxFlatLength = kMaxFlatSize - kFlatOverhead;
static constexpr size_t kMinFlatLength = 32 - kFlatOverhead;
// Prefer copying blocks of at most this size, otherwise reference count.
static const size_t kMaxBytesToCopy = 511;
// Helper functions for rounded div, and rounding to exact sizes.
static size_t DivUp(size_t n, size_t m) { return (n + m - 1) / m; }
static size_t RoundUp(size_t n, size_t m) { return DivUp(n, m) * m; }
// Returns the size to the nearest equal or larger value that can be
// expressed exactly as a tag value.
static size_t RoundUpForTag(size_t size) {
return RoundUp(size, (size <= 1024) ? 8 : 32);
}
// Converts the allocated size to a tag, rounding down if the size
// does not exactly match a 'tag expressible' size value. The result is
// undefined if the size exceeds the maximum size that can be encoded in
// a tag, i.e., if size is larger than TagToAllocatedSize(<max tag>).
static uint8_t AllocatedSizeToTag(size_t size) {
const size_t tag = (size <= 1024) ? size / 8 : 128 + size / 32 - 1024 / 32;
assert(tag <= std::numeric_limits<uint8_t>::max());
return tag;
}
// Converts the provided tag to the corresponding allocated size
static constexpr size_t TagToAllocatedSize(uint8_t tag) {
return (tag <= 128) ? (tag * 8) : (1024 + (tag - 128) * 32);
}
// Converts the provided tag to the corresponding available data length
static constexpr size_t TagToLength(uint8_t tag) {
return TagToAllocatedSize(tag) - kFlatOverhead;
}
// Enforce that kMaxFlatSize maps to a well-known exact tag value.
static_assert(TagToAllocatedSize(224) == kMaxFlatSize, "Bad tag logic");
constexpr size_t Fibonacci(uint8_t n, const size_t a = 0, const size_t b = 1) {
return n == 0
? a
: n == 1 ? b
: Fibonacci(n - 1, b,
(a > (size_t(-1) - b)) ? size_t(-1) : a + b);
}
// Minimum length required for a given depth tree -- a tree is considered
// balanced if
// length(t) >= kMinLength[depth(t)]
// The node depth is allowed to become larger to reduce rebalancing
// for larger strings (see ShouldRebalance).
constexpr size_t kMinLength[] = {
Fibonacci(2), Fibonacci(3), Fibonacci(4), Fibonacci(5), Fibonacci(6),
Fibonacci(7), Fibonacci(8), Fibonacci(9), Fibonacci(10), Fibonacci(11),
Fibonacci(12), Fibonacci(13), Fibonacci(14), Fibonacci(15), Fibonacci(16),
Fibonacci(17), Fibonacci(18), Fibonacci(19), Fibonacci(20), Fibonacci(21),
Fibonacci(22), Fibonacci(23), Fibonacci(24), Fibonacci(25), Fibonacci(26),
Fibonacci(27), Fibonacci(28), Fibonacci(29), Fibonacci(30), Fibonacci(31),
Fibonacci(32), Fibonacci(33), Fibonacci(34), Fibonacci(35), Fibonacci(36),
Fibonacci(37), Fibonacci(38), Fibonacci(39), Fibonacci(40), Fibonacci(41),
Fibonacci(42), Fibonacci(43), Fibonacci(44), Fibonacci(45), Fibonacci(46),
Fibonacci(47), Fibonacci(48), Fibonacci(49), Fibonacci(50), Fibonacci(51),
Fibonacci(52), Fibonacci(53), Fibonacci(54), Fibonacci(55), Fibonacci(56),
Fibonacci(57), Fibonacci(58), Fibonacci(59), Fibonacci(60), Fibonacci(61),
Fibonacci(62), Fibonacci(63), Fibonacci(64), Fibonacci(65), Fibonacci(66),
Fibonacci(67), Fibonacci(68), Fibonacci(69), Fibonacci(70), Fibonacci(71),
Fibonacci(72), Fibonacci(73), Fibonacci(74), Fibonacci(75), Fibonacci(76),
Fibonacci(77), Fibonacci(78), Fibonacci(79), Fibonacci(80), Fibonacci(81),
Fibonacci(82), Fibonacci(83), Fibonacci(84), Fibonacci(85), Fibonacci(86),
Fibonacci(87), Fibonacci(88), Fibonacci(89), Fibonacci(90), Fibonacci(91),
Fibonacci(92), Fibonacci(93), Fibonacci(94), Fibonacci(95)};
static_assert(sizeof(kMinLength) / sizeof(size_t) >=
(cord_internal::MaxCordDepth() + 1),
"Not enough elements in kMinLength array to cover all the "
"supported Cord depth(s)");
inline bool ShouldRebalance(const CordRep* node) {
if (node->tag != CONCAT) return false;
size_t node_depth = node->concat()->depth();
if (node_depth <= 15) return false;
// Rebalancing Cords is expensive, so we reduce how often rebalancing occurs
// by allowing shallow Cords to have twice the depth that the Fibonacci rule
// would otherwise imply. Deep Cords need to follow the rule more closely,
// however to ensure algorithm correctness. We implement this with linear
// interpolation. Cords of depth 16 are treated as though they have a depth
// of 16 * 1/2, and Cords of depth MaxCordDepth() interpolate to
// MaxCordDepth() * 1.
return node->length <
kMinLength[(node_depth * (cord_internal::MaxCordDepth() - 16)) /
(2 * cord_internal::MaxCordDepth() - 16 - node_depth)];
}
// Unlike root balancing condition this one is part of the re-balancing
// algorithm and has to be always matching against right depth for
// algorithm to be correct.
inline bool IsNodeBalanced(const CordRep* node) {
if (node->tag != CONCAT) return true;
size_t node_depth = node->concat()->depth();
return node->length >= kMinLength[node_depth];
}
static CordRep* Rebalance(CordRep* node);
static void DumpNode(const CordRep* rep, bool include_data, std::ostream* os);
static bool VerifyNode(const CordRep* root, const CordRep* start_node,
bool full_validation);
static inline CordRep* VerifyTree(CordRep* node) {
// Verification is expensive, so only do it in debug mode.
// Even in debug mode we normally do only light validation.
// If you are debugging Cord itself, you should define the
// macro EXTRA_CORD_VALIDATION, e.g. by adding
// --copt=-DEXTRA_CORD_VALIDATION to the blaze line.
#ifdef EXTRA_CORD_VALIDATION
assert(node == nullptr || VerifyNode(node, node, /*full_validation=*/true));
#else // EXTRA_CORD_VALIDATION
assert(node == nullptr || VerifyNode(node, node, /*full_validation=*/false));
#endif // EXTRA_CORD_VALIDATION
static_cast<void>(&VerifyNode);
return node;
}
// --------------------------------------------------------------------
// Memory management
inline CordRep* Ref(CordRep* rep) {
if (rep != nullptr) {
rep->refcount.Increment();
}
return rep;
}
// This internal routine is called from the cold path of Unref below. Keeping it
// in a separate routine allows good inlining of Unref into many profitable call
// sites. However, the call to this function can be highly disruptive to the
// register pressure in those callers. To minimize the cost to callers, we use
// a special LLVM calling convention that preserves most registers. This allows
// the call to this routine in cold paths to not disrupt the caller's register
// pressure. This calling convention is not available on all platforms; we
// intentionally allow LLVM to ignore the attribute rather than attempting to
// hardcode the list of supported platforms.
#if defined(__clang__) && !defined(__i386__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wattributes"
__attribute__((preserve_most))
#pragma clang diagnostic pop
#endif
static void UnrefInternal(CordRep* rep) {
assert(rep != nullptr);
cord_internal::RebalancingStack pending;
while (true) {
if (rep->tag == CONCAT) {
CordRepConcat* rep_concat = rep->concat();
CordRep* right = rep_concat->right;
if (!right->refcount.Decrement()) {
pending.push_back(right);
}
CordRep* left = rep_concat->left;
delete rep_concat;
rep = nullptr;
if (!left->refcount.Decrement()) {
rep = left;
continue;
}
} else if (rep->tag == EXTERNAL) {
CordRepExternal* rep_external = rep->external();
absl::string_view data(rep_external->base, rep->length);
void* releaser = GetExternalReleaser(rep_external);
size_t releaser_size = rep_external->releaser_invoker(releaser, data);
rep_external->~CordRepExternal();
DeallocateExternal(rep_external, releaser_size);
rep = nullptr;
} else if (rep->tag == SUBSTRING) {
CordRepSubstring* rep_substring = rep->substring();
CordRep* child = rep_substring->child;
delete rep_substring;
rep = nullptr;
if (!child->refcount.Decrement()) {
rep = child;
continue;
}
} else {
// Flat CordReps are allocated and constructed with raw ::operator new
// and placement new, and must be destructed and deallocated
// accordingly.
#if defined(__cpp_sized_deallocation)
size_t size = TagToAllocatedSize(rep->tag);
rep->~CordRep();
::operator delete(rep, size);
#else
rep->~CordRep();
::operator delete(rep);
#endif
rep = nullptr;
}
if (!pending.empty()) {
rep = pending.back();
pending.pop_back();
} else {
break;
}
}
}
inline void Unref(CordRep* rep) {
// Fast-path for two common, hot cases: a null rep and a shared root.
if (ABSL_PREDICT_TRUE(rep == nullptr ||
rep->refcount.DecrementExpectHighRefcount())) {
return;
}
UnrefInternal(rep);
}
// Return the depth of a node
static int Depth(const CordRep* rep) {
if (rep->tag == CONCAT) {
return rep->concat()->depth();
} else {
return 0;
}
}
static void SetConcatChildren(CordRepConcat* concat, CordRep* left,
CordRep* right) {
concat->left = left;
concat->right = right;
concat->length = left->length + right->length;
concat->set_depth(1 + std::max(Depth(left), Depth(right)));
ABSL_INTERNAL_CHECK(concat->depth() <= cord_internal::MaxCordDepth(),
"Cord depth exceeds max");
ABSL_INTERNAL_CHECK(concat->length >= left->length, "Cord is too long");
ABSL_INTERNAL_CHECK(concat->length >= right->length, "Cord is too long");
}
// Create a concatenation of the specified nodes.
// Does not change the refcounts of "left" and "right".
// The returned node has a refcount of 1.
static CordRep* RawConcat(CordRep* left, CordRep* right) {
// Avoid making degenerate concat nodes (one child is empty)
if (left == nullptr || left->length == 0) {
Unref(left);
return right;
}
if (right == nullptr || right->length == 0) {
Unref(right);
return left;
}
CordRepConcat* rep = new CordRepConcat();
rep->tag = CONCAT;
SetConcatChildren(rep, left, right);
return rep;
}
static CordRep* Concat(CordRep* left, CordRep* right) {
CordRep* rep = RawConcat(left, right);
if (rep != nullptr && ShouldRebalance(rep)) {
rep = Rebalance(rep);
}
return VerifyTree(rep);
}
// Make a balanced tree out of an array of leaf nodes.
static CordRep* MakeBalancedTree(CordRep** reps, size_t n) {
// Make repeated passes over the array, merging adjacent pairs
// until we are left with just a single node.
while (n > 1) {
size_t dst = 0;
for (size_t src = 0; src < n; src += 2) {
if (src + 1 < n) {
reps[dst] = Concat(reps[src], reps[src + 1]);
} else {
reps[dst] = reps[src];
}
dst++;
}
n = dst;
}
return reps[0];
}
// Create a new flat node.
static CordRep* NewFlat(size_t length_hint) {
if (length_hint <= kMinFlatLength) {
length_hint = kMinFlatLength;
} else if (length_hint > kMaxFlatLength) {
length_hint = kMaxFlatLength;
}
// Round size up so it matches a size we can exactly express in a tag.
const size_t size = RoundUpForTag(length_hint + kFlatOverhead);
void* const raw_rep = ::operator new(size);
CordRep* rep = new (raw_rep) CordRep();
rep->tag = AllocatedSizeToTag(size);
return VerifyTree(rep);
}
// Create a new tree out of the specified array.
// The returned node has a refcount of 1.
static CordRep* NewTree(const char* data,
size_t length,
size_t alloc_hint) {
if (length == 0) return nullptr;
absl::FixedArray<CordRep*> reps((length - 1) / kMaxFlatLength + 1);
size_t n = 0;
do {
const size_t len = std::min(length, kMaxFlatLength);
CordRep* rep = NewFlat(len + alloc_hint);
rep->length = len;
memcpy(rep->data, data, len);
reps[n++] = VerifyTree(rep);
data += len;
length -= len;
} while (length != 0);
return MakeBalancedTree(reps.data(), n);
}
namespace cord_internal {
ExternalRepReleaserPair NewExternalWithUninitializedReleaser(
absl::string_view data, ExternalReleaserInvoker invoker,
size_t releaser_size) {
assert(!data.empty());
void* raw_rep = AllocateExternal(releaser_size);
auto* rep = new (raw_rep) CordRepExternal();
rep->length = data.size();
rep->tag = EXTERNAL;
rep->base = data.data();
rep->releaser_invoker = invoker;
return {VerifyTree(rep), GetExternalReleaser(rep)};
}
} // namespace cord_internal
static CordRep* NewSubstring(CordRep* child, size_t offset, size_t length) {
// Never create empty substring nodes
if (length == 0) {
Unref(child);
return nullptr;
} else {
CordRepSubstring* rep = new CordRepSubstring();
assert((offset + length) <= child->length);
rep->length = length;
rep->tag = SUBSTRING;
rep->start = offset;
rep->child = child;
return VerifyTree(rep);
}
}
// --------------------------------------------------------------------
// Cord::InlineRep functions
// This will trigger LNK2005 in MSVC.
#ifndef COMPILER_MSVC
const unsigned char Cord::InlineRep::kMaxInline;
#endif // COMPILER_MSVC
inline void Cord::InlineRep::set_data(const char* data, size_t n,
bool nullify_tail) {
static_assert(kMaxInline == 15, "set_data is hard-coded for a length of 15");
cord_internal::SmallMemmove(data_, data, n, nullify_tail);
data_[kMaxInline] = static_cast<char>(n);
}
inline char* Cord::InlineRep::set_data(size_t n) {
assert(n <= kMaxInline);
memset(data_, 0, sizeof(data_));
data_[kMaxInline] = static_cast<char>(n);
return data_;
}
inline CordRep* Cord::InlineRep::force_tree(size_t extra_hint) {
size_t len = data_[kMaxInline];
CordRep* result;
if (len > kMaxInline) {
memcpy(&result, data_, sizeof(result));
} else {
result = NewFlat(len + extra_hint);
result->length = len;
memcpy(result->data, data_, len);
set_tree(result);
}
return result;
}
inline void Cord::InlineRep::reduce_size(size_t n) {
size_t tag = data_[kMaxInline];
assert(tag <= kMaxInline);
assert(tag >= n);
tag -= n;
memset(data_ + tag, 0, n);
data_[kMaxInline] = static_cast<char>(tag);
}
inline void Cord::InlineRep::remove_prefix(size_t n) {
cord_internal::SmallMemmove(data_, data_ + n, data_[kMaxInline] - n);
reduce_size(n);
}
void Cord::InlineRep::AppendTree(CordRep* tree) {
if (tree == nullptr) return;
size_t len = data_[kMaxInline];
if (len == 0) {
set_tree(tree);
} else {
set_tree(Concat(force_tree(0), tree));
}
}
void Cord::InlineRep::PrependTree(CordRep* tree) {
if (tree == nullptr) return;
size_t len = data_[kMaxInline];
if (len == 0) {
set_tree(tree);
} else {
set_tree(Concat(tree, force_tree(0)));
}
}
// Searches for a non-full flat node at the rightmost leaf of the tree. If a
// suitable leaf is found, the function will update the length field for all
// nodes to account for the size increase. The append region address will be
// written to region and the actual size increase will be written to size.
static inline bool PrepareAppendRegion(CordRep* root, char** region,
size_t* size, size_t max_length) {
// Search down the right-hand path for a non-full FLAT node.
CordRep* dst = root;
while (dst->tag == CONCAT && dst->refcount.IsOne()) {
dst = dst->concat()->right;
}
if (dst->tag < FLAT || !dst->refcount.IsOne()) {
*region = nullptr;
*size = 0;
return false;
}
const size_t in_use = dst->length;
const size_t capacity = TagToLength(dst->tag);
if (in_use == capacity) {
*region = nullptr;
*size = 0;
return false;
}
size_t size_increase = std::min(capacity - in_use, max_length);
// We need to update the length fields for all nodes, including the leaf node.
for (CordRep* rep = root; rep != dst; rep = rep->concat()->right) {
rep->length += size_increase;
}
dst->length += size_increase;
*region = dst->data + in_use;
*size = size_increase;
return true;
}
void Cord::InlineRep::GetAppendRegion(char** region, size_t* size,
size_t max_length) {
if (max_length == 0) {
*region = nullptr;
*size = 0;
return;
}
// Try to fit in the inline buffer if possible.
size_t inline_length = data_[kMaxInline];
if (inline_length < kMaxInline && max_length <= kMaxInline - inline_length) {
*region = data_ + inline_length;
*size = max_length;
data_[kMaxInline] = static_cast<char>(inline_length + max_length);
return;
}
CordRep* root = force_tree(max_length);
if (PrepareAppendRegion(root, region, size, max_length)) {
return;
}
// Allocate new node.
CordRep* new_node =
NewFlat(std::max(static_cast<size_t>(root->length), max_length));
new_node->length =
std::min(static_cast<size_t>(TagToLength(new_node->tag)), max_length);
*region = new_node->data;
*size = new_node->length;
replace_tree(Concat(root, new_node));
}
void Cord::InlineRep::GetAppendRegion(char** region, size_t* size) {
const size_t max_length = std::numeric_limits<size_t>::max();
// Try to fit in the inline buffer if possible.
size_t inline_length = data_[kMaxInline];
if (inline_length < kMaxInline) {
*region = data_ + inline_length;
*size = kMaxInline - inline_length;
data_[kMaxInline] = kMaxInline;
return;
}
CordRep* root = force_tree(max_length);
if (PrepareAppendRegion(root, region, size, max_length)) {
return;
}
// Allocate new node.
CordRep* new_node = NewFlat(root->length);
new_node->length = TagToLength(new_node->tag);
*region = new_node->data;
*size = new_node->length;
replace_tree(Concat(root, new_node));
}
// If the rep is a leaf, this will increment the value at total_mem_usage and
// will return true.
static bool RepMemoryUsageLeaf(const CordRep* rep, size_t* total_mem_usage) {
if (rep->tag >= FLAT) {
*total_mem_usage += TagToAllocatedSize(rep->tag);
return true;
}
if (rep->tag == EXTERNAL) {
*total_mem_usage += sizeof(CordRepConcat) + rep->length;
return true;
}
return false;
}
void Cord::InlineRep::AssignSlow(const Cord::InlineRep& src) {
ClearSlow();
memcpy(data_, src.data_, sizeof(data_));
if (is_tree()) {
Ref(tree());
}
}
void Cord::InlineRep::ClearSlow() {
if (is_tree()) {
Unref(tree());
}
memset(data_, 0, sizeof(data_));
}
// --------------------------------------------------------------------
// Constructors and destructors
Cord::Cord(const Cord& src) : contents_(src.contents_) {
Ref(contents_.tree()); // Does nothing if contents_ has embedded data
}
Cord::Cord(absl::string_view src) {
const size_t n = src.size();
if (n <= InlineRep::kMaxInline) {
contents_.set_data(src.data(), n, false);
} else {
contents_.set_tree(NewTree(src.data(), n, 0));
}
}
// The destruction code is separate so that the compiler can determine
// that it does not need to call the destructor on a moved-from Cord.
void Cord::DestroyCordSlow() {
Unref(VerifyTree(contents_.tree()));
}
// --------------------------------------------------------------------
// Mutators
void Cord::Clear() {
Unref(contents_.clear());
}
Cord& Cord::operator=(absl::string_view src) {
const char* data = src.data();
size_t length = src.size();
CordRep* tree = contents_.tree();
if (length <= InlineRep::kMaxInline) {
// Embed into this->contents_
contents_.set_data(data, length, true);
Unref(tree);
return *this;
}
if (tree != nullptr && tree->tag >= FLAT &&
TagToLength(tree->tag) >= length && tree->refcount.IsOne()) {
// Copy in place if the existing FLAT node is reusable.
memmove(tree->data, data, length);
tree->length = length;
VerifyTree(tree);
return *this;
}
contents_.set_tree(NewTree(data, length, 0));
Unref(tree);
return *this;
}
// TODO(sanjay): Move to Cord::InlineRep section of file. For now,
// we keep it here to make diffs easier.
void Cord::InlineRep::AppendArray(const char* src_data, size_t src_size) {
if (src_size == 0) return; // memcpy(_, nullptr, 0) is undefined.
// Try to fit in the inline buffer if possible.
size_t inline_length = data_[kMaxInline];
if (inline_length < kMaxInline && src_size <= kMaxInline - inline_length) {
// Append new data to embedded array
data_[kMaxInline] = static_cast<char>(inline_length + src_size);
memcpy(data_ + inline_length, src_data, src_size);
return;
}
CordRep* root = tree();
size_t appended = 0;
if (root) {
char* region;
if (PrepareAppendRegion(root, &region, &appended, src_size)) {
memcpy(region, src_data, appended);
}
} else {
// It is possible that src_data == data_, but when we transition from an
// InlineRep to a tree we need to assign data_ = root via set_tree. To
// avoid corrupting the source data before we copy it, delay calling
// set_tree until after we've copied data.
// We are going from an inline size to beyond inline size. Make the new size
// either double the inlined size, or the added size + 10%.
const size_t size1 = inline_length * 2 + src_size;
const size_t size2 = inline_length + src_size / 10;
root = NewFlat(std::max<size_t>(size1, size2));
appended = std::min(src_size, TagToLength(root->tag) - inline_length);
memcpy(root->data, data_, inline_length);
memcpy(root->data + inline_length, src_data, appended);
root->length = inline_length + appended;
set_tree(root);
}
src_data += appended;
src_size -= appended;
if (src_size == 0) {
return;
}
// Use new block(s) for any remaining bytes that were not handled above.
// Alloc extra memory only if the right child of the root of the new tree is
// going to be a FLAT node, which will permit further inplace appends.
size_t length = src_size;
if (src_size < kMaxFlatLength) {
// The new length is either
// - old size + 10%
// - old_size + src_size
// This will cause a reasonable conservative step-up in size that is still
// large enough to avoid excessive amounts of small fragments being added.
length = std::max<size_t>(root->length / 10, src_size);
}
set_tree(Concat(root, NewTree(src_data, src_size, length - src_size)));
}
inline CordRep* Cord::TakeRep() const& {
return Ref(contents_.tree());
}
inline CordRep* Cord::TakeRep() && {
CordRep* rep = contents_.tree();
contents_.clear();
return rep;
}
template <typename C>
inline void Cord::AppendImpl(C&& src) {
if (empty()) {
// In case of an empty destination avoid allocating a new node, do not copy
// data.
*this = std::forward<C>(src);
return;
}
// For short cords, it is faster to copy data if there is room in dst.
const size_t src_size = src.contents_.size();
if (src_size <= kMaxBytesToCopy) {
CordRep* src_tree = src.contents_.tree();
if (src_tree == nullptr) {
// src has embedded data.
contents_.AppendArray(src.contents_.data(), src_size);
return;
}
if (src_tree->tag >= FLAT) {
// src tree just has one flat node.
contents_.AppendArray(src_tree->data, src_size);
return;
}
if (&src == this) {
// ChunkIterator below assumes that src is not modified during traversal.
Append(Cord(src));
return;
}
// TODO(mec): Should we only do this if "dst" has space?
for (absl::string_view chunk : src.Chunks()) {
Append(chunk);
}
return;
}
contents_.AppendTree(std::forward<C>(src).TakeRep());
}
void Cord::Append(const Cord& src) { AppendImpl(src); }
void Cord::Append(Cord&& src) { AppendImpl(std::move(src)); }
void Cord::Prepend(const Cord& src) {
CordRep* src_tree = src.contents_.tree();
if (src_tree != nullptr) {
Ref(src_tree);
contents_.PrependTree(src_tree);
return;
}
// `src` cord is inlined.
absl::string_view src_contents(src.contents_.data(), src.contents_.size());
return Prepend(src_contents);
}
void Cord::Prepend(absl::string_view src) {
if (src.empty()) return; // memcpy(_, nullptr, 0) is undefined.
size_t cur_size = contents_.size();
if (!contents_.is_tree() && cur_size + src.size() <= InlineRep::kMaxInline) {
// Use embedded storage.
char data[InlineRep::kMaxInline + 1] = {0};
data[InlineRep::kMaxInline] = cur_size + src.size(); // set size
memcpy(data, src.data(), src.size());
memcpy(data + src.size(), contents_.data(), cur_size);
memcpy(reinterpret_cast<void*>(&contents_), data,
InlineRep::kMaxInline + 1);
} else {
contents_.PrependTree(NewTree(src.data(), src.size(), 0));
}
}
static CordRep* RemovePrefixFrom(CordRep* node, size_t n) {
if (n >= node->length) return nullptr;
if (n == 0) return Ref(node);
cord_internal::CordTreeMutablePath rhs_stack;
while (node->tag == CONCAT) {
assert(n <= node->length);
if (n < node->concat()->left->length) {
// Push right to stack, descend left.
rhs_stack.push_back(node->concat()->right);
node = node->concat()->left;
} else {
// Drop left, descend right.
n -= node->concat()->left->length;
node = node->concat()->right;
}
}
assert(n <= node->length);
if (n == 0) {
Ref(node);
} else {
size_t start = n;
size_t len = node->length - n;
if (node->tag == SUBSTRING) {
// Consider in-place update of node, similar to in RemoveSuffixFrom().
start += node->substring()->start;
node = node->substring()->child;
}
node = NewSubstring(Ref(node), start, len);
}
while (!rhs_stack.empty()) {
node = Concat(node, Ref(rhs_stack.back()));
rhs_stack.pop_back();
}
return node;
}
// RemoveSuffixFrom() is very similar to RemovePrefixFrom(), with the
// exception that removing a suffix has an optimization where a node may be
// edited in place iff that node and all its ancestors have a refcount of 1.
static CordRep* RemoveSuffixFrom(CordRep* node, size_t n) {
if (n >= node->length) return nullptr;
if (n == 0) return Ref(node);
absl::cord_internal::CordTreeMutablePath lhs_stack;
bool inplace_ok = node->refcount.IsOne();
while (node->tag == CONCAT) {
assert(n <= node->length);
if (n < node->concat()->right->length) {
// Push left to stack, descend right.
lhs_stack.push_back(node->concat()->left);
node = node->concat()->right;
} else {
// Drop right, descend left.
n -= node->concat()->right->length;
node = node->concat()->left;
}
inplace_ok = inplace_ok && node->refcount.IsOne();
}
assert(n <= node->length);
if (n == 0) {
Ref(node);
} else if (inplace_ok && node->tag != EXTERNAL) {
// Consider making a new buffer if the current node capacity is much
// larger than the new length.
Ref(node);
node->length -= n;
} else {
size_t start = 0;
size_t len = node->length - n;
if (node->tag == SUBSTRING) {
start = node->substring()->start;
node = node->substring()->child;
}
node = NewSubstring(Ref(node), start, len);
}
while (!lhs_stack.empty()) {
node = Concat(Ref(lhs_stack.back()), node);
lhs_stack.pop_back();
}
return node;
}
void Cord::RemovePrefix(size_t n) {
ABSL_INTERNAL_CHECK(n <= size(),
absl::StrCat("Requested prefix size ", n,
" exceeds Cord's size ", size()));
CordRep* tree = contents_.tree();
if (tree == nullptr) {
contents_.remove_prefix(n);
} else {
CordRep* newrep = RemovePrefixFrom(tree, n);
Unref(tree);
contents_.replace_tree(VerifyTree(newrep));
}
}
void Cord::RemoveSuffix(size_t n) {
ABSL_INTERNAL_CHECK(n <= size(),
absl::StrCat("Requested suffix size ", n,
" exceeds Cord's size ", size()));
CordRep* tree = contents_.tree();
if (tree == nullptr) {
contents_.reduce_size(n);
} else {
CordRep* newrep = RemoveSuffixFrom(tree, n);
Unref(tree);
contents_.replace_tree(VerifyTree(newrep));
}
}
// Work item for NewSubRange().
struct SubRange {
SubRange() = default;
SubRange(CordRep* a_node, size_t a_pos, size_t a_n)
: node(a_node), pos(a_pos), n(a_n) {}
CordRep* node; // nullptr means concat last 2 results.
size_t pos;
size_t n;
};
static CordRep* NewSubRange(CordRep* node, size_t pos, size_t n) {
cord_internal::CordTreeMutablePath results;
// The algorithm below in worst case scenario adds up to 3 nodes to the `todo`
// list, but we also pop one out on every cycle. If original tree has depth d
// todo list can grew up to 2*d in size.
cord_internal::CordTreePath<SubRange, 2 * cord_internal::MaxCordDepth()> todo;
todo.push_back(SubRange(node, pos, n));
do {
const SubRange& sr = todo.back();
node = sr.node;
pos = sr.pos;
n = sr.n;
todo.pop_back();
if (node == nullptr) {
assert(results.size() >= 2);
CordRep* right = results.back();
results.pop_back();
CordRep* left = results.back();
results.pop_back();
results.push_back(Concat(left, right));
} else if (pos == 0 && n == node->length) {
results.push_back(Ref(node));
} else if (node->tag != CONCAT) {
if (node->tag == SUBSTRING) {
pos += node->substring()->start;
node = node->substring()->child;
}
results.push_back(NewSubstring(Ref(node), pos, n));
} else if (pos + n <= node->concat()->left->length) {
todo.push_back(SubRange(node->concat()->left, pos, n));
} else if (pos >= node->concat()->left->length) {
pos -= node->concat()->left->length;
todo.push_back(SubRange(node->concat()->right, pos, n));
} else {
size_t left_n = node->concat()->left->length - pos;
todo.push_back(SubRange(nullptr, 0, 0)); // Concat()
todo.push_back(SubRange(node->concat()->right, 0, n - left_n));
todo.push_back(SubRange(node->concat()->left, pos, left_n));
}
} while (!todo.empty());
assert(results.size() == 1);
return results.back();
}
Cord Cord::Subcord(size_t pos, size_t new_size) const {
Cord sub_cord;
size_t length = size();
if (pos > length) pos = length;
if (new_size > length - pos) new_size = length - pos;
CordRep* tree = contents_.tree();
if (tree == nullptr) {
// sub_cord is newly constructed, no need to re-zero-out the tail of
// contents_ memory.
sub_cord.contents_.set_data(contents_.data() + pos, new_size, false);
} else if (new_size == 0) {
// We want to return empty subcord, so nothing to do.
} else if (new_size <= InlineRep::kMaxInline) {
Cord::ChunkIterator it = chunk_begin();
it.AdvanceBytes(pos);
char* dest = sub_cord.contents_.data_;
size_t remaining_size = new_size;
while (remaining_size > it->size()) {
cord_internal::SmallMemmove(dest, it->data(), it->size());
remaining_size -= it->size();
dest += it->size();
++it;
}
cord_internal::SmallMemmove(dest, it->data(), remaining_size);
sub_cord.contents_.data_[InlineRep::kMaxInline] = new_size;
} else {
sub_cord.contents_.set_tree(NewSubRange(tree, pos, new_size));
}
return sub_cord;
}
// --------------------------------------------------------------------
// Balancing
class CordForest {
public:
explicit CordForest(size_t length) : root_length_(length), trees_({}) {}
void Build(CordRep* cord_root) {
// We are adding up to two nodes to the `pending` list, but we also popping
// one, so the size of `pending` will never exceed `MaxCordDepth()`.
cord_internal::CordTreeMutablePath pending(cord_root);
while (!pending.empty()) {
CordRep* node = pending.back();
pending.pop_back();
CheckNode(node);
if (ABSL_PREDICT_FALSE(node->tag != CONCAT)) {
AddNode(node);
continue;
}
CordRepConcat* concat_node = node->concat();
if (IsNodeBalanced(concat_node)) {
AddNode(node);
continue;
}
pending.push_back(concat_node->right);
pending.push_back(concat_node->left);
if (concat_node->refcount.IsOne()) {
concat_node->left = concat_freelist_;
concat_freelist_ = concat_node;
} else {
Ref(concat_node->right);
Ref(concat_node->left);
Unref(concat_node);
}
}
}
CordRep* ConcatNodes() {
CordRep* sum = nullptr;
for (auto* node : trees_) {
if (node == nullptr) continue;
sum = PrependNode(node, sum);
root_length_ -= node->length;
if (root_length_ == 0) break;
}
ABSL_INTERNAL_CHECK(sum != nullptr, "Failed to locate sum node");
return VerifyTree(sum);
}
private:
CordRep* AppendNode(CordRep* node, CordRep* sum) {
return (sum == nullptr) ? node : MakeConcat(sum, node);
}
CordRep* PrependNode(CordRep* node, CordRep* sum) {
return (sum == nullptr) ? node : MakeConcat(node, sum);
}
void AddNode(CordRep* node) {
CordRep* sum = nullptr;
// Collect together everything with which we will merge with node
int i = 0;
for (; node->length >= kMinLength[i + 1]; ++i) {
auto& tree_at_i = trees_[i];
if (tree_at_i == nullptr) continue;
sum = PrependNode(tree_at_i, sum);
tree_at_i = nullptr;
}
sum = AppendNode(node, sum);
// Insert sum into appropriate place in the forest
for (; sum->length >= kMinLength[i]; ++i) {
auto& tree_at_i = trees_[i];
if (tree_at_i == nullptr) continue;
sum = MakeConcat(tree_at_i, sum);
tree_at_i = nullptr;
}
// kMinLength[0] == 1, which means sum->length >= kMinLength[0]
assert(i > 0);
trees_[i - 1] = sum;
}
// Make concat node trying to resue existing CordRepConcat nodes we
// already collected in the concat_freelist_.
CordRep* MakeConcat(CordRep* left, CordRep* right) {
if (concat_freelist_ == nullptr) return RawConcat(left, right);
CordRepConcat* rep = concat_freelist_;
if (concat_freelist_->left == nullptr) {
concat_freelist_ = nullptr;
} else {
concat_freelist_ = concat_freelist_->left->concat();
}
SetConcatChildren(rep, left, right);
return rep;
}
static void CheckNode(CordRep* node) {
ABSL_INTERNAL_CHECK(node->length != 0u, "");
if (node->tag == CONCAT) {
ABSL_INTERNAL_CHECK(node->concat()->left != nullptr, "");
ABSL_INTERNAL_CHECK(node->concat()->right != nullptr, "");
ABSL_INTERNAL_CHECK(node->length == (node->concat()->left->length +
node->concat()->right->length),
"");
}
}
size_t root_length_;
std::array<cord_internal::CordRep*, cord_internal::MaxCordDepth()> trees_;
// List of concat nodes we can re-use for Cord balancing.
CordRepConcat* concat_freelist_ = nullptr;
};
static CordRep* Rebalance(CordRep* node) {
VerifyTree(node);
assert(node->tag == CONCAT);
if (node->length == 0) {
return nullptr;
}
CordForest forest(node->length);
forest.Build(node);
return forest.ConcatNodes();
}
// --------------------------------------------------------------------
// Comparators
namespace {
int ClampResult(int memcmp_res) {
return static_cast<int>(memcmp_res > 0) - static_cast<int>(memcmp_res < 0);
}
int CompareChunks(absl::string_view* lhs, absl::string_view* rhs,
size_t* size_to_compare) {
size_t compared_size = std::min(lhs->size(), rhs->size());
assert(*size_to_compare >= compared_size);
*size_to_compare -= compared_size;
int memcmp_res = ::memcmp(lhs->data(), rhs->data(), compared_size);
if (memcmp_res != 0) return memcmp_res;
lhs->remove_prefix(compared_size);
rhs->remove_prefix(compared_size);
return 0;
}
// This overload set computes comparison results from memcmp result. This
// interface is used inside GenericCompare below. Differet implementations
// are specialized for int and bool. For int we clamp result to {-1, 0, 1}
// set. For bool we just interested in "value == 0".
template <typename ResultType>
ResultType ComputeCompareResult(int memcmp_res) {
return ClampResult(memcmp_res);
}
template <>
bool ComputeCompareResult<bool>(int memcmp_res) {
return memcmp_res == 0;
}
} // namespace
// Helper routine. Locates the first flat chunk of the Cord without
// initializing the iterator.
inline absl::string_view Cord::InlineRep::FindFlatStartPiece() const {
size_t n = data_[kMaxInline];
if (n <= kMaxInline) {
return absl::string_view(data_, n);
}
CordRep* node = tree();
if (node->tag >= FLAT) {
return absl::string_view(node->data, node->length);
}
if (node->tag == EXTERNAL) {
return absl::string_view(node->external()->base, node->length);
}
// Walk down the left branches until we hit a non-CONCAT node.
while (node->tag == CONCAT) {
node = node->concat()->left;
}
// Get the child node if we encounter a SUBSTRING.
size_t offset = 0;
size_t length = node->length;
assert(length != 0);
if (node->tag == SUBSTRING) {
offset = node->substring()->start;
node = node->substring()->child;
}
if (node->tag >= FLAT) {
return absl::string_view(node->data + offset, length);
}
assert((node->tag == EXTERNAL) && "Expect FLAT or EXTERNAL node here");
return absl::string_view(node->external()->base + offset, length);
}
inline int Cord::CompareSlowPath(absl::string_view rhs, size_t compared_size,
size_t size_to_compare) const {
auto advance = [](Cord::ChunkIterator* it, absl::string_view* chunk) {
if (!chunk->empty()) return true;
++*it;
if (it->bytes_remaining_ == 0) return false;
*chunk = **it;
return true;
};
Cord::ChunkIterator lhs_it = chunk_begin();
// compared_size is inside first chunk.
absl::string_view lhs_chunk =
(lhs_it.bytes_remaining_ != 0) ? *lhs_it : absl::string_view();
assert(compared_size <= lhs_chunk.size());
assert(compared_size <= rhs.size());
lhs_chunk.remove_prefix(compared_size);
rhs.remove_prefix(compared_size);
size_to_compare -= compared_size; // skip already compared size.
while (advance(&lhs_it, &lhs_chunk) && !rhs.empty()) {
int comparison_result = CompareChunks(&lhs_chunk, &rhs, &size_to_compare);
if (comparison_result != 0) return comparison_result;
if (size_to_compare == 0) return 0;
}
return static_cast<int>(rhs.empty()) - static_cast<int>(lhs_chunk.empty());
}
inline int Cord::CompareSlowPath(const Cord& rhs, size_t compared_size,
size_t size_to_compare) const {
auto advance = [](Cord::ChunkIterator* it, absl::string_view* chunk) {
if (!chunk->empty()) return true;
++*it;
if (it->bytes_remaining_ == 0) return false;
*chunk = **it;
return true;
};
Cord::ChunkIterator lhs_it = chunk_begin();
Cord::ChunkIterator rhs_it = rhs.chunk_begin();
// compared_size is inside both first chunks.
absl::string_view lhs_chunk =
(lhs_it.bytes_remaining_ != 0) ? *lhs_it : absl::string_view();
absl::string_view rhs_chunk =
(rhs_it.bytes_remaining_ != 0) ? *rhs_it : absl::string_view();
assert(compared_size <= lhs_chunk.size());
assert(compared_size <= rhs_chunk.size());
lhs_chunk.remove_prefix(compared_size);
rhs_chunk.remove_prefix(compared_size);
size_to_compare -= compared_size; // skip already compared size.
while (advance(&lhs_it, &lhs_chunk) && advance(&rhs_it, &rhs_chunk)) {
int memcmp_res = CompareChunks(&lhs_chunk, &rhs_chunk, &size_to_compare);
if (memcmp_res != 0) return memcmp_res;
if (size_to_compare == 0) return 0;
}
return static_cast<int>(rhs_chunk.empty()) -
static_cast<int>(lhs_chunk.empty());
}
inline absl::string_view Cord::GetFirstChunk(const Cord& c) {
return c.contents_.FindFlatStartPiece();
}
inline absl::string_view Cord::GetFirstChunk(absl::string_view sv) {
return sv;
}
// Compares up to 'size_to_compare' bytes of 'lhs' with 'rhs'. It is assumed
// that 'size_to_compare' is greater that size of smallest of first chunks.
template <typename ResultType, typename RHS>
ResultType GenericCompare(const Cord& lhs, const RHS& rhs,
size_t size_to_compare) {
absl::string_view lhs_chunk = Cord::GetFirstChunk(lhs);
absl::string_view rhs_chunk = Cord::GetFirstChunk(rhs);
size_t compared_size = std::min(lhs_chunk.size(), rhs_chunk.size());
assert(size_to_compare >= compared_size);
int memcmp_res = ::memcmp(lhs_chunk.data(), rhs_chunk.data(), compared_size);
if (compared_size == size_to_compare || memcmp_res != 0) {
return ComputeCompareResult<ResultType>(memcmp_res);
}
return ComputeCompareResult<ResultType>(
lhs.CompareSlowPath(rhs, compared_size, size_to_compare));
}
bool Cord::EqualsImpl(absl::string_view rhs, size_t size_to_compare) const {
return GenericCompare<bool>(*this, rhs, size_to_compare);
}
bool Cord::EqualsImpl(const Cord& rhs, size_t size_to_compare) const {
return GenericCompare<bool>(*this, rhs, size_to_compare);
}
template <typename RHS>
inline int SharedCompareImpl(const Cord& lhs, const RHS& rhs) {
size_t lhs_size = lhs.size();
size_t rhs_size = rhs.size();
if (lhs_size == rhs_size) {
return GenericCompare<int>(lhs, rhs, lhs_size);
}
if (lhs_size < rhs_size) {
auto data_comp_res = GenericCompare<int>(lhs, rhs, lhs_size);
return data_comp_res == 0 ? -1 : data_comp_res;
}
auto data_comp_res = GenericCompare<int>(lhs, rhs, rhs_size);
return data_comp_res == 0 ? +1 : data_comp_res;
}
int Cord::Compare(absl::string_view rhs) const {
return SharedCompareImpl(*this, rhs);
}
int Cord::CompareImpl(const Cord& rhs) const {
return SharedCompareImpl(*this, rhs);
}
bool Cord::EndsWith(absl::string_view rhs) const {
size_t my_size = size();
size_t rhs_size = rhs.size();
if (my_size < rhs_size) return false;
Cord tmp(*this);
tmp.RemovePrefix(my_size - rhs_size);
return tmp.EqualsImpl(rhs, rhs_size);
}
bool Cord::EndsWith(const Cord& rhs) const {
size_t my_size = size();
size_t rhs_size = rhs.size();
if (my_size < rhs_size) return false;
Cord tmp(*this);
tmp.RemovePrefix(my_size - rhs_size);
return tmp.EqualsImpl(rhs, rhs_size);
}
// --------------------------------------------------------------------
// Misc.
Cord::operator std::string() const {
std::string s;
absl::CopyCordToString(*this, &s);
return s;
}
void CopyCordToString(const Cord& src, std::string* dst) {
if (!src.contents_.is_tree()) {
src.contents_.CopyTo(dst);
} else {
absl::strings_internal::STLStringResizeUninitialized(dst, src.size());
src.CopyToArraySlowPath(&(*dst)[0]);
}
}
void Cord::CopyToArraySlowPath(char* dst) const {
assert(contents_.is_tree());
absl::string_view fragment;
if (GetFlatAux(contents_.tree(), &fragment)) {
memcpy(dst, fragment.data(), fragment.size());
return;
}
for (absl::string_view chunk : Chunks()) {
memcpy(dst, chunk.data(), chunk.size());
dst += chunk.size();
}
}
Cord::ChunkIterator& Cord::ChunkIterator::operator++() {
assert(bytes_remaining_ > 0 && "Attempted to iterate past `end()`");
assert(bytes_remaining_ >= current_chunk_.size());
bytes_remaining_ -= current_chunk_.size();
if (stack_of_right_children_.empty()) {
assert(!current_chunk_.empty()); // Called on invalid iterator.
// We have reached the end of the Cord.
return *this;
}
// Process the next node on the stack.
CordRep* node = stack_of_right_children_.back();
stack_of_right_children_.pop_back();
// Walk down the left branches until we hit a non-CONCAT node. Save the
// right children to the stack for subsequent traversal.
while (node->tag == CONCAT) {
stack_of_right_children_.push_back(node->concat()->right);
node = node->concat()->left;
}
// Get the child node if we encounter a SUBSTRING.
size_t offset = 0;
size_t length = node->length;
if (node->tag == SUBSTRING) {
offset = node->substring()->start;
node = node->substring()->child;
}
assert(node->tag == EXTERNAL || node->tag >= FLAT);
assert(length != 0);
const char* data =
node->tag == EXTERNAL ? node->external()->base : node->data;
current_chunk_ = absl::string_view(data + offset, length);
current_leaf_ = node;
return *this;
}
Cord Cord::ChunkIterator::AdvanceAndReadBytes(size_t n) {
assert(bytes_remaining_ >= n && "Attempted to iterate past `end()`");
Cord subcord;
if (n <= InlineRep::kMaxInline) {
// Range to read fits in inline data. Flatten it.
char* data = subcord.contents_.set_data(n);
while (n > current_chunk_.size()) {
memcpy(data, current_chunk_.data(), current_chunk_.size());
data += current_chunk_.size();
n -= current_chunk_.size();
++*this;
}
memcpy(data, current_chunk_.data(), n);
if (n < current_chunk_.size()) {
RemoveChunkPrefix(n);
} else if (n > 0) {
++*this;
}
return subcord;
}
if (n < current_chunk_.size()) {
// Range to read is a proper subrange of the current chunk.
assert(current_leaf_ != nullptr);
CordRep* subnode = Ref(current_leaf_);
const char* data =
subnode->tag == EXTERNAL ? subnode->external()->base : subnode->data;
subnode = NewSubstring(subnode, current_chunk_.data() - data, n);
subcord.contents_.set_tree(VerifyTree(subnode));
RemoveChunkPrefix(n);
return subcord;
}
// Range to read begins with a proper subrange of the current chunk.
assert(!current_chunk_.empty());
assert(current_leaf_ != nullptr);
CordRep* subnode = Ref(current_leaf_);
if (current_chunk_.size() < subnode->length) {
const char* data =
subnode->tag == EXTERNAL ? subnode->external()->base : subnode->data;
subnode = NewSubstring(subnode, current_chunk_.data() - data,
current_chunk_.size());
}
n -= current_chunk_.size();
bytes_remaining_ -= current_chunk_.size();
// Process the next node(s) on the stack, reading whole subtrees depending on
// their length and how many bytes we are advancing.
CordRep* node = nullptr;
while (!stack_of_right_children_.empty()) {
node = stack_of_right_children_.back();
stack_of_right_children_.pop_back();
if (node->length > n) break;
// TODO(qrczak): This might unnecessarily recreate existing concat nodes.
// Avoiding that would need pretty complicated logic (instead of
// current_leaf_, keep current_subtree_ which points to the highest node
// such that the current leaf can be found on the path of left children
// starting from current_subtree_; delay creating subnode while node is
// below current_subtree_; find the proper node along the path of left
// children starting from current_subtree_ if this loop exits while staying
// below current_subtree_; etc.; alternatively, push parents instead of
// right children on the stack).
subnode = Concat(subnode, Ref(node));
n -= node->length;
bytes_remaining_ -= node->length;
node = nullptr;
}
if (node == nullptr) {
// We have reached the end of the Cord.
assert(bytes_remaining_ == 0);
subcord.contents_.set_tree(VerifyTree(subnode));
return subcord;
}
// Walk down the appropriate branches until we hit a non-CONCAT node. Save the
// right children to the stack for subsequent traversal.
while (node->tag == CONCAT) {
if (node->concat()->left->length > n) {
// Push right, descend left.
stack_of_right_children_.push_back(node->concat()->right);
node = node->concat()->left;
} else {
// Read left, descend right.
subnode = Concat(subnode, Ref(node->concat()->left));
n -= node->concat()->left->length;
bytes_remaining_ -= node->concat()->left->length;
node = node->concat()->right;
}
}
// Get the child node if we encounter a SUBSTRING.
size_t offset = 0;
size_t length = node->length;
if (node->tag == SUBSTRING) {
offset = node->substring()->start;
node = node->substring()->child;
}
// Range to read ends with a proper (possibly empty) subrange of the current
// chunk.
assert(node->tag == EXTERNAL || node->tag >= FLAT);
assert(length > n);
if (n > 0) subnode = Concat(subnode, NewSubstring(Ref(node), offset, n));
const char* data =
node->tag == EXTERNAL ? node->external()->base : node->data;
current_chunk_ = absl::string_view(data + offset + n, length - n);
current_leaf_ = node;
bytes_remaining_ -= n;
subcord.contents_.set_tree(VerifyTree(subnode));
return subcord;
}
void Cord::ChunkIterator::AdvanceBytesSlowPath(size_t n) {
assert(bytes_remaining_ >= n && "Attempted to iterate past `end()`");
assert(n >= current_chunk_.size()); // This should only be called when
// iterating to a new node.
n -= current_chunk_.size();
bytes_remaining_ -= current_chunk_.size();
// Process the next node(s) on the stack, skipping whole subtrees depending on
// their length and how many bytes we are advancing.
CordRep* node = nullptr;
while (!stack_of_right_children_.empty()) {
node = stack_of_right_children_.back();
stack_of_right_children_.pop_back();
if (node->length > n) break;
n -= node->length;
bytes_remaining_ -= node->length;
node = nullptr;
}
if (node == nullptr) {
// We have reached the end of the Cord.
assert(bytes_remaining_ == 0);
return;
}
// Walk down the appropriate branches until we hit a non-CONCAT node. Save the
// right children to the stack for subsequent traversal.
while (node->tag == CONCAT) {
if (node->concat()->left->length > n) {
// Push right, descend left.
stack_of_right_children_.push_back(node->concat()->right);
node = node->concat()->left;
} else {
// Skip left, descend right.
n -= node->concat()->left->length;
bytes_remaining_ -= node->concat()->left->length;
node = node->concat()->right;
}
}
// Get the child node if we encounter a SUBSTRING.
size_t offset = 0;
size_t length = node->length;
if (node->tag == SUBSTRING) {
offset = node->substring()->start;
node = node->substring()->child;
}
assert(node->tag == EXTERNAL || node->tag >= FLAT);
assert(length > n);
const char* data =
node->tag == EXTERNAL ? node->external()->base : node->data;
current_chunk_ = absl::string_view(data + offset + n, length - n);
current_leaf_ = node;
bytes_remaining_ -= n;
}
char Cord::operator[](size_t i) const {
assert(i < size());
size_t offset = i;
const CordRep* rep = contents_.tree();
if (rep == nullptr) {
return contents_.data()[i];
}
while (true) {
assert(rep != nullptr);
assert(offset < rep->length);
if (rep->tag >= FLAT) {
// Get the "i"th character directly from the flat array.
return rep->data[offset];
} else if (rep->tag == EXTERNAL) {
// Get the "i"th character from the external array.
return rep->external()->base[offset];
} else if (rep->tag == CONCAT) {
// Recursively branch to the side of the concatenation that the "i"th
// character is on.
size_t left_length = rep->concat()->left->length;
if (offset < left_length) {
rep = rep->concat()->left;
} else {
offset -= left_length;
rep = rep->concat()->right;
}
} else {
// This must be a substring a node, so bypass it to get to the child.
assert(rep->tag == SUBSTRING);
offset += rep->substring()->start;
rep = rep->substring()->child;
}
}
}
absl::string_view Cord::FlattenSlowPath() {
size_t total_size = size();
CordRep* new_rep;
char* new_buffer;
// Try to put the contents into a new flat rep. If they won't fit in the
// biggest possible flat node, use an external rep instead.
if (total_size <= kMaxFlatLength) {
new_rep = NewFlat(total_size);
new_rep->length = total_size;
new_buffer = new_rep->data;
CopyToArraySlowPath(new_buffer);
} else {
new_buffer = std::allocator<char>().allocate(total_size);
CopyToArraySlowPath(new_buffer);
new_rep = absl::cord_internal::NewExternalRep(
absl::string_view(new_buffer, total_size), [](absl::string_view s) {
std::allocator<char>().deallocate(const_cast<char*>(s.data()),
s.size());
});
}
Unref(contents_.tree());
contents_.set_tree(new_rep);
return absl::string_view(new_buffer, total_size);
}
/* static */ bool Cord::GetFlatAux(CordRep* rep, absl::string_view* fragment) {
assert(rep != nullptr);
if (rep->tag >= FLAT) {
*fragment = absl::string_view(rep->data, rep->length);
return true;
} else if (rep->tag == EXTERNAL) {
*fragment = absl::string_view(rep->external()->base, rep->length);
return true;
} else if (rep->tag == SUBSTRING) {
CordRep* child = rep->substring()->child;
if (child->tag >= FLAT) {
*fragment =
absl::string_view(child->data + rep->substring()->start, rep->length);
return true;
} else if (child->tag == EXTERNAL) {
*fragment = absl::string_view(
child->external()->base + rep->substring()->start, rep->length);
return true;
}
}
return false;
}
/* static */ void Cord::ForEachChunkAux(
absl::cord_internal::CordRep* rep,
absl::FunctionRef<void(absl::string_view)> callback) {
assert(rep != nullptr);
int stack_pos = 0;
constexpr int stack_max = 128;
// Stack of right branches for tree traversal
absl::cord_internal::CordRep* stack[stack_max];
absl::cord_internal::CordRep* current_node = rep;
while (true) {
if (current_node->tag == CONCAT) {
if (stack_pos == stack_max) {
// There's no more room on our stack array to add another right branch,
// and the idea is to avoid allocations, so call this function
// recursively to navigate this subtree further. (This is not something
// we expect to happen in practice).
ForEachChunkAux(current_node, callback);
// Pop the next right branch and iterate.
current_node = stack[--stack_pos];
continue;
} else {
// Save the right branch for later traversal and continue down the left
// branch.
stack[stack_pos++] = current_node->concat()->right;
current_node = current_node->concat()->left;
continue;
}
}
// This is a leaf node, so invoke our callback.
absl::string_view chunk;
bool success = GetFlatAux(current_node, &chunk);
assert(success);
if (success) {
callback(chunk);
}
if (stack_pos == 0) {
// end of traversal
return;
}
current_node = stack[--stack_pos];
}
}
static void DumpNode(const CordRep* rep, bool include_data, std::ostream* os) {
const int kIndentStep = 1;
int indent = 0;
cord_internal::CordTreeConstPath stack;
cord_internal::CordTreePath<int, cord_internal::MaxCordDepth()> indents;
for (;;) {
*os << std::setw(3) << rep->refcount.Get();
*os << " " << std::setw(7) << rep->length;
*os << " [";
if (include_data) *os << static_cast<const void*>(rep);
*os << "]";
*os << " " << (IsNodeBalanced(rep) ? 'b' : 'u');
*os << " " << std::setw(indent) << "";
if (rep->tag == CONCAT) {
*os << "CONCAT depth=" << Depth(rep) << "\n";
indent += kIndentStep;
indents.push_back(indent);
stack.push_back(rep->concat()->right);
rep = rep->concat()->left;
} else if (rep->tag == SUBSTRING) {
*os << "SUBSTRING @ " << rep->substring()->start << "\n";
indent += kIndentStep;
rep = rep->substring()->child;
} else { // Leaf
if (rep->tag == EXTERNAL) {
*os << "EXTERNAL [";
if (include_data)
*os << absl::CEscape(std::string(rep->external()->base, rep->length));
*os << "]\n";
} else {
*os << "FLAT cap=" << TagToLength(rep->tag) << " [";
if (include_data)
*os << absl::CEscape(absl::string_view(rep->data, rep->length));
*os << "]\n";
}
if (stack.empty()) break;
rep = stack.back();
stack.pop_back();
indent = indents.back();
indents.pop_back();
}
}
ABSL_INTERNAL_CHECK(indents.empty(), "");
}
static std::string ReportError(const CordRep* root, const CordRep* node) {
std::ostringstream buf;
buf << "Error at node " << node << " in:";
DumpNode(root, true, &buf);
return buf.str();
}
static bool VerifyNode(const CordRep* root, const CordRep* start_node,
bool full_validation) {
cord_internal::CordTreeConstPath worklist;
worklist.push_back(start_node);
do {
const CordRep* node = worklist.back();
worklist.pop_back();
ABSL_INTERNAL_CHECK(node != nullptr, ReportError(root, node));
if (node != root) {
ABSL_INTERNAL_CHECK(node->length != 0, ReportError(root, node));
}
if (node->tag == CONCAT) {
ABSL_INTERNAL_CHECK(node->concat()->left != nullptr,
ReportError(root, node));
ABSL_INTERNAL_CHECK(node->concat()->right != nullptr,
ReportError(root, node));
ABSL_INTERNAL_CHECK((node->length == node->concat()->left->length +
node->concat()->right->length),
ReportError(root, node));
if (full_validation) {
worklist.push_back(node->concat()->right);
worklist.push_back(node->concat()->left);
}
} else if (node->tag >= FLAT) {
ABSL_INTERNAL_CHECK(node->length <= TagToLength(node->tag),
ReportError(root, node));
} else if (node->tag == EXTERNAL) {
ABSL_INTERNAL_CHECK(node->external()->base != nullptr,
ReportError(root, node));
} else if (node->tag == SUBSTRING) {
ABSL_INTERNAL_CHECK(
node->substring()->start < node->substring()->child->length,
ReportError(root, node));
ABSL_INTERNAL_CHECK(node->substring()->start + node->length <=
node->substring()->child->length,
ReportError(root, node));
}
} while (!worklist.empty());
return true;
}
// Traverses the tree and computes the total memory allocated.
/* static */ size_t Cord::MemoryUsageAux(const CordRep* rep) {
size_t total_mem_usage = 0;
// Allow a quick exit for the common case that the root is a leaf.
if (RepMemoryUsageLeaf(rep, &total_mem_usage)) {
return total_mem_usage;
}
// Iterate over the tree. cur_node is never a leaf node and leaf nodes will
// never be appended to tree_stack. This reduces overhead from manipulating
// tree_stack.
cord_internal::CordTreeConstPath tree_stack;
const CordRep* cur_node = rep;
while (true) {
const CordRep* next_node = nullptr;
if (cur_node->tag == CONCAT) {
total_mem_usage += sizeof(CordRepConcat);
const CordRep* left = cur_node->concat()->left;
if (!RepMemoryUsageLeaf(left, &total_mem_usage)) {
next_node = left;
}
const CordRep* right = cur_node->concat()->right;
if (!RepMemoryUsageLeaf(right, &total_mem_usage)) {
if (next_node) {
tree_stack.push_back(next_node);
}
next_node = right;
}
} else {
// Since cur_node is not a leaf or a concat node it must be a substring.
assert(cur_node->tag == SUBSTRING);
total_mem_usage += sizeof(CordRepSubstring);
next_node = cur_node->substring()->child;
if (RepMemoryUsageLeaf(next_node, &total_mem_usage)) {
next_node = nullptr;
}
}
if (!next_node) {
if (tree_stack.empty()) {
return total_mem_usage;
}
next_node = tree_stack.back();
tree_stack.pop_back();
}
cur_node = next_node;
}
}
std::ostream& operator<<(std::ostream& out, const Cord& cord) {
for (absl::string_view chunk : cord.Chunks()) {
out.write(chunk.data(), chunk.size());
}
return out;
}
namespace strings_internal {
size_t CordTestAccess::FlatOverhead() { return kFlatOverhead; }
size_t CordTestAccess::MaxFlatLength() { return kMaxFlatLength; }
size_t CordTestAccess::FlatTagToLength(uint8_t tag) {
return TagToLength(tag);
}
uint8_t CordTestAccess::LengthToTag(size_t s) {
ABSL_INTERNAL_CHECK(s <= kMaxFlatLength, absl::StrCat("Invalid length ", s));
return AllocatedSizeToTag(s + kFlatOverhead);
}
size_t CordTestAccess::SizeofCordRepConcat() { return sizeof(CordRepConcat); }
size_t CordTestAccess::SizeofCordRepExternal() {
return sizeof(CordRepExternal);
}
size_t CordTestAccess::SizeofCordRepSubstring() {
return sizeof(CordRepSubstring);
}
} // namespace strings_internal
ABSL_NAMESPACE_END
} // namespace absl