tvl-depot/src/normalise.cc
Eelco Dolstra 555347744d * Derivation expressions now can specify arguments to be passed to the
builder.  Note that this unfortunately causes all Fix-computed
  hashes to change.
2003-08-15 12:32:37 +00:00

377 lines
11 KiB
C++

#include <map>
#include "normalise.hh"
#include "references.hh"
#include "db.hh"
#include "exec.hh"
#include "pathlocks.hh"
#include "globals.hh"
void registerSuccessor(const Transaction & txn,
const FSId & id1, const FSId & id2)
{
nixDB.setString(txn, dbSuccessors, id1, id2);
}
static FSId useSuccessor(const FSId & id)
{
string idSucc;
if (nixDB.queryString(noTxn, dbSuccessors, id, idSucc)) {
debug(format("successor %1% -> %2%") % (string) id % idSucc);
return parseHash(idSucc);
} else
return id;
}
typedef map<string, FSId> OutPaths;
typedef map<string, SliceElem> ElemMap;
Strings pathsFromOutPaths(const OutPaths & ps)
{
Strings ss;
for (OutPaths::const_iterator i = ps.begin();
i != ps.end(); i++)
ss.push_back(i->first);
return ss;
}
FSId normaliseFState(FSId id, FSIdSet pending)
{
Nest nest(lvlTalkative, format("normalising fstate %1%") % (string) id);
/* Try to substitute $id$ by any known successors in order to
speed up the rewrite process. */
id = useSuccessor(id);
/* Get the fstate expression. */
FState fs = parseFState(termFromId(id));
/* If this is a normal form (i.e., a slice) we are done. */
if (fs.type == FState::fsSlice) return id;
if (fs.type != FState::fsDerive) abort();
/* Otherwise, it's a derive expression, and we have to build it to
determine its normal form. */
/* Some variables. */
/* Output paths, with their ids. */
OutPaths outPaths;
/* Input paths, with their slice elements. */
ElemMap inMap;
/* Referencable paths (i.e., input and output paths). */
Strings refPaths;
/* The environment to be passed to the builder. */
Environment env;
/* Parse the outputs. */
for (DeriveOutputs::iterator i = fs.derive.outputs.begin();
i != fs.derive.outputs.end(); i++)
{
debug(format("building %1% in `%2%'") % (string) i->second % i->first);
outPaths[i->first] = i->second;
refPaths.push_back(i->first);
}
/* Obtain locks on all output paths. The locks are automatically
released when we exit this function or Nix crashes. */
PathLocks outputLocks(pathsFromOutPaths(outPaths));
/* Now check again whether there is a successor. This is because
another process may have started building in parallel. After
it has finished and released the locks, we can (and should)
reuse its results. (Strictly speaking the first successor
check above can be omitted, but that would be less efficient.)
Note that since we now hold the locks on the output paths, no
other process can build this expression, so no further checks
are necessary. */
{
FSId id2 = useSuccessor(id);
if (id2 != id) {
FState fs = parseFState(termFromId(id2));
debug(format("skipping build of %1%, someone beat us to it")
% (string) id);
if (fs.type != FState::fsSlice) abort();
return id2;
}
}
/* Right platform? */
if (fs.derive.platform != thisSystem)
throw Error(format("a `%1%' is required, but I am a `%2%'")
% fs.derive.platform % thisSystem);
/* Realise inputs (and remember all input paths). */
for (FSIds::iterator i = fs.derive.inputs.begin();
i != fs.derive.inputs.end(); i++) {
FSId nf = normaliseFState(*i, pending);
realiseSlice(nf, pending);
/* !!! nf should be a root of the garbage collector while we
are building */
FState fs = parseFState(termFromId(nf));
if (fs.type != FState::fsSlice) abort();
for (SliceElems::iterator j = fs.slice.elems.begin();
j != fs.slice.elems.end(); j++)
inMap[j->path] = *j;
}
for (ElemMap::iterator i = inMap.begin(); i != inMap.end(); i++)
refPaths.push_back(i->second.path);
/* Build the environment. */
for (StringPairs::iterator i = fs.derive.env.begin();
i != fs.derive.env.end(); i++)
env[i->first] = i->second;
/* We can skip running the builder if we can expand all output
paths from their ids. */
bool fastBuild = true;
for (OutPaths::iterator i = outPaths.begin();
i != outPaths.end(); i++)
{
try {
expandId(i->second, i->first, "/", pending);
} catch (Error & e) {
debug(format("fast build failed for `%1%': %2%")
% i->first % e.what());
fastBuild = false;
break;
}
}
if (!fastBuild) {
/* If any of the outputs already exist but are not registered,
delete them. */
for (OutPaths::iterator i = outPaths.begin();
i != outPaths.end(); i++)
{
string path = i->first;
FSId id;
if (queryPathId(path, id))
throw Error(format("obstructed build: path `%1%' exists") % path);
if (pathExists(path)) {
debug(format("removing unregistered path `%1%'") % path);
deletePath(path);
}
}
/* Run the builder. */
msg(lvlChatty, format("building..."));
runProgram(fs.derive.builder, fs.derive.args, env);
msg(lvlChatty, format("build completed"));
} else
msg(lvlChatty, format("fast build succesful"));
/* Check whether the output paths were created, and grep each
output path to determine what other paths it references. */
FSIdSet used;
for (OutPaths::iterator i = outPaths.begin();
i != outPaths.end(); i++)
{
string path = i->first;
if (!pathExists(path))
throw Error(format("path `%1%' does not exist") % path);
fs.slice.roots.push_back(i->second);
Strings refs = filterReferences(path, refPaths);
SliceElem elem;
elem.path = path;
elem.id = i->second;
for (Strings::iterator j = refs.begin(); j != refs.end(); j++) {
ElemMap::iterator k;
OutPaths::iterator l;
if ((k = inMap.find(*j)) != inMap.end()) {
elem.refs.push_back(k->second.id);
used.insert(k->second.id);
for (FSIds::iterator m = k->second.refs.begin();
m != k->second.refs.end(); m++)
used.insert(*m);
} else if ((l = outPaths.find(*j)) != outPaths.end()) {
elem.refs.push_back(l->second);
used.insert(l->second);
} else
throw Error(format("unknown referenced path `%1%'") % *j);
}
fs.slice.elems.push_back(elem);
}
for (ElemMap::iterator i = inMap.begin();
i != inMap.end(); i++)
{
FSIdSet::iterator j = used.find(i->second.id);
if (j == used.end())
debug(format("NOT referenced: `%1%'") % i->second.path);
else {
debug(format("referenced: `%1%'") % i->second.path);
fs.slice.elems.push_back(i->second);
}
}
/* Write the normal form. This does not have to occur in the
transaction below because writing terms is idem-potent. */
fs.type = FState::fsSlice;
ATerm nf = unparseFState(fs);
msg(lvlVomit, format("normal form: %1%") % printTerm(nf));
FSId idNF = writeTerm(nf, "-s-" + (string) id);
/* Register each outpat path, and register the normal form. This
is wrapped in one database transaction to ensure that if we
crash, either everything is registered or nothing is. This is
for recoverability: unregistered paths in the store can be
deleted arbitrarily, while registered paths can only be deleted
by running the garbage collector. */
Transaction txn(nixDB);
for (OutPaths::iterator i = outPaths.begin();
i != outPaths.end(); i++)
registerPath(txn, i->first, i->second);
registerSuccessor(txn, id, idNF);
txn.commit();
return idNF;
}
void realiseSlice(const FSId & id, FSIdSet pending)
{
Nest nest(lvlDebug,
format("realising slice %1%") % (string) id);
FState fs = parseFState(termFromId(id));
if (fs.type != FState::fsSlice)
throw Error(format("expected slice in %1%") % (string) id);
for (SliceElems::const_iterator i = fs.slice.elems.begin();
i != fs.slice.elems.end(); i++)
{
SliceElem elem = *i;
expandId(elem.id, elem.path, "/", pending);
}
}
Strings fstatePaths(const FSId & id)
{
Strings paths;
FState fs = parseFState(termFromId(id));
if (fs.type == FState::fsSlice) {
/* !!! fix complexity */
for (FSIds::const_iterator i = fs.slice.roots.begin();
i != fs.slice.roots.end(); i++)
for (SliceElems::const_iterator j = fs.slice.elems.begin();
j != fs.slice.elems.end(); j++)
if (*i == j->id) paths.push_back(j->path);
}
else if (fs.type == FState::fsDerive) {
for (DeriveOutputs::iterator i = fs.derive.outputs.begin();
i != fs.derive.outputs.end(); i++)
paths.push_back(i->first);
}
else abort();
return paths;
}
static void fstateRequisitesSet(const FSId & id,
bool includeExprs, bool includeSuccessors, StringSet & paths)
{
FState fs = parseFState(termFromId(id));
if (fs.type == FState::fsSlice) {
for (SliceElems::iterator i = fs.slice.elems.begin();
i != fs.slice.elems.end(); i++)
paths.insert(i->path);
}
else if (fs.type == FState::fsDerive) {
for (FSIds::iterator i = fs.derive.inputs.begin();
i != fs.derive.inputs.end(); i++)
fstateRequisitesSet(*i,
includeExprs, includeSuccessors, paths);
}
else abort();
if (includeExprs)
paths.insert(expandId(id));
string idSucc;
if (includeSuccessors &&
nixDB.queryString(noTxn, dbSuccessors, id, idSucc))
fstateRequisitesSet(parseHash(idSucc),
includeExprs, includeSuccessors, paths);
}
Strings fstateRequisites(const FSId & id,
bool includeExprs, bool includeSuccessors)
{
StringSet paths;
fstateRequisitesSet(id, includeExprs, includeSuccessors, paths);
return Strings(paths.begin(), paths.end());
}
FSIds findGenerators(const FSIds & _ids)
{
FSIdSet ids(_ids.begin(), _ids.end());
FSIds generators;
/* !!! hack; for performance, we just look at the rhs of successor
mappings, since we know that those are Nix expressions. */
Strings sucs;
nixDB.enumTable(noTxn, dbSuccessors, sucs);
for (Strings::iterator i = sucs.begin();
i != sucs.end(); i++)
{
string s;
if (!nixDB.queryString(noTxn, dbSuccessors, *i, s)) continue;
FSId id = parseHash(s);
FState fs;
try {
/* !!! should substitutes be used? */
fs = parseFState(termFromId(id));
} catch (...) { /* !!! only catch parse errors */
continue;
}
if (fs.type != FState::fsSlice) continue;
bool okay = true;
for (SliceElems::const_iterator i = fs.slice.elems.begin();
i != fs.slice.elems.end(); i++)
if (ids.find(i->id) == ids.end()) {
okay = false;
break;
}
if (!okay) continue;
generators.push_back(id);
}
return generators;
}