ba8d6cf077
-- 6769c6ebe79804063d68d70a5623a1475d63aeff by Alex Strelnikov <strel@google.com>: Import of CCTZ from GitHub. PiperOrigin-RevId: 202500218 -- c65cc4af08b8c48ca65f0816c1d2f59c7de7b0a5 by Derek Mauro <dmauro@google.com>: Fix DirectMMap on s390x (GitHub #135). This is *untested* because no s390x system is available. PiperOrigin-RevId: 202484458 -- 0ae7b628d7859cb3af169d007c29efd7917bb3ea by Abseil Team <absl-team@google.com>: Changes the Holder's compile-type type decision making to a std::conditional for improved readability PiperOrigin-RevId: 202340646 GitOrigin-RevId: 6769c6ebe79804063d68d70a5623a1475d63aeff Change-Id: I8f9d049ee279b1b1e3381fdf7e6fe9a4ea228306
483 lines
16 KiB
C++
483 lines
16 KiB
C++
// Copyright 2017 The Abseil Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
// -----------------------------------------------------------------------------
|
|
// File: fixed_array.h
|
|
// -----------------------------------------------------------------------------
|
|
//
|
|
// A `FixedArray<T>` represents a non-resizable array of `T` where the length of
|
|
// the array can be determined at run-time. It is a good replacement for
|
|
// non-standard and deprecated uses of `alloca()` and variable length arrays
|
|
// within the GCC extension. (See
|
|
// https://gcc.gnu.org/onlinedocs/gcc/Variable-Length.html).
|
|
//
|
|
// `FixedArray` allocates small arrays inline, keeping performance fast by
|
|
// avoiding heap operations. It also helps reduce the chances of
|
|
// accidentally overflowing your stack if large input is passed to
|
|
// your function.
|
|
|
|
#ifndef ABSL_CONTAINER_FIXED_ARRAY_H_
|
|
#define ABSL_CONTAINER_FIXED_ARRAY_H_
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <initializer_list>
|
|
#include <iterator>
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <new>
|
|
#include <type_traits>
|
|
|
|
#include "absl/algorithm/algorithm.h"
|
|
#include "absl/base/dynamic_annotations.h"
|
|
#include "absl/base/internal/throw_delegate.h"
|
|
#include "absl/base/macros.h"
|
|
#include "absl/base/optimization.h"
|
|
#include "absl/base/port.h"
|
|
#include "absl/memory/memory.h"
|
|
|
|
namespace absl {
|
|
|
|
constexpr static auto kFixedArrayUseDefault = static_cast<size_t>(-1);
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// FixedArray
|
|
// -----------------------------------------------------------------------------
|
|
//
|
|
// A `FixedArray` provides a run-time fixed-size array, allocating small arrays
|
|
// inline for efficiency and correctness.
|
|
//
|
|
// Most users should not specify an `inline_elements` argument and let
|
|
// `FixedArray<>` automatically determine the number of elements
|
|
// to store inline based on `sizeof(T)`. If `inline_elements` is specified, the
|
|
// `FixedArray<>` implementation will inline arrays of
|
|
// length <= `inline_elements`.
|
|
//
|
|
// Note that a `FixedArray` constructed with a `size_type` argument will
|
|
// default-initialize its values by leaving trivially constructible types
|
|
// uninitialized (e.g. int, int[4], double), and others default-constructed.
|
|
// This matches the behavior of c-style arrays and `std::array`, but not
|
|
// `std::vector`.
|
|
//
|
|
// Note that `FixedArray` does not provide a public allocator; if it requires a
|
|
// heap allocation, it will do so with global `::operator new[]()` and
|
|
// `::operator delete[]()`, even if T provides class-scope overrides for these
|
|
// operators.
|
|
template <typename T, size_t inlined = kFixedArrayUseDefault>
|
|
class FixedArray {
|
|
static_assert(!std::is_array<T>::value || std::extent<T>::value > 0,
|
|
"Arrays with unknown bounds cannot be used with FixedArray.");
|
|
static constexpr size_t kInlineBytesDefault = 256;
|
|
|
|
// std::iterator_traits isn't guaranteed to be SFINAE-friendly until C++17,
|
|
// but this seems to be mostly pedantic.
|
|
template <typename Iter>
|
|
using EnableIfForwardIterator = typename std::enable_if<
|
|
std::is_convertible<
|
|
typename std::iterator_traits<Iter>::iterator_category,
|
|
std::forward_iterator_tag>::value,
|
|
int>::type;
|
|
|
|
public:
|
|
// For playing nicely with stl:
|
|
using value_type = T;
|
|
using iterator = T*;
|
|
using const_iterator = const T*;
|
|
using reverse_iterator = std::reverse_iterator<iterator>;
|
|
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
|
|
using reference = T&;
|
|
using const_reference = const T&;
|
|
using pointer = T*;
|
|
using const_pointer = const T*;
|
|
using difference_type = ptrdiff_t;
|
|
using size_type = size_t;
|
|
|
|
static constexpr size_type inline_elements =
|
|
inlined == kFixedArrayUseDefault
|
|
? kInlineBytesDefault / sizeof(value_type)
|
|
: inlined;
|
|
|
|
FixedArray(const FixedArray& other)
|
|
: FixedArray(other.begin(), other.end()) {}
|
|
|
|
FixedArray(FixedArray&& other) noexcept(
|
|
// clang-format off
|
|
absl::allocator_is_nothrow<std::allocator<value_type>>::value &&
|
|
// clang-format on
|
|
std::is_nothrow_move_constructible<value_type>::value)
|
|
: FixedArray(std::make_move_iterator(other.begin()),
|
|
std::make_move_iterator(other.end())) {}
|
|
|
|
// Creates an array object that can store `n` elements.
|
|
// Note that trivially constructible elements will be uninitialized.
|
|
explicit FixedArray(size_type n) : rep_(n) {
|
|
absl::memory_internal::uninitialized_default_construct_n(rep_.begin(),
|
|
size());
|
|
}
|
|
|
|
// Creates an array initialized with `n` copies of `val`.
|
|
FixedArray(size_type n, const value_type& val) : rep_(n) {
|
|
std::uninitialized_fill_n(data(), size(), val);
|
|
}
|
|
|
|
// Creates an array initialized with the elements from the input
|
|
// range. The array's size will always be `std::distance(first, last)`.
|
|
// REQUIRES: Iter must be a forward_iterator or better.
|
|
template <typename Iter, EnableIfForwardIterator<Iter> = 0>
|
|
FixedArray(Iter first, Iter last) : rep_(std::distance(first, last)) {
|
|
std::uninitialized_copy(first, last, data());
|
|
}
|
|
|
|
// Creates the array from an initializer_list.
|
|
FixedArray(std::initializer_list<T> init_list)
|
|
: FixedArray(init_list.begin(), init_list.end()) {}
|
|
|
|
~FixedArray() noexcept {
|
|
for (Holder* cur = rep_.begin(); cur != rep_.end(); ++cur) {
|
|
cur->~Holder();
|
|
}
|
|
}
|
|
|
|
// Assignments are deleted because they break the invariant that the size of a
|
|
// `FixedArray` never changes.
|
|
void operator=(FixedArray&&) = delete;
|
|
void operator=(const FixedArray&) = delete;
|
|
|
|
// FixedArray::size()
|
|
//
|
|
// Returns the length of the fixed array.
|
|
size_type size() const { return rep_.size(); }
|
|
|
|
// FixedArray::max_size()
|
|
//
|
|
// Returns the largest possible value of `std::distance(begin(), end())` for a
|
|
// `FixedArray<T>`. This is equivalent to the most possible addressable bytes
|
|
// over the number of bytes taken by T.
|
|
constexpr size_type max_size() const {
|
|
return std::numeric_limits<difference_type>::max() / sizeof(value_type);
|
|
}
|
|
|
|
// FixedArray::empty()
|
|
//
|
|
// Returns whether or not the fixed array is empty.
|
|
bool empty() const { return size() == 0; }
|
|
|
|
// FixedArray::memsize()
|
|
//
|
|
// Returns the memory size of the fixed array in bytes.
|
|
size_t memsize() const { return size() * sizeof(value_type); }
|
|
|
|
// FixedArray::data()
|
|
//
|
|
// Returns a const T* pointer to elements of the `FixedArray`. This pointer
|
|
// can be used to access (but not modify) the contained elements.
|
|
const_pointer data() const { return AsValue(rep_.begin()); }
|
|
|
|
// Overload of FixedArray::data() to return a T* pointer to elements of the
|
|
// fixed array. This pointer can be used to access and modify the contained
|
|
// elements.
|
|
pointer data() { return AsValue(rep_.begin()); }
|
|
|
|
// FixedArray::operator[]
|
|
//
|
|
// Returns a reference the ith element of the fixed array.
|
|
// REQUIRES: 0 <= i < size()
|
|
reference operator[](size_type i) {
|
|
assert(i < size());
|
|
return data()[i];
|
|
}
|
|
|
|
// Overload of FixedArray::operator()[] to return a const reference to the
|
|
// ith element of the fixed array.
|
|
// REQUIRES: 0 <= i < size()
|
|
const_reference operator[](size_type i) const {
|
|
assert(i < size());
|
|
return data()[i];
|
|
}
|
|
|
|
// FixedArray::at
|
|
//
|
|
// Bounds-checked access. Returns a reference to the ith element of the
|
|
// fiexed array, or throws std::out_of_range
|
|
reference at(size_type i) {
|
|
if (ABSL_PREDICT_FALSE(i >= size())) {
|
|
base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check");
|
|
}
|
|
return data()[i];
|
|
}
|
|
|
|
// Overload of FixedArray::at() to return a const reference to the ith element
|
|
// of the fixed array.
|
|
const_reference at(size_type i) const {
|
|
if (ABSL_PREDICT_FALSE(i >= size())) {
|
|
base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check");
|
|
}
|
|
return data()[i];
|
|
}
|
|
|
|
// FixedArray::front()
|
|
//
|
|
// Returns a reference to the first element of the fixed array.
|
|
reference front() { return *begin(); }
|
|
|
|
// Overload of FixedArray::front() to return a reference to the first element
|
|
// of a fixed array of const values.
|
|
const_reference front() const { return *begin(); }
|
|
|
|
// FixedArray::back()
|
|
//
|
|
// Returns a reference to the last element of the fixed array.
|
|
reference back() { return *(end() - 1); }
|
|
|
|
// Overload of FixedArray::back() to return a reference to the last element
|
|
// of a fixed array of const values.
|
|
const_reference back() const { return *(end() - 1); }
|
|
|
|
// FixedArray::begin()
|
|
//
|
|
// Returns an iterator to the beginning of the fixed array.
|
|
iterator begin() { return data(); }
|
|
|
|
// Overload of FixedArray::begin() to return a const iterator to the
|
|
// beginning of the fixed array.
|
|
const_iterator begin() const { return data(); }
|
|
|
|
// FixedArray::cbegin()
|
|
//
|
|
// Returns a const iterator to the beginning of the fixed array.
|
|
const_iterator cbegin() const { return begin(); }
|
|
|
|
// FixedArray::end()
|
|
//
|
|
// Returns an iterator to the end of the fixed array.
|
|
iterator end() { return data() + size(); }
|
|
|
|
// Overload of FixedArray::end() to return a const iterator to the end of the
|
|
// fixed array.
|
|
const_iterator end() const { return data() + size(); }
|
|
|
|
// FixedArray::cend()
|
|
//
|
|
// Returns a const iterator to the end of the fixed array.
|
|
const_iterator cend() const { return end(); }
|
|
|
|
// FixedArray::rbegin()
|
|
//
|
|
// Returns a reverse iterator from the end of the fixed array.
|
|
reverse_iterator rbegin() { return reverse_iterator(end()); }
|
|
|
|
// Overload of FixedArray::rbegin() to return a const reverse iterator from
|
|
// the end of the fixed array.
|
|
const_reverse_iterator rbegin() const {
|
|
return const_reverse_iterator(end());
|
|
}
|
|
|
|
// FixedArray::crbegin()
|
|
//
|
|
// Returns a const reverse iterator from the end of the fixed array.
|
|
const_reverse_iterator crbegin() const { return rbegin(); }
|
|
|
|
// FixedArray::rend()
|
|
//
|
|
// Returns a reverse iterator from the beginning of the fixed array.
|
|
reverse_iterator rend() { return reverse_iterator(begin()); }
|
|
|
|
// Overload of FixedArray::rend() for returning a const reverse iterator
|
|
// from the beginning of the fixed array.
|
|
const_reverse_iterator rend() const {
|
|
return const_reverse_iterator(begin());
|
|
}
|
|
|
|
// FixedArray::crend()
|
|
//
|
|
// Returns a reverse iterator from the beginning of the fixed array.
|
|
const_reverse_iterator crend() const { return rend(); }
|
|
|
|
// FixedArray::fill()
|
|
//
|
|
// Assigns the given `value` to all elements in the fixed array.
|
|
void fill(const T& value) { std::fill(begin(), end(), value); }
|
|
|
|
// Relational operators. Equality operators are elementwise using
|
|
// `operator==`, while order operators order FixedArrays lexicographically.
|
|
friend bool operator==(const FixedArray& lhs, const FixedArray& rhs) {
|
|
return absl::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
|
|
}
|
|
|
|
friend bool operator!=(const FixedArray& lhs, const FixedArray& rhs) {
|
|
return !(lhs == rhs);
|
|
}
|
|
|
|
friend bool operator<(const FixedArray& lhs, const FixedArray& rhs) {
|
|
return std::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(),
|
|
rhs.end());
|
|
}
|
|
|
|
friend bool operator>(const FixedArray& lhs, const FixedArray& rhs) {
|
|
return rhs < lhs;
|
|
}
|
|
|
|
friend bool operator<=(const FixedArray& lhs, const FixedArray& rhs) {
|
|
return !(rhs < lhs);
|
|
}
|
|
|
|
friend bool operator>=(const FixedArray& lhs, const FixedArray& rhs) {
|
|
return !(lhs < rhs);
|
|
}
|
|
|
|
private:
|
|
// Holder
|
|
//
|
|
// Wrapper for holding elements of type T for both the case where T is a
|
|
// C-style array type and the general case where it is not. This is needed for
|
|
// construction and destruction of the entire array regardless of how many
|
|
// dimensions it has.
|
|
//
|
|
// Maintainer's Note: The simpler solution would be to simply wrap T in a
|
|
// struct whether it's an array or not: 'struct Holder { T v; };', but
|
|
// that causes some paranoid diagnostics to misfire about uses of data(),
|
|
// believing that 'data()' (aka '&rep_.begin().v') is a pointer to a single
|
|
// element, rather than the packed array that it really is.
|
|
// e.g.:
|
|
//
|
|
// FixedArray<char> buf(1);
|
|
// sprintf(buf.data(), "foo");
|
|
//
|
|
// error: call to int __builtin___sprintf_chk(etc...)
|
|
// will always overflow destination buffer [-Werror]
|
|
//
|
|
template <typename OuterT = value_type,
|
|
typename InnerT = absl::remove_extent_t<OuterT>,
|
|
size_t InnerN = std::extent<OuterT>::value>
|
|
struct ArrayHolder {
|
|
InnerT array[InnerN];
|
|
};
|
|
|
|
using Holder = absl::conditional_t<std::is_array<value_type>::value,
|
|
ArrayHolder<value_type>, value_type>;
|
|
|
|
static_assert(sizeof(Holder) == sizeof(value_type), "");
|
|
static_assert(alignof(Holder) == alignof(value_type), "");
|
|
|
|
static pointer AsValue(pointer ptr) { return ptr; }
|
|
static pointer AsValue(ArrayHolder<value_type>* ptr) {
|
|
return std::addressof(ptr->array);
|
|
}
|
|
|
|
// InlineSpace
|
|
//
|
|
// Allocate some space, not an array of elements of type T, so that we can
|
|
// skip calling the T constructors and destructors for space we never use.
|
|
// How many elements should we store inline?
|
|
// a. If not specified, use a default of kInlineBytesDefault bytes (This is
|
|
// currently 256 bytes, which seems small enough to not cause stack overflow
|
|
// or unnecessary stack pollution, while still allowing stack allocation for
|
|
// reasonably long character arrays).
|
|
// b. Never use 0 length arrays (not ISO C++)
|
|
//
|
|
template <size_type N, typename = void>
|
|
class InlineSpace {
|
|
public:
|
|
Holder* data() { return reinterpret_cast<Holder*>(space_.data()); }
|
|
void AnnotateConstruct(size_t n) const { Annotate(n, true); }
|
|
void AnnotateDestruct(size_t n) const { Annotate(n, false); }
|
|
|
|
private:
|
|
#ifndef ADDRESS_SANITIZER
|
|
void Annotate(size_t, bool) const { }
|
|
#else
|
|
void Annotate(size_t n, bool creating) const {
|
|
if (!n) return;
|
|
const void* bot = &left_redzone_;
|
|
const void* beg = space_.data();
|
|
const void* end = space_.data() + n;
|
|
const void* top = &right_redzone_ + 1;
|
|
// args: (beg, end, old_mid, new_mid)
|
|
if (creating) {
|
|
ANNOTATE_CONTIGUOUS_CONTAINER(beg, top, top, end);
|
|
ANNOTATE_CONTIGUOUS_CONTAINER(bot, beg, beg, bot);
|
|
} else {
|
|
ANNOTATE_CONTIGUOUS_CONTAINER(beg, top, end, top);
|
|
ANNOTATE_CONTIGUOUS_CONTAINER(bot, beg, bot, beg);
|
|
}
|
|
}
|
|
#endif // ADDRESS_SANITIZER
|
|
|
|
using Buffer =
|
|
typename std::aligned_storage<sizeof(Holder), alignof(Holder)>::type;
|
|
|
|
ADDRESS_SANITIZER_REDZONE(left_redzone_);
|
|
std::array<Buffer, N> space_;
|
|
ADDRESS_SANITIZER_REDZONE(right_redzone_);
|
|
};
|
|
|
|
// specialization when N = 0.
|
|
template <typename U>
|
|
class InlineSpace<0, U> {
|
|
public:
|
|
Holder* data() { return nullptr; }
|
|
void AnnotateConstruct(size_t) const {}
|
|
void AnnotateDestruct(size_t) const {}
|
|
};
|
|
|
|
// Rep
|
|
//
|
|
// An instance of Rep manages the inline and out-of-line memory for FixedArray
|
|
//
|
|
class Rep : public InlineSpace<inline_elements> {
|
|
public:
|
|
explicit Rep(size_type n) : n_(n), p_(MakeHolder(n)) {}
|
|
|
|
~Rep() noexcept {
|
|
if (IsAllocated(size())) {
|
|
std::allocator<Holder>().deallocate(p_, n_);
|
|
} else {
|
|
this->AnnotateDestruct(size());
|
|
}
|
|
}
|
|
Holder* begin() const { return p_; }
|
|
Holder* end() const { return p_ + n_; }
|
|
size_type size() const { return n_; }
|
|
|
|
private:
|
|
Holder* MakeHolder(size_type n) {
|
|
if (IsAllocated(n)) {
|
|
return std::allocator<Holder>().allocate(n);
|
|
} else {
|
|
this->AnnotateConstruct(n);
|
|
return this->data();
|
|
}
|
|
}
|
|
|
|
bool IsAllocated(size_type n) const { return n > inline_elements; }
|
|
|
|
const size_type n_;
|
|
Holder* const p_;
|
|
};
|
|
|
|
|
|
// Data members
|
|
Rep rep_;
|
|
};
|
|
|
|
template <typename T, size_t N>
|
|
constexpr size_t FixedArray<T, N>::inline_elements;
|
|
|
|
template <typename T, size_t N>
|
|
constexpr size_t FixedArray<T, N>::kInlineBytesDefault;
|
|
|
|
} // namespace absl
|
|
#endif // ABSL_CONTAINER_FIXED_ARRAY_H_
|