tvl-depot/absl/types/variant.h
Abseil Team 8207907f4f Export of internal Abseil changes
--
2f49cb9009386bc67bf54a2908c8720b749c8b7f by Greg Falcon <gfalcon@google.com>:

docs: fix typo

Import of https://github.com/abseil/abseil-cpp/pull/397

PiperOrigin-RevId: 277504420

--
f2bed362c1c12d3fa9c22d11f2b918668e8c37b7 by Abseil Team <absl-team@google.com>:

Avoid our is_[copy/move]_assignable workarounds in MSVC 19.20 and on, since that release introduces a regression that breaks our workaround. We should ideally use the std forms in more cases, but branching when our workarounds fail is simpler to maintain.

PiperOrigin-RevId: 277502334

--
e33de894ffd49848b9e088f59acc9743d1661948 by Derek Mauro <dmauro@google.com>:

Update rules_cc version. The mirror.bazel.build URL does not exist
(cache expiration?)

PiperOrigin-RevId: 277498394

--
b23757b0747c64634d2d701433782c969effef19 by Abseil Team <absl-team@google.com>:

Fix https://github.com/abseil/abseil-cpp/issues/394.

PiperOrigin-RevId: 277491405

--
54c75b8b29813531c52d67cf0ba7063baae4a4f3 by Abseil Team <absl-team@google.com>:

Fix comment typos: waker => waiter.

PiperOrigin-RevId: 277376952

--
874eeaa3b3af808fc88b6355245f643674f5e36e by Abseil Team <absl-team@google.com>:

Don't use atomic ops on waiter and wakeup counts in CONDVAR waiter mode.

Just guard the waiter and wakeup counts with the mutex. This eliminates the
race.

Also fix a typo in the error message for pthread_cond_timedwait.

PiperOrigin-RevId: 277366017

--
ce8c9a63109214519b5a7eaecef2c663c4d566df by Greg Falcon <gfalcon@google.com>:

Implement the config options for our four main C++ forward compatibility types.

These options control whether the names `any`, `optional`, `string_view`, and `variant` in namespace `absl` are aliases to the corresponding C++17 types in namespace `std`.  By default, we continue to auto-detect the configuration of the compiler being run.

These options are not intended to be modified on the command line (as -D flags, say).  Instead, the options.h file can be modified by distributors of Abseil (e.g., binary packagers, maintainers of local copies of Abseil, etc.)

Changing options will change Abseil in an ODR sense.  Any program must only link in a single version of Abseil.  Linking libraries that use Abseil configured with different options is an error: there is no ABI compatibility guarantee when linking different configurations, even if the Abseil versions used are otherwise exactly identical.

PiperOrigin-RevId: 277364298

--
5ed3ad42ae43a05862070f92f9ffd07f5c1f2b81 by Chris Kennelly <ckennelly@google.com>:

Suppress -Wimplicit-int-float-conversion.

On recent builds of Clang, this is an error/warning.

PiperOrigin-RevId: 277346168

--
9b9b0055243c705189bb27d912e6d45a7789cdee by Eric Fiselier <ericwf@google.com>:

Allow building Abseil as a shared library with CMake.

By default CMake's `add_library` creates the target as a static
library. However, users can override the default using the builtin
CMake option -DBUILD_SHARED_LIBS=ON.

This changes Abseil's CMake to respect this configuration option
by removing the explicit `STATIC` in our usages of `add_library`.

PiperOrigin-RevId: 277337753

--
63a8b7b8ede3a9d851916929d6b8537f4f2508ca by Abseil Team <absl-team@google.com>:

Improve AlphaNum Hex performance by using absl::numbers_internal::FastHexToBufferZeroPad16.

PiperOrigin-RevId: 277318108

--
dd047f7e92032682d94b27732df0e4d0670e24a4 by CJ Johnson <johnsoncj@google.com>:

Internal change

PiperOrigin-RevId: 277316913

--
d19ee7074929fed08973cc5b40a844573ce1e0a6 by Abseil Team <absl-team@google.com>:

Handle invoking [[nodiscard]] functions correctly in our tests.

PiperOrigin-RevId: 277301500

--
5373f3737894ba9b8481e95e5f58c7957c00d26a by Chris Kennelly <ckennelly@google.com>:

For internal reasons, loosen visibility restrictions of `//absl/base:malloc_internal`.

As an internal-namespace interface, this module remains unsupported.  We
reserve the right to change, delete, or re-restrict visibility to this target
at any time.

PiperOrigin-RevId: 277118689

--
44e4f6655e05393a375d09b3625c192b1fde5909 by Abseil Team <absl-team@google.com>:

Fix error in example civil day comment.

PiperOrigin-RevId: 277103315

--
7657392b4ce48469106f11cdb952a0bc76a28df3 by Abseil Team <absl-team@google.com>:

Internal change

PiperOrigin-RevId: 277056076

--
c75bda76f40b01fa249b75b5a70c1f5907e56c76 by Abseil Team <absl-team@google.com>:

Suppress lifetime constant-initialization tests when building with MSVC versions > 19.0.

These are broken due to non-compliant initialization order in these versions:
https://developercommunity.visualstudio.com/content/problem/336946/class-with-constexpr-constructor-not-using-static.html
We don't know when Microsoft will fix this bug.

PiperOrigin-RevId: 277049770

--
16c3b9bf2a1796efa57f97b00bcd6227fbccca1f by Matt Calabrese <calabrese@google.com>:

Avoid our is_[copy/move]_assignable workarounds in MSVC 19.20 and on, since that release introduces a regression that breaks our workaround. We should ideally use the std forms in more cases, but branching when our workarounds fail is simpler to maintain.

PiperOrigin-RevId: 277048670

--
e91003fa3ee6026d9b80624a23fc144fa5d74810 by Chris Kennelly <ckennelly@google.com>:

Fix -Wimplicit-int-float-conversion warning in latest clang

PiperOrigin-RevId: 276771618

--
53087ca6603e86ad815f3dd9ab795cc0f79792c1 by Andy Soffer <asoffer@google.com>:

Add documentation on absl::SNPrintF.

PiperOrigin-RevId: 276694032

--
a9426af8cbd4c3a8f9053e7446c821852e41ff61 by Jorg Brown <jorg@google.com>:

Stop including kern/OSByteOrder.h in order to support __APPLE__

Apple compiles with clang now anyway, and clang has support for the
built-in compiler swap functions that are much faster than any function call to
the OS.

PiperOrigin-RevId: 276625231

--
df974be5aa5b4dc1b09c356cb8816edfc7867e63 by Jorg Brown <jorg@google.com>:

Fix the build for Android x86-64 builds, where __SSE4_2__ is defined but
_bswap64 is not.

PiperOrigin-RevId: 276542642

--
d99dc092b3a5ad17643005e55f3b3cb6b9187ccc by Jorg Brown <jorg@google.com>:

Remove a byteswap from the non-SSE path of FastHexToBufferZeroPad16

Remove the need for including absl/base/internal/endian.h from the SSE case
(since if we have the Intel SSE intrinsics, then clearly we also have the
Intel Byte-Swap intrinsics.)

PiperOrigin-RevId: 276532608

--
d67b106dc930d8558810ae3983613bb2ab1e0d36 by Abseil Team <absl-team@google.com>:

Use explicit static_cast<double> for int64_t to double conversion

This uses an explicit static_cast<double>() in the int64_t to double comparisons in duration.cc's SafeAddRepHi. This satisfies clang's -Wimplicit-int-to-float-conversion warning (with https://reviews.llvm.org/D64666). This may also make it easier for humans to realize that the comparison is happening between two floating point double precision values.  It should have no impact on the behavior or generated code.
Tested:
No behavior change
PiperOrigin-RevId: 276529211
GitOrigin-RevId: 2f49cb9009386bc67bf54a2908c8720b749c8b7f
Change-Id: I71e0781893ce219960b8290d54b20532779cb0ff
2019-10-30 11:13:04 -04:00

855 lines
33 KiB
C++

// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// variant.h
// -----------------------------------------------------------------------------
//
// This header file defines an `absl::variant` type for holding a type-safe
// value of some prescribed set of types (noted as alternative types), and
// associated functions for managing variants.
//
// The `absl::variant` type is a form of type-safe union. An `absl::variant`
// should always hold a value of one of its alternative types (except in the
// "valueless by exception state" -- see below). A default-constructed
// `absl::variant` will hold the value of its first alternative type, provided
// it is default-constructible.
//
// In exceptional cases due to error, an `absl::variant` can hold no
// value (known as a "valueless by exception" state), though this is not the
// norm.
//
// As with `absl::optional`, an `absl::variant` -- when it holds a value --
// allocates a value of that type directly within the `variant` itself; it
// cannot hold a reference, array, or the type `void`; it can, however, hold a
// pointer to externally managed memory.
//
// `absl::variant` is a C++11 compatible version of the C++17 `std::variant`
// abstraction and is designed to be a drop-in replacement for code compliant
// with C++17.
#ifndef ABSL_TYPES_VARIANT_H_
#define ABSL_TYPES_VARIANT_H_
#include "absl/base/config.h"
#include "absl/utility/utility.h"
#ifdef ABSL_USES_STD_VARIANT
#include <variant> // IWYU pragma: export
namespace absl {
using std::bad_variant_access;
using std::get;
using std::get_if;
using std::holds_alternative;
using std::monostate;
using std::variant;
using std::variant_alternative;
using std::variant_alternative_t;
using std::variant_npos;
using std::variant_size;
using std::variant_size_v;
using std::visit;
} // namespace absl
#else // ABSL_USES_STD_VARIANT
#include <functional>
#include <new>
#include <type_traits>
#include <utility>
#include "absl/base/macros.h"
#include "absl/base/port.h"
#include "absl/meta/type_traits.h"
#include "absl/types/internal/variant.h"
namespace absl {
// -----------------------------------------------------------------------------
// absl::variant
// -----------------------------------------------------------------------------
//
// An `absl::variant` type is a form of type-safe union. An `absl::variant` --
// except in exceptional cases -- always holds a value of one of its alternative
// types.
//
// Example:
//
// // Construct a variant that holds either an integer or a std::string and
// // assign it to a std::string.
// absl::variant<int, std::string> v = std::string("abc");
//
// // A default-constructed variant will hold a value-initialized value of
// // the first alternative type.
// auto a = absl::variant<int, std::string>(); // Holds an int of value '0'.
//
// // variants are assignable.
//
// // copy assignment
// auto v1 = absl::variant<int, std::string>("abc");
// auto v2 = absl::variant<int, std::string>(10);
// v2 = v1; // copy assign
//
// // move assignment
// auto v1 = absl::variant<int, std::string>("abc");
// v1 = absl::variant<int, std::string>(10);
//
// // assignment through type conversion
// a = 128; // variant contains int
// a = "128"; // variant contains std::string
//
// An `absl::variant` holding a value of one of its alternative types `T` holds
// an allocation of `T` directly within the variant itself. An `absl::variant`
// is not allowed to allocate additional storage, such as dynamic memory, to
// allocate the contained value. The contained value shall be allocated in a
// region of the variant storage suitably aligned for all alternative types.
template <typename... Ts>
class variant;
// swap()
//
// Swaps two `absl::variant` values. This function is equivalent to `v.swap(w)`
// where `v` and `w` are `absl::variant` types.
//
// Note that this function requires all alternative types to be both swappable
// and move-constructible, because any two variants may refer to either the same
// type (in which case, they will be swapped) or to two different types (in
// which case the values will need to be moved).
//
template <
typename... Ts,
absl::enable_if_t<
absl::conjunction<std::is_move_constructible<Ts>...,
type_traits_internal::IsSwappable<Ts>...>::value,
int> = 0>
void swap(variant<Ts...>& v, variant<Ts...>& w) noexcept(noexcept(v.swap(w))) {
v.swap(w);
}
// variant_size
//
// Returns the number of alternative types available for a given `absl::variant`
// type as a compile-time constant expression. As this is a class template, it
// is not generally useful for accessing the number of alternative types of
// any given `absl::variant` instance.
//
// Example:
//
// auto a = absl::variant<int, std::string>;
// constexpr int num_types =
// absl::variant_size<absl::variant<int, std::string>>();
//
// // You can also use the member constant `value`.
// constexpr int num_types =
// absl::variant_size<absl::variant<int, std::string>>::value;
//
// // `absl::variant_size` is more valuable for use in generic code:
// template <typename Variant>
// constexpr bool IsVariantMultivalue() {
// return absl::variant_size<Variant>() > 1;
// }
//
// Note that the set of cv-qualified specializations of `variant_size` are
// provided to ensure that those specializations compile (especially when passed
// within template logic).
template <class T>
struct variant_size;
template <class... Ts>
struct variant_size<variant<Ts...>>
: std::integral_constant<std::size_t, sizeof...(Ts)> {};
// Specialization of `variant_size` for const qualified variants.
template <class T>
struct variant_size<const T> : variant_size<T>::type {};
// Specialization of `variant_size` for volatile qualified variants.
template <class T>
struct variant_size<volatile T> : variant_size<T>::type {};
// Specialization of `variant_size` for const volatile qualified variants.
template <class T>
struct variant_size<const volatile T> : variant_size<T>::type {};
// variant_alternative
//
// Returns the alternative type for a given `absl::variant` at the passed
// index value as a compile-time constant expression. As this is a class
// template resulting in a type, it is not useful for access of the run-time
// value of any given `absl::variant` variable.
//
// Example:
//
// // The type of the 0th alternative is "int".
// using alternative_type_0
// = absl::variant_alternative<0, absl::variant<int, std::string>>::type;
//
// static_assert(std::is_same<alternative_type_0, int>::value, "");
//
// // `absl::variant_alternative` is more valuable for use in generic code:
// template <typename Variant>
// constexpr bool IsFirstElementTrivial() {
// return std::is_trivial_v<variant_alternative<0, Variant>::type>;
// }
//
// Note that the set of cv-qualified specializations of `variant_alternative`
// are provided to ensure that those specializations compile (especially when
// passed within template logic).
template <std::size_t I, class T>
struct variant_alternative;
template <std::size_t I, class... Types>
struct variant_alternative<I, variant<Types...>> {
using type =
variant_internal::VariantAlternativeSfinaeT<I, variant<Types...>>;
};
// Specialization of `variant_alternative` for const qualified variants.
template <std::size_t I, class T>
struct variant_alternative<I, const T> {
using type = const typename variant_alternative<I, T>::type;
};
// Specialization of `variant_alternative` for volatile qualified variants.
template <std::size_t I, class T>
struct variant_alternative<I, volatile T> {
using type = volatile typename variant_alternative<I, T>::type;
};
// Specialization of `variant_alternative` for const volatile qualified
// variants.
template <std::size_t I, class T>
struct variant_alternative<I, const volatile T> {
using type = const volatile typename variant_alternative<I, T>::type;
};
// Template type alias for variant_alternative<I, T>::type.
//
// Example:
//
// using alternative_type_0
// = absl::variant_alternative_t<0, absl::variant<int, std::string>>;
// static_assert(std::is_same<alternative_type_0, int>::value, "");
template <std::size_t I, class T>
using variant_alternative_t = typename variant_alternative<I, T>::type;
// holds_alternative()
//
// Checks whether the given variant currently holds a given alternative type,
// returning `true` if so.
//
// Example:
//
// absl::variant<int, std::string> foo = 42;
// if (absl::holds_alternative<int>(foo)) {
// std::cout << "The variant holds an integer";
// }
template <class T, class... Types>
constexpr bool holds_alternative(const variant<Types...>& v) noexcept {
static_assert(
variant_internal::UnambiguousIndexOfImpl<variant<Types...>, T,
0>::value != sizeof...(Types),
"The type T must occur exactly once in Types...");
return v.index() ==
variant_internal::UnambiguousIndexOf<variant<Types...>, T>::value;
}
// get()
//
// Returns a reference to the value currently within a given variant, using
// either a unique alternative type amongst the variant's set of alternative
// types, or the variant's index value. Attempting to get a variant's value
// using a type that is not unique within the variant's set of alternative types
// is a compile-time error. If the index of the alternative being specified is
// different from the index of the alternative that is currently stored, throws
// `absl::bad_variant_access`.
//
// Example:
//
// auto a = absl::variant<int, std::string>;
//
// // Get the value by type (if unique).
// int i = absl::get<int>(a);
//
// auto b = absl::variant<int, int>;
//
// // Getting the value by a type that is not unique is ill-formed.
// int j = absl::get<int>(b); // Compile Error!
//
// // Getting value by index not ambiguous and allowed.
// int k = absl::get<1>(b);
// Overload for getting a variant's lvalue by type.
template <class T, class... Types>
constexpr T& get(variant<Types...>& v) { // NOLINT
return variant_internal::VariantCoreAccess::CheckedAccess<
variant_internal::IndexOf<T, Types...>::value>(v);
}
// Overload for getting a variant's rvalue by type.
// Note: `absl::move()` is required to allow use of constexpr in C++11.
template <class T, class... Types>
constexpr T&& get(variant<Types...>&& v) {
return variant_internal::VariantCoreAccess::CheckedAccess<
variant_internal::IndexOf<T, Types...>::value>(absl::move(v));
}
// Overload for getting a variant's const lvalue by type.
template <class T, class... Types>
constexpr const T& get(const variant<Types...>& v) {
return variant_internal::VariantCoreAccess::CheckedAccess<
variant_internal::IndexOf<T, Types...>::value>(v);
}
// Overload for getting a variant's const rvalue by type.
// Note: `absl::move()` is required to allow use of constexpr in C++11.
template <class T, class... Types>
constexpr const T&& get(const variant<Types...>&& v) {
return variant_internal::VariantCoreAccess::CheckedAccess<
variant_internal::IndexOf<T, Types...>::value>(absl::move(v));
}
// Overload for getting a variant's lvalue by index.
template <std::size_t I, class... Types>
constexpr variant_alternative_t<I, variant<Types...>>& get(
variant<Types...>& v) { // NOLINT
return variant_internal::VariantCoreAccess::CheckedAccess<I>(v);
}
// Overload for getting a variant's rvalue by index.
// Note: `absl::move()` is required to allow use of constexpr in C++11.
template <std::size_t I, class... Types>
constexpr variant_alternative_t<I, variant<Types...>>&& get(
variant<Types...>&& v) {
return variant_internal::VariantCoreAccess::CheckedAccess<I>(absl::move(v));
}
// Overload for getting a variant's const lvalue by index.
template <std::size_t I, class... Types>
constexpr const variant_alternative_t<I, variant<Types...>>& get(
const variant<Types...>& v) {
return variant_internal::VariantCoreAccess::CheckedAccess<I>(v);
}
// Overload for getting a variant's const rvalue by index.
// Note: `absl::move()` is required to allow use of constexpr in C++11.
template <std::size_t I, class... Types>
constexpr const variant_alternative_t<I, variant<Types...>>&& get(
const variant<Types...>&& v) {
return variant_internal::VariantCoreAccess::CheckedAccess<I>(absl::move(v));
}
// get_if()
//
// Returns a pointer to the value currently stored within a given variant, if
// present, using either a unique alternative type amongst the variant's set of
// alternative types, or the variant's index value. If such a value does not
// exist, returns `nullptr`.
//
// As with `get`, attempting to get a variant's value using a type that is not
// unique within the variant's set of alternative types is a compile-time error.
// Overload for getting a pointer to the value stored in the given variant by
// index.
template <std::size_t I, class... Types>
constexpr absl::add_pointer_t<variant_alternative_t<I, variant<Types...>>>
get_if(variant<Types...>* v) noexcept {
return (v != nullptr && v->index() == I)
? std::addressof(
variant_internal::VariantCoreAccess::Access<I>(*v))
: nullptr;
}
// Overload for getting a pointer to the const value stored in the given
// variant by index.
template <std::size_t I, class... Types>
constexpr absl::add_pointer_t<const variant_alternative_t<I, variant<Types...>>>
get_if(const variant<Types...>* v) noexcept {
return (v != nullptr && v->index() == I)
? std::addressof(
variant_internal::VariantCoreAccess::Access<I>(*v))
: nullptr;
}
// Overload for getting a pointer to the value stored in the given variant by
// type.
template <class T, class... Types>
constexpr absl::add_pointer_t<T> get_if(variant<Types...>* v) noexcept {
return absl::get_if<variant_internal::IndexOf<T, Types...>::value>(v);
}
// Overload for getting a pointer to the const value stored in the given variant
// by type.
template <class T, class... Types>
constexpr absl::add_pointer_t<const T> get_if(
const variant<Types...>* v) noexcept {
return absl::get_if<variant_internal::IndexOf<T, Types...>::value>(v);
}
// visit()
//
// Calls a provided functor on a given set of variants. `absl::visit()` is
// commonly used to conditionally inspect the state of a given variant (or set
// of variants).
//
// The functor must return the same type when called with any of the variants'
// alternatives.
//
// Example:
//
// // Define a visitor functor
// struct GetVariant {
// template<typename T>
// void operator()(const T& i) const {
// std::cout << "The variant's value is: " << i;
// }
// };
//
// // Declare our variant, and call `absl::visit()` on it.
// // Note that `GetVariant()` returns void in either case.
// absl::variant<int, std::string> foo = std::string("foo");
// GetVariant visitor;
// absl::visit(visitor, foo); // Prints `The variant's value is: foo'
template <typename Visitor, typename... Variants>
variant_internal::VisitResult<Visitor, Variants...> visit(Visitor&& vis,
Variants&&... vars) {
return variant_internal::
VisitIndices<variant_size<absl::decay_t<Variants> >::value...>::Run(
variant_internal::PerformVisitation<Visitor, Variants...>{
std::forward_as_tuple(absl::forward<Variants>(vars)...),
absl::forward<Visitor>(vis)},
vars.index()...);
}
// monostate
//
// The monostate class serves as a first alternative type for a variant for
// which the first variant type is otherwise not default-constructible.
struct monostate {};
// `absl::monostate` Relational Operators
constexpr bool operator<(monostate, monostate) noexcept { return false; }
constexpr bool operator>(monostate, monostate) noexcept { return false; }
constexpr bool operator<=(monostate, monostate) noexcept { return true; }
constexpr bool operator>=(monostate, monostate) noexcept { return true; }
constexpr bool operator==(monostate, monostate) noexcept { return true; }
constexpr bool operator!=(monostate, monostate) noexcept { return false; }
//------------------------------------------------------------------------------
// `absl::variant` Template Definition
//------------------------------------------------------------------------------
template <typename T0, typename... Tn>
class variant<T0, Tn...> : private variant_internal::VariantBase<T0, Tn...> {
static_assert(absl::conjunction<std::is_object<T0>,
std::is_object<Tn>...>::value,
"Attempted to instantiate a variant containing a non-object "
"type.");
// Intentionally not qualifying `negation` with `absl::` to work around a bug
// in MSVC 2015 with inline namespace and variadic template.
static_assert(absl::conjunction<negation<std::is_array<T0> >,
negation<std::is_array<Tn> >...>::value,
"Attempted to instantiate a variant containing an array type.");
static_assert(absl::conjunction<std::is_nothrow_destructible<T0>,
std::is_nothrow_destructible<Tn>...>::value,
"Attempted to instantiate a variant containing a non-nothrow "
"destructible type.");
friend struct variant_internal::VariantCoreAccess;
private:
using Base = variant_internal::VariantBase<T0, Tn...>;
public:
// Constructors
// Constructs a variant holding a default-initialized value of the first
// alternative type.
constexpr variant() /*noexcept(see 111above)*/ = default;
// Copy constructor, standard semantics
variant(const variant& other) = default;
// Move constructor, standard semantics
variant(variant&& other) /*noexcept(see above)*/ = default;
// Constructs a variant of an alternative type specified by overload
// resolution of the provided forwarding arguments through
// direct-initialization.
//
// Note: If the selected constructor is a constexpr constructor, this
// constructor shall be a constexpr constructor.
//
// NOTE: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0608r1.html
// has been voted passed the design phase in the C++ standard meeting in Mar
// 2018. It will be implemented and integrated into `absl::variant`.
template <
class T,
std::size_t I = std::enable_if<
variant_internal::IsNeitherSelfNorInPlace<variant,
absl::decay_t<T>>::value,
variant_internal::IndexOfConstructedType<variant, T>>::type::value,
class Tj = absl::variant_alternative_t<I, variant>,
absl::enable_if_t<std::is_constructible<Tj, T>::value>* =
nullptr>
constexpr variant(T&& t) noexcept(std::is_nothrow_constructible<Tj, T>::value)
: Base(variant_internal::EmplaceTag<I>(), absl::forward<T>(t)) {}
// Constructs a variant of an alternative type from the arguments through
// direct-initialization.
//
// Note: If the selected constructor is a constexpr constructor, this
// constructor shall be a constexpr constructor.
template <class T, class... Args,
typename std::enable_if<std::is_constructible<
variant_internal::UnambiguousTypeOfT<variant, T>,
Args...>::value>::type* = nullptr>
constexpr explicit variant(in_place_type_t<T>, Args&&... args)
: Base(variant_internal::EmplaceTag<
variant_internal::UnambiguousIndexOf<variant, T>::value>(),
absl::forward<Args>(args)...) {}
// Constructs a variant of an alternative type from an initializer list
// and other arguments through direct-initialization.
//
// Note: If the selected constructor is a constexpr constructor, this
// constructor shall be a constexpr constructor.
template <class T, class U, class... Args,
typename std::enable_if<std::is_constructible<
variant_internal::UnambiguousTypeOfT<variant, T>,
std::initializer_list<U>&, Args...>::value>::type* = nullptr>
constexpr explicit variant(in_place_type_t<T>, std::initializer_list<U> il,
Args&&... args)
: Base(variant_internal::EmplaceTag<
variant_internal::UnambiguousIndexOf<variant, T>::value>(),
il, absl::forward<Args>(args)...) {}
// Constructs a variant of an alternative type from a provided index,
// through value-initialization using the provided forwarded arguments.
template <std::size_t I, class... Args,
typename std::enable_if<std::is_constructible<
variant_internal::VariantAlternativeSfinaeT<I, variant>,
Args...>::value>::type* = nullptr>
constexpr explicit variant(in_place_index_t<I>, Args&&... args)
: Base(variant_internal::EmplaceTag<I>(), absl::forward<Args>(args)...) {}
// Constructs a variant of an alternative type from a provided index,
// through value-initialization of an initializer list and the provided
// forwarded arguments.
template <std::size_t I, class U, class... Args,
typename std::enable_if<std::is_constructible<
variant_internal::VariantAlternativeSfinaeT<I, variant>,
std::initializer_list<U>&, Args...>::value>::type* = nullptr>
constexpr explicit variant(in_place_index_t<I>, std::initializer_list<U> il,
Args&&... args)
: Base(variant_internal::EmplaceTag<I>(), il,
absl::forward<Args>(args)...) {}
// Destructors
// Destroys the variant's currently contained value, provided that
// `absl::valueless_by_exception()` is false.
~variant() = default;
// Assignment Operators
// Copy assignment operator
variant& operator=(const variant& other) = default;
// Move assignment operator
variant& operator=(variant&& other) /*noexcept(see above)*/ = default;
// Converting assignment operator
//
// NOTE: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0608r1.html
// has been voted passed the design phase in the C++ standard meeting in Mar
// 2018. It will be implemented and integrated into `absl::variant`.
template <
class T,
std::size_t I = std::enable_if<
!std::is_same<absl::decay_t<T>, variant>::value,
variant_internal::IndexOfConstructedType<variant, T>>::type::value,
class Tj = absl::variant_alternative_t<I, variant>,
typename std::enable_if<std::is_assignable<Tj&, T>::value &&
std::is_constructible<Tj, T>::value>::type* =
nullptr>
variant& operator=(T&& t) noexcept(
std::is_nothrow_assignable<Tj&, T>::value&&
std::is_nothrow_constructible<Tj, T>::value) {
variant_internal::VisitIndices<sizeof...(Tn) + 1>::Run(
variant_internal::VariantCoreAccess::MakeConversionAssignVisitor(
this, absl::forward<T>(t)),
index());
return *this;
}
// emplace() Functions
// Constructs a value of the given alternative type T within the variant.
//
// Example:
//
// absl::variant<std::vector<int>, int, std::string> v;
// v.emplace<int>(99);
// v.emplace<std::string>("abc");
template <
class T, class... Args,
typename std::enable_if<std::is_constructible<
absl::variant_alternative_t<
variant_internal::UnambiguousIndexOf<variant, T>::value, variant>,
Args...>::value>::type* = nullptr>
T& emplace(Args&&... args) {
return variant_internal::VariantCoreAccess::Replace<
variant_internal::UnambiguousIndexOf<variant, T>::value>(
this, absl::forward<Args>(args)...);
}
// Constructs a value of the given alternative type T within the variant using
// an initializer list.
//
// Example:
//
// absl::variant<std::vector<int>, int, std::string> v;
// v.emplace<std::vector<int>>({0, 1, 2});
template <
class T, class U, class... Args,
typename std::enable_if<std::is_constructible<
absl::variant_alternative_t<
variant_internal::UnambiguousIndexOf<variant, T>::value, variant>,
std::initializer_list<U>&, Args...>::value>::type* = nullptr>
T& emplace(std::initializer_list<U> il, Args&&... args) {
return variant_internal::VariantCoreAccess::Replace<
variant_internal::UnambiguousIndexOf<variant, T>::value>(
this, il, absl::forward<Args>(args)...);
}
// Destroys the current value of the variant (provided that
// `absl::valueless_by_exception()` is false, and constructs a new value at
// the given index.
//
// Example:
//
// absl::variant<std::vector<int>, int, int> v;
// v.emplace<1>(99);
// v.emplace<2>(98);
// v.emplace<int>(99); // Won't compile. 'int' isn't a unique type.
template <std::size_t I, class... Args,
typename std::enable_if<
std::is_constructible<absl::variant_alternative_t<I, variant>,
Args...>::value>::type* = nullptr>
absl::variant_alternative_t<I, variant>& emplace(Args&&... args) {
return variant_internal::VariantCoreAccess::Replace<I>(
this, absl::forward<Args>(args)...);
}
// Destroys the current value of the variant (provided that
// `absl::valueless_by_exception()` is false, and constructs a new value at
// the given index using an initializer list and the provided arguments.
//
// Example:
//
// absl::variant<std::vector<int>, int, int> v;
// v.emplace<0>({0, 1, 2});
template <std::size_t I, class U, class... Args,
typename std::enable_if<std::is_constructible<
absl::variant_alternative_t<I, variant>,
std::initializer_list<U>&, Args...>::value>::type* = nullptr>
absl::variant_alternative_t<I, variant>& emplace(std::initializer_list<U> il,
Args&&... args) {
return variant_internal::VariantCoreAccess::Replace<I>(
this, il, absl::forward<Args>(args)...);
}
// variant::valueless_by_exception()
//
// Returns false if and only if the variant currently holds a valid value.
constexpr bool valueless_by_exception() const noexcept {
return this->index_ == absl::variant_npos;
}
// variant::index()
//
// Returns the index value of the variant's currently selected alternative
// type.
constexpr std::size_t index() const noexcept { return this->index_; }
// variant::swap()
//
// Swaps the values of two variant objects.
//
void swap(variant& rhs) noexcept(
absl::conjunction<
std::is_nothrow_move_constructible<T0>,
std::is_nothrow_move_constructible<Tn>...,
type_traits_internal::IsNothrowSwappable<T0>,
type_traits_internal::IsNothrowSwappable<Tn>...>::value) {
return variant_internal::VisitIndices<sizeof...(Tn) + 1>::Run(
variant_internal::Swap<T0, Tn...>{this, &rhs}, rhs.index());
}
};
// We need a valid declaration of variant<> for SFINAE and overload resolution
// to work properly above, but we don't need a full declaration since this type
// will never be constructed. This declaration, though incomplete, suffices.
template <>
class variant<>;
//------------------------------------------------------------------------------
// Relational Operators
//------------------------------------------------------------------------------
//
// If neither operand is in the `variant::valueless_by_exception` state:
//
// * If the index of both variants is the same, the relational operator
// returns the result of the corresponding relational operator for the
// corresponding alternative type.
// * If the index of both variants is not the same, the relational operator
// returns the result of that operation applied to the value of the left
// operand's index and the value of the right operand's index.
// * If at least one operand is in the valueless_by_exception state:
// - A variant in the valueless_by_exception state is only considered equal
// to another variant in the valueless_by_exception state.
// - If exactly one operand is in the valueless_by_exception state, the
// variant in the valueless_by_exception state is less than the variant
// that is not in the valueless_by_exception state.
//
// Note: The value 1 is added to each index in the relational comparisons such
// that the index corresponding to the valueless_by_exception state wraps around
// to 0 (the lowest value for the index type), and the remaining indices stay in
// the same relative order.
// Equal-to operator
template <typename... Types>
constexpr variant_internal::RequireAllHaveEqualT<Types...> operator==(
const variant<Types...>& a, const variant<Types...>& b) {
return (a.index() == b.index()) &&
variant_internal::VisitIndices<sizeof...(Types)>::Run(
variant_internal::EqualsOp<Types...>{&a, &b}, a.index());
}
// Not equal operator
template <typename... Types>
constexpr variant_internal::RequireAllHaveNotEqualT<Types...> operator!=(
const variant<Types...>& a, const variant<Types...>& b) {
return (a.index() != b.index()) ||
variant_internal::VisitIndices<sizeof...(Types)>::Run(
variant_internal::NotEqualsOp<Types...>{&a, &b}, a.index());
}
// Less-than operator
template <typename... Types>
constexpr variant_internal::RequireAllHaveLessThanT<Types...> operator<(
const variant<Types...>& a, const variant<Types...>& b) {
return (a.index() != b.index())
? (a.index() + 1) < (b.index() + 1)
: variant_internal::VisitIndices<sizeof...(Types)>::Run(
variant_internal::LessThanOp<Types...>{&a, &b}, a.index());
}
// Greater-than operator
template <typename... Types>
constexpr variant_internal::RequireAllHaveGreaterThanT<Types...> operator>(
const variant<Types...>& a, const variant<Types...>& b) {
return (a.index() != b.index())
? (a.index() + 1) > (b.index() + 1)
: variant_internal::VisitIndices<sizeof...(Types)>::Run(
variant_internal::GreaterThanOp<Types...>{&a, &b},
a.index());
}
// Less-than or equal-to operator
template <typename... Types>
constexpr variant_internal::RequireAllHaveLessThanOrEqualT<Types...> operator<=(
const variant<Types...>& a, const variant<Types...>& b) {
return (a.index() != b.index())
? (a.index() + 1) < (b.index() + 1)
: variant_internal::VisitIndices<sizeof...(Types)>::Run(
variant_internal::LessThanOrEqualsOp<Types...>{&a, &b},
a.index());
}
// Greater-than or equal-to operator
template <typename... Types>
constexpr variant_internal::RequireAllHaveGreaterThanOrEqualT<Types...>
operator>=(const variant<Types...>& a, const variant<Types...>& b) {
return (a.index() != b.index())
? (a.index() + 1) > (b.index() + 1)
: variant_internal::VisitIndices<sizeof...(Types)>::Run(
variant_internal::GreaterThanOrEqualsOp<Types...>{&a, &b},
a.index());
}
} // namespace absl
namespace std {
// hash()
template <> // NOLINT
struct hash<absl::monostate> {
std::size_t operator()(absl::monostate) const { return 0; }
};
template <class... T> // NOLINT
struct hash<absl::variant<T...>>
: absl::variant_internal::VariantHashBase<absl::variant<T...>, void,
absl::remove_const_t<T>...> {};
} // namespace std
#endif // ABSL_USES_STD_VARIANT
namespace absl {
namespace variant_internal {
// Helper visitor for converting a variant<Ts...>` into another type (mostly
// variant) that can be constructed from any type.
template <typename To>
struct ConversionVisitor {
template <typename T>
To operator()(T&& v) const {
return To(std::forward<T>(v));
}
};
} // namespace variant_internal
// ConvertVariantTo()
//
// Helper functions to convert an `absl::variant` to a variant of another set of
// types, provided that the alternative type of the new variant type can be
// converted from any type in the source variant.
//
// Example:
//
// absl::variant<name1, name2, float> InternalReq(const Req&);
//
// // name1 and name2 are convertible to name
// absl::variant<name, float> ExternalReq(const Req& req) {
// return absl::ConvertVariantTo<absl::variant<name, float>>(
// InternalReq(req));
// }
template <typename To, typename Variant>
To ConvertVariantTo(Variant&& variant) {
return absl::visit(variant_internal::ConversionVisitor<To>{},
std::forward<Variant>(variant));
}
} // namespace absl
#endif // ABSL_TYPES_VARIANT_H_