e0def7473e
-- ffe43f972f956e3f9a8fb7b68993d243ba8f79fb by Abseil Team <absl-team@google.com>: Replace usage of soon-to-be-deprecated http_archive rule with Skylark equivalent https://github.com/abseil/abseil-cpp/pull/138 PiperOrigin-RevId: 204939972 -- 24021d7aec96ed013333760fba590eba5a9ddf63 by Abseil Team <absl-team@google.com>: Remove incorrect constraint that StrSplit only works on std::strings; rather, it works on anything string-like. PiperOrigin-RevId: 204761431 -- ce61d3b0ac163caa1156817f3d1a997d9376a3f3 by Derek Mauro <dmauro@google.com>: Support s390/s390x in examine_stack.cc (GitHub issue #135). This is UNTESTED (no machine to test on). PiperOrigin-RevId: 204756692 -- 68ecab659a95d713c4342fe9e8008c4cdf6abfc1 by Derek Mauro <dmauro@google.com>: Update WORKSPACE.bazel Gogole Test dependency, remove the unused RE2 dependency. PiperOrigin-RevId: 204741814 -- 891e185522f0934e3b48a75617be5fc859d75dbd by Derek Mauro <dmauro@google.com>: Fix endian_test.cc on big endian platforms. GitHub issue #135 PiperOrigin-RevId: 204738726 -- 9becfa12fbb525cd97e5695b94677bd3ea3f61b0 by Abseil Team <absl-team@google.com>: Improve error messages in absl::variant by splitting up the conditions in the valid type static_assert. This makes it slightly easier to determine what type is causing issues. PiperOrigin-RevId: 204508430 GitOrigin-RevId: ffe43f972f956e3f9a8fb7b68993d243ba8f79fb Change-Id: Icc5e4e8cd1a4cea98dfbed794cd992b734812e1d
849 lines
33 KiB
C++
849 lines
33 KiB
C++
// Copyright 2018 The Abseil Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
// -----------------------------------------------------------------------------
|
|
// variant.h
|
|
// -----------------------------------------------------------------------------
|
|
//
|
|
// This header file defines an `absl::variant` type for holding a type-safe
|
|
// value of some prescribed set of types (noted as alternative types), and
|
|
// associated functions for managing variants.
|
|
//
|
|
// The `absl::variant` type is a form of type-safe union. An `absl::variant`
|
|
// should always hold a value of one of its alternative types (except in the
|
|
// "valueless by exception state" -- see below). A default-constructed
|
|
// `absl::variant` will hold the value of its first alternative type, provided
|
|
// it is default-constructable.
|
|
//
|
|
// In exceptional cases due to error, an `absl::variant` can hold no
|
|
// value (known as a "valueless by exception" state), though this is not the
|
|
// norm.
|
|
//
|
|
// As with `absl::optional`, an `absl::variant` -- when it holds a value --
|
|
// allocates a value of that type directly within the `variant` itself; it
|
|
// cannot hold a reference, array, or the type `void`; it can, however, hold a
|
|
// pointer to externally managed memory.
|
|
//
|
|
// `absl::variant` is a C++11 compatible version of the C++17 `std::variant`
|
|
// abstraction and is designed to be a drop-in replacement for code compliant
|
|
// with C++17.
|
|
|
|
#ifndef ABSL_TYPES_VARIANT_H_
|
|
#define ABSL_TYPES_VARIANT_H_
|
|
|
|
#include "absl/base/config.h"
|
|
#include "absl/utility/utility.h"
|
|
|
|
#ifdef ABSL_HAVE_STD_VARIANT
|
|
|
|
#include <variant>
|
|
|
|
namespace absl {
|
|
using std::bad_variant_access;
|
|
using std::get;
|
|
using std::get_if;
|
|
using std::holds_alternative;
|
|
using std::monostate;
|
|
using std::variant;
|
|
using std::variant_alternative;
|
|
using std::variant_alternative_t;
|
|
using std::variant_npos;
|
|
using std::variant_size;
|
|
using std::variant_size_v;
|
|
using std::visit;
|
|
} // namespace absl
|
|
|
|
#else // ABSL_HAVE_STD_VARIANT
|
|
|
|
#include <functional>
|
|
#include <new>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
|
|
#include "absl/base/macros.h"
|
|
#include "absl/base/port.h"
|
|
#include "absl/meta/type_traits.h"
|
|
#include "absl/types/internal/variant.h"
|
|
|
|
namespace absl {
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// absl::variant
|
|
// -----------------------------------------------------------------------------
|
|
//
|
|
// An 'absl::variant` type is a form of type-safe union. An `absl::variant` --
|
|
// except in exceptional cases -- always holds a value of one of its alternative
|
|
// types.
|
|
//
|
|
// Example:
|
|
//
|
|
// // Construct a variant that holds either an integer or a std::string and
|
|
// // assign it to a std::string.
|
|
// absl::variant<int, std::string> v = std::string("abc");
|
|
//
|
|
// // A default-contructed variant will hold a value-initialized value of
|
|
// // the first alternative type.
|
|
// auto a = absl::variant<int, std::string>(); // Holds an int of value '0'.
|
|
//
|
|
// // variants are assignable.
|
|
//
|
|
// // copy assignment
|
|
// auto v1 = absl::variant<int, std::string>("abc");
|
|
// auto v2 = absl::variant<int, std::string>(10);
|
|
// v2 = v1; // copy assign
|
|
//
|
|
// // move assignment
|
|
// auto v1 = absl::variant<int, std::string>("abc");
|
|
// v1 = absl::variant<int, std::string>(10);
|
|
//
|
|
// // assignment through type conversion
|
|
// a = 128; // variant contains int
|
|
// a = "128"; // variant contains std::string
|
|
//
|
|
// An `absl::variant` holding a value of one of its alternative types `T` holds
|
|
// an allocation of `T` directly within the variant itself. An `absl::variant`
|
|
// is not allowed to allocate additional storage, such as dynamic memory, to
|
|
// allocate the contained value. The contained value shall be allocated in a
|
|
// region of the variant storage suitably aligned for all alternative types.
|
|
template <typename... Ts>
|
|
class variant;
|
|
|
|
// swap()
|
|
//
|
|
// Swaps two `absl::variant` values. This function is equivalent to `v.swap(w)`
|
|
// where `v` and `w` are `absl::variant` types.
|
|
//
|
|
// Note that this function requires all alternative types to be both swappable
|
|
// and move-constructible, because any two variants may refer to either the same
|
|
// type (in which case, they will be swapped) or to two different types (in
|
|
// which case the values will need to be moved).
|
|
//
|
|
template <typename... Ts>
|
|
void swap(variant<Ts...>& v, variant<Ts...>& w) noexcept(noexcept(v.swap(w))) {
|
|
v.swap(w);
|
|
}
|
|
|
|
// variant_size
|
|
//
|
|
// Returns the number of alterative types available for a given `absl::variant`
|
|
// type as a compile-time constant expression. As this is a class template, it
|
|
// is not generally useful for accessing the number of alternative types of
|
|
// any given `absl::variant` instance.
|
|
//
|
|
// Example:
|
|
//
|
|
// auto a = absl::variant<int, std::string>;
|
|
// constexpr int num_types =
|
|
// absl::variant_size<absl::variant<int, std::string>>();
|
|
//
|
|
// // You can also use the member constant `value`.
|
|
// constexpr int num_types =
|
|
// absl::variant_size<absl::variant<int, std::string>>::value;
|
|
//
|
|
// // `absl::variant_size` is more valuable for use in generic code:
|
|
// template <typename Variant>
|
|
// constexpr bool IsVariantMultivalue() {
|
|
// return absl::variant_size<Variant>() > 1;
|
|
// }
|
|
//
|
|
// Note that the set of cv-qualified specializations of `variant_size` are
|
|
// provided to ensure that those specializations compile (especially when passed
|
|
// within template logic).
|
|
template <class T>
|
|
struct variant_size;
|
|
|
|
template <class... Ts>
|
|
struct variant_size<variant<Ts...>>
|
|
: std::integral_constant<std::size_t, sizeof...(Ts)> {};
|
|
|
|
// Specialization of `variant_size` for const qualified variants.
|
|
template <class T>
|
|
struct variant_size<const T> : variant_size<T>::type {};
|
|
|
|
// Specialization of `variant_size` for volatile qualified variants.
|
|
template <class T>
|
|
struct variant_size<volatile T> : variant_size<T>::type {};
|
|
|
|
// Specialization of `variant_size` for const volatile qualified variants.
|
|
template <class T>
|
|
struct variant_size<const volatile T> : variant_size<T>::type {};
|
|
|
|
// variant_alternative
|
|
//
|
|
// Returns the alternative type for a given `absl::variant` at the passed
|
|
// index value as a compile-time constant expression. As this is a class
|
|
// template resulting in a type, it is not useful for access of the run-time
|
|
// value of any given `absl::variant` variable.
|
|
//
|
|
// Example:
|
|
//
|
|
// // The type of the 0th alternative is "int".
|
|
// using alternative_type_0
|
|
// = absl::variant_alternative<0, absl::variant<int, std::string>>::type;
|
|
//
|
|
// static_assert(std::is_same<alternative_type_0, int>::value, "");
|
|
//
|
|
// // `absl::variant_alternative` is more valuable for use in generic code:
|
|
// template <typename Variant>
|
|
// constexpr bool IsFirstElementTrivial() {
|
|
// return std::is_trivial_v<variant_alternative<0, Variant>::type>;
|
|
// }
|
|
//
|
|
// Note that the set of cv-qualified specializations of `variant_alternative`
|
|
// are provided to ensure that those specializations compile (especially when
|
|
// passed within template logic).
|
|
template <std::size_t I, class T>
|
|
struct variant_alternative;
|
|
|
|
template <std::size_t I, class... Types>
|
|
struct variant_alternative<I, variant<Types...>> {
|
|
using type =
|
|
variant_internal::VariantAlternativeSfinaeT<I, variant<Types...>>;
|
|
};
|
|
|
|
// Specialization of `variant_alternative` for const qualified variants.
|
|
template <std::size_t I, class T>
|
|
struct variant_alternative<I, const T> {
|
|
using type = const typename variant_alternative<I, T>::type;
|
|
};
|
|
|
|
// Specialization of `variant_alternative` for volatile qualified variants.
|
|
template <std::size_t I, class T>
|
|
struct variant_alternative<I, volatile T> {
|
|
using type = volatile typename variant_alternative<I, T>::type;
|
|
};
|
|
|
|
// Specialization of `variant_alternative` for const volatile qualified
|
|
// variants.
|
|
template <std::size_t I, class T>
|
|
struct variant_alternative<I, const volatile T> {
|
|
using type = const volatile typename variant_alternative<I, T>::type;
|
|
};
|
|
|
|
// Template type alias for variant_alternative<I, T>::type.
|
|
//
|
|
// Example:
|
|
//
|
|
// using alternative_type_0
|
|
// = absl::variant_alternative_t<0, absl::variant<int, std::string>>;
|
|
// static_assert(std::is_same<alternative_type_0, int>::value, "");
|
|
template <std::size_t I, class T>
|
|
using variant_alternative_t = typename variant_alternative<I, T>::type;
|
|
|
|
// holds_alternative()
|
|
//
|
|
// Checks whether the given variant currently holds a given alternative type,
|
|
// returning `true` if so.
|
|
//
|
|
// Example:
|
|
//
|
|
// absl::variant<int, std::string> foo = 42;
|
|
// if (absl::holds_alternative<int>(foo)) {
|
|
// std::cout << "The variant holds an integer";
|
|
// }
|
|
template <class T, class... Types>
|
|
constexpr bool holds_alternative(const variant<Types...>& v) noexcept {
|
|
static_assert(
|
|
variant_internal::UnambiguousIndexOfImpl<variant<Types...>, T,
|
|
0>::value != sizeof...(Types),
|
|
"The type T must occur exactly once in Types...");
|
|
return v.index() ==
|
|
variant_internal::UnambiguousIndexOf<variant<Types...>, T>::value;
|
|
}
|
|
|
|
// get()
|
|
//
|
|
// Returns a reference to the value currently within a given variant, using
|
|
// either a unique alternative type amongst the variant's set of alternative
|
|
// types, or the variant's index value. Attempting to get a variant's value
|
|
// using a type that is not unique within the variant's set of alternative types
|
|
// is a compile-time error. If the index of the alternative being specified is
|
|
// different from the index of the alternative that is currently stored, throws
|
|
// `absl::bad_variant_access`.
|
|
//
|
|
// Example:
|
|
//
|
|
// auto a = absl::variant<int, std::string>;
|
|
//
|
|
// // Get the value by type (if unique).
|
|
// int i = absl::get<int>(a);
|
|
//
|
|
// auto b = absl::variant<int, int>;
|
|
//
|
|
// // Getting the value by a type that is not unique is ill-formed.
|
|
// int j = absl::get<int>(b); // Compile Error!
|
|
//
|
|
// // Getting value by index not ambiguous and allowed.
|
|
// int k = absl::get<1>(b);
|
|
|
|
// Overload for getting a variant's lvalue by type.
|
|
template <class T, class... Types>
|
|
constexpr T& get(variant<Types...>& v) { // NOLINT
|
|
return variant_internal::VariantCoreAccess::CheckedAccess<
|
|
variant_internal::IndexOf<T, Types...>::value>(v);
|
|
}
|
|
|
|
// Overload for getting a variant's rvalue by type.
|
|
// Note: `absl::move()` is required to allow use of constexpr in C++11.
|
|
template <class T, class... Types>
|
|
constexpr T&& get(variant<Types...>&& v) {
|
|
return variant_internal::VariantCoreAccess::CheckedAccess<
|
|
variant_internal::IndexOf<T, Types...>::value>(absl::move(v));
|
|
}
|
|
|
|
// Overload for getting a variant's const lvalue by type.
|
|
template <class T, class... Types>
|
|
constexpr const T& get(const variant<Types...>& v) {
|
|
return variant_internal::VariantCoreAccess::CheckedAccess<
|
|
variant_internal::IndexOf<T, Types...>::value>(v);
|
|
}
|
|
|
|
// Overload for getting a variant's const rvalue by type.
|
|
// Note: `absl::move()` is required to allow use of constexpr in C++11.
|
|
template <class T, class... Types>
|
|
constexpr const T&& get(const variant<Types...>&& v) {
|
|
return variant_internal::VariantCoreAccess::CheckedAccess<
|
|
variant_internal::IndexOf<T, Types...>::value>(absl::move(v));
|
|
}
|
|
|
|
// Overload for getting a variant's lvalue by index.
|
|
template <std::size_t I, class... Types>
|
|
constexpr variant_alternative_t<I, variant<Types...>>& get(
|
|
variant<Types...>& v) { // NOLINT
|
|
return variant_internal::VariantCoreAccess::CheckedAccess<I>(v);
|
|
}
|
|
|
|
// Overload for getting a variant's rvalue by index.
|
|
// Note: `absl::move()` is required to allow use of constexpr in C++11.
|
|
template <std::size_t I, class... Types>
|
|
constexpr variant_alternative_t<I, variant<Types...>>&& get(
|
|
variant<Types...>&& v) {
|
|
return variant_internal::VariantCoreAccess::CheckedAccess<I>(absl::move(v));
|
|
}
|
|
|
|
// Overload for getting a variant's const lvalue by index.
|
|
template <std::size_t I, class... Types>
|
|
constexpr const variant_alternative_t<I, variant<Types...>>& get(
|
|
const variant<Types...>& v) {
|
|
return variant_internal::VariantCoreAccess::CheckedAccess<I>(v);
|
|
}
|
|
|
|
// Overload for getting a variant's const rvalue by index.
|
|
// Note: `absl::move()` is required to allow use of constexpr in C++11.
|
|
template <std::size_t I, class... Types>
|
|
constexpr const variant_alternative_t<I, variant<Types...>>&& get(
|
|
const variant<Types...>&& v) {
|
|
return variant_internal::VariantCoreAccess::CheckedAccess<I>(absl::move(v));
|
|
}
|
|
|
|
// get_if()
|
|
//
|
|
// Returns a pointer to the value currently stored within a given variant, if
|
|
// present, using either a unique alternative type amongst the variant's set of
|
|
// alternative types, or the variant's index value. If such a value does not
|
|
// exist, returns `nullptr`.
|
|
//
|
|
// As with `get`, attempting to get a variant's value using a type that is not
|
|
// unique within the variant's set of alternative types is a compile-time error.
|
|
|
|
// Overload for getting a pointer to the value stored in the given variant by
|
|
// index.
|
|
template <std::size_t I, class... Types>
|
|
constexpr absl::add_pointer_t<variant_alternative_t<I, variant<Types...>>>
|
|
get_if(variant<Types...>* v) noexcept {
|
|
return (v != nullptr && v->index() == I)
|
|
? std::addressof(
|
|
variant_internal::VariantCoreAccess::Access<I>(*v))
|
|
: nullptr;
|
|
}
|
|
|
|
// Overload for getting a pointer to the const value stored in the given
|
|
// variant by index.
|
|
template <std::size_t I, class... Types>
|
|
constexpr absl::add_pointer_t<const variant_alternative_t<I, variant<Types...>>>
|
|
get_if(const variant<Types...>* v) noexcept {
|
|
return (v != nullptr && v->index() == I)
|
|
? std::addressof(
|
|
variant_internal::VariantCoreAccess::Access<I>(*v))
|
|
: nullptr;
|
|
}
|
|
|
|
// Overload for getting a pointer to the value stored in the given variant by
|
|
// type.
|
|
template <class T, class... Types>
|
|
constexpr absl::add_pointer_t<T> get_if(variant<Types...>* v) noexcept {
|
|
return absl::get_if<variant_internal::IndexOf<T, Types...>::value>(v);
|
|
}
|
|
|
|
// Overload for getting a pointer to the const value stored in the given variant
|
|
// by type.
|
|
template <class T, class... Types>
|
|
constexpr absl::add_pointer_t<const T> get_if(
|
|
const variant<Types...>* v) noexcept {
|
|
return absl::get_if<variant_internal::IndexOf<T, Types...>::value>(v);
|
|
}
|
|
|
|
// visit()
|
|
//
|
|
// Calls a provided functor on a given set of variants. `absl::visit()` is
|
|
// commonly used to conditionally inspect the state of a given variant (or set
|
|
// of variants).
|
|
// Requires: The expression in the Effects: element shall be a valid expression
|
|
// of the same type and value category, for all combinations of alternative
|
|
// types of all variants. Otherwise, the program is ill-formed.
|
|
//
|
|
// Example:
|
|
//
|
|
// // Define a visitor functor
|
|
// struct GetVariant {
|
|
// template<typename T>
|
|
// void operator()(const T& i) const {
|
|
// std::cout << "The variant's value is: " << i;
|
|
// }
|
|
// };
|
|
//
|
|
// // Declare our variant, and call `absl::visit()` on it.
|
|
// std::variant<int, std::string> foo = std::string("foo");
|
|
// GetVariant visitor;
|
|
// std::visit(visitor, foo); // Prints `The variant's value is: foo'
|
|
template <typename Visitor, typename... Variants>
|
|
variant_internal::VisitResult<Visitor, Variants...> visit(Visitor&& vis,
|
|
Variants&&... vars) {
|
|
return variant_internal::
|
|
VisitIndices<variant_size<absl::decay_t<Variants> >::value...>::Run(
|
|
variant_internal::PerformVisitation<Visitor, Variants...>{
|
|
std::forward_as_tuple(absl::forward<Variants>(vars)...),
|
|
absl::forward<Visitor>(vis)},
|
|
vars.index()...);
|
|
}
|
|
|
|
// monostate
|
|
//
|
|
// The monostate class serves as a first alternative type for a variant for
|
|
// which the first variant type is otherwise not default-constructible.
|
|
struct monostate {};
|
|
|
|
// `absl::monostate` Relational Operators
|
|
|
|
constexpr bool operator<(monostate, monostate) noexcept { return false; }
|
|
constexpr bool operator>(monostate, monostate) noexcept { return false; }
|
|
constexpr bool operator<=(monostate, monostate) noexcept { return true; }
|
|
constexpr bool operator>=(monostate, monostate) noexcept { return true; }
|
|
constexpr bool operator==(monostate, monostate) noexcept { return true; }
|
|
constexpr bool operator!=(monostate, monostate) noexcept { return false; }
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
// `absl::variant` Template Definition
|
|
//------------------------------------------------------------------------------
|
|
template <typename T0, typename... Tn>
|
|
class variant<T0, Tn...> : private variant_internal::VariantBase<T0, Tn...> {
|
|
static_assert(absl::conjunction<std::is_object<T0>,
|
|
std::is_object<Tn>...>::value,
|
|
"Attempted to instantiate a variant containing a non-object "
|
|
"type.");
|
|
// Intentionally not qualifing `negation` with `absl::` to work around a bug
|
|
// in MSVC 2015 with inline namespace and variadic template.
|
|
static_assert(absl::conjunction<negation<std::is_array<T0> >,
|
|
negation<std::is_array<Tn> >...>::value,
|
|
"Attempted to instantiate a variant containing an array type.");
|
|
static_assert(absl::conjunction<std::is_nothrow_destructible<T0>,
|
|
std::is_nothrow_destructible<Tn>...>::value,
|
|
"Attempted to instantiate a variant containing a non-nothrow "
|
|
"destructible type.");
|
|
|
|
friend struct variant_internal::VariantCoreAccess;
|
|
|
|
private:
|
|
using Base = variant_internal::VariantBase<T0, Tn...>;
|
|
|
|
public:
|
|
// Constructors
|
|
|
|
// Constructs a variant holding a default-initialized value of the first
|
|
// alternative type.
|
|
constexpr variant() /*noexcept(see 111above)*/ = default;
|
|
|
|
// Copy constructor, standard semantics
|
|
variant(const variant& other) = default;
|
|
|
|
// Move constructor, standard semantics
|
|
variant(variant&& other) /*noexcept(see above)*/ = default;
|
|
|
|
// Constructs a variant of an alternative type specified by overload
|
|
// resolution of the provided forwarding arguments through
|
|
// direct-initialization.
|
|
//
|
|
// Note: If the selected constructor is a constexpr constructor, this
|
|
// constructor shall be a constexpr constructor.
|
|
//
|
|
// NOTE: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0608r1.html
|
|
// has been voted passed the design phase in the C++ standard meeting in Mar
|
|
// 2018. It will be implemented and integrated into `absl::variant`.
|
|
template <
|
|
class T,
|
|
std::size_t I = std::enable_if<
|
|
variant_internal::IsNeitherSelfNorInPlace<variant,
|
|
absl::decay_t<T>>::value,
|
|
variant_internal::IndexOfConstructedType<variant, T>>::type::value,
|
|
class Tj = absl::variant_alternative_t<I, variant>,
|
|
absl::enable_if_t<std::is_constructible<Tj, T>::value>* =
|
|
nullptr>
|
|
constexpr variant(T&& t) noexcept(std::is_nothrow_constructible<Tj, T>::value)
|
|
: Base(variant_internal::EmplaceTag<I>(), absl::forward<T>(t)) {}
|
|
|
|
// Constructs a variant of an alternative type from the arguments through
|
|
// direct-initialization.
|
|
//
|
|
// Note: If the selected constructor is a constexpr constructor, this
|
|
// constructor shall be a constexpr constructor.
|
|
template <class T, class... Args,
|
|
typename std::enable_if<std::is_constructible<
|
|
variant_internal::UnambiguousTypeOfT<variant, T>,
|
|
Args...>::value>::type* = nullptr>
|
|
constexpr explicit variant(in_place_type_t<T>, Args&&... args)
|
|
: Base(variant_internal::EmplaceTag<
|
|
variant_internal::UnambiguousIndexOf<variant, T>::value>(),
|
|
absl::forward<Args>(args)...) {}
|
|
|
|
// Constructs a variant of an alternative type from an initializer list
|
|
// and other arguments through direct-initialization.
|
|
//
|
|
// Note: If the selected constructor is a constexpr constructor, this
|
|
// constructor shall be a constexpr constructor.
|
|
template <class T, class U, class... Args,
|
|
typename std::enable_if<std::is_constructible<
|
|
variant_internal::UnambiguousTypeOfT<variant, T>,
|
|
std::initializer_list<U>&, Args...>::value>::type* = nullptr>
|
|
constexpr explicit variant(in_place_type_t<T>, std::initializer_list<U> il,
|
|
Args&&... args)
|
|
: Base(variant_internal::EmplaceTag<
|
|
variant_internal::UnambiguousIndexOf<variant, T>::value>(),
|
|
il, absl::forward<Args>(args)...) {}
|
|
|
|
// Constructs a variant of an alternative type from a provided index,
|
|
// through value-initialization using the provided forwarded arguments.
|
|
template <std::size_t I, class... Args,
|
|
typename std::enable_if<std::is_constructible<
|
|
variant_internal::VariantAlternativeSfinaeT<I, variant>,
|
|
Args...>::value>::type* = nullptr>
|
|
constexpr explicit variant(in_place_index_t<I>, Args&&... args)
|
|
: Base(variant_internal::EmplaceTag<I>(), absl::forward<Args>(args)...) {}
|
|
|
|
// Constructs a variant of an alternative type from a provided index,
|
|
// through value-initialization of an initializer list and the provided
|
|
// forwarded arguments.
|
|
template <std::size_t I, class U, class... Args,
|
|
typename std::enable_if<std::is_constructible<
|
|
variant_internal::VariantAlternativeSfinaeT<I, variant>,
|
|
std::initializer_list<U>&, Args...>::value>::type* = nullptr>
|
|
constexpr explicit variant(in_place_index_t<I>, std::initializer_list<U> il,
|
|
Args&&... args)
|
|
: Base(variant_internal::EmplaceTag<I>(), il,
|
|
absl::forward<Args>(args)...) {}
|
|
|
|
// Destructors
|
|
|
|
// Destroys the variant's currently contained value, provided that
|
|
// `absl::valueless_by_exception()` is false.
|
|
~variant() = default;
|
|
|
|
// Assignment Operators
|
|
|
|
// Copy assignement operator
|
|
variant& operator=(const variant& other) = default;
|
|
|
|
// Move assignment operator
|
|
variant& operator=(variant&& other) /*noexcept(see above)*/ = default;
|
|
|
|
// Converting assignment operator
|
|
//
|
|
// NOTE: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0608r1.html
|
|
// has been voted passed the design phase in the C++ standard meeting in Mar
|
|
// 2018. It will be implemented and integrated into `absl::variant`.
|
|
template <
|
|
class T,
|
|
std::size_t I = std::enable_if<
|
|
!std::is_same<absl::decay_t<T>, variant>::value,
|
|
variant_internal::IndexOfConstructedType<variant, T>>::type::value,
|
|
class Tj = absl::variant_alternative_t<I, variant>,
|
|
typename std::enable_if<std::is_assignable<Tj&, T>::value &&
|
|
std::is_constructible<Tj, T>::value>::type* =
|
|
nullptr>
|
|
variant& operator=(T&& t) noexcept(
|
|
std::is_nothrow_assignable<Tj&, T>::value&&
|
|
std::is_nothrow_constructible<Tj, T>::value) {
|
|
variant_internal::VisitIndices<sizeof...(Tn) + 1>::Run(
|
|
variant_internal::VariantCoreAccess::MakeConversionAssignVisitor(
|
|
this, absl::forward<T>(t)),
|
|
index());
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
// emplace() Functions
|
|
|
|
// Constructs a value of the given alternative type T within the variant.
|
|
//
|
|
// Example:
|
|
//
|
|
// absl::variant<std::vector<int>, int, std::string> v;
|
|
// v.emplace<int>(99);
|
|
// v.emplace<std::string>("abc");
|
|
template <
|
|
class T, class... Args,
|
|
typename std::enable_if<std::is_constructible<
|
|
absl::variant_alternative_t<
|
|
variant_internal::UnambiguousIndexOf<variant, T>::value, variant>,
|
|
Args...>::value>::type* = nullptr>
|
|
T& emplace(Args&&... args) {
|
|
return variant_internal::VariantCoreAccess::Replace<
|
|
variant_internal::UnambiguousIndexOf<variant, T>::value>(
|
|
this, absl::forward<Args>(args)...);
|
|
}
|
|
|
|
// Constructs a value of the given alternative type T within the variant using
|
|
// an initializer list.
|
|
//
|
|
// Example:
|
|
//
|
|
// absl::variant<std::vector<int>, int, std::string> v;
|
|
// v.emplace<std::vector<int>>({0, 1, 2});
|
|
template <
|
|
class T, class U, class... Args,
|
|
typename std::enable_if<std::is_constructible<
|
|
absl::variant_alternative_t<
|
|
variant_internal::UnambiguousIndexOf<variant, T>::value, variant>,
|
|
std::initializer_list<U>&, Args...>::value>::type* = nullptr>
|
|
T& emplace(std::initializer_list<U> il, Args&&... args) {
|
|
return variant_internal::VariantCoreAccess::Replace<
|
|
variant_internal::UnambiguousIndexOf<variant, T>::value>(
|
|
this, il, absl::forward<Args>(args)...);
|
|
}
|
|
|
|
// Destroys the current value of the variant (provided that
|
|
// `absl::valueless_by_exception()` is false, and constructs a new value at
|
|
// the given index.
|
|
//
|
|
// Example:
|
|
//
|
|
// absl::variant<std::vector<int>, int, int> v;
|
|
// v.emplace<1>(99);
|
|
// v.emplace<2>(98);
|
|
// v.emplace<int>(99); // Won't compile. 'int' isn't a unique type.
|
|
template <std::size_t I, class... Args,
|
|
typename std::enable_if<
|
|
std::is_constructible<absl::variant_alternative_t<I, variant>,
|
|
Args...>::value>::type* = nullptr>
|
|
absl::variant_alternative_t<I, variant>& emplace(Args&&... args) {
|
|
return variant_internal::VariantCoreAccess::Replace<I>(
|
|
this, absl::forward<Args>(args)...);
|
|
}
|
|
|
|
// Destroys the current value of the variant (provided that
|
|
// `absl::valueless_by_exception()` is false, and constructs a new value at
|
|
// the given index using an initializer list and the provided arguments.
|
|
//
|
|
// Example:
|
|
//
|
|
// absl::variant<std::vector<int>, int, int> v;
|
|
// v.emplace<0>({0, 1, 2});
|
|
template <std::size_t I, class U, class... Args,
|
|
typename std::enable_if<std::is_constructible<
|
|
absl::variant_alternative_t<I, variant>,
|
|
std::initializer_list<U>&, Args...>::value>::type* = nullptr>
|
|
absl::variant_alternative_t<I, variant>& emplace(std::initializer_list<U> il,
|
|
Args&&... args) {
|
|
return variant_internal::VariantCoreAccess::Replace<I>(
|
|
this, il, absl::forward<Args>(args)...);
|
|
}
|
|
|
|
// variant::valueless_by_exception()
|
|
//
|
|
// Returns false if and only if the variant currently holds a valid value.
|
|
constexpr bool valueless_by_exception() const noexcept {
|
|
return this->index_ == absl::variant_npos;
|
|
}
|
|
|
|
// variant::index()
|
|
//
|
|
// Returns the index value of the variant's currently selected alternative
|
|
// type.
|
|
constexpr std::size_t index() const noexcept { return this->index_; }
|
|
|
|
// variant::swap()
|
|
//
|
|
// Swaps the values of two variant objects.
|
|
//
|
|
// TODO(calabrese)
|
|
// `variant::swap()` and `swap()` rely on `std::is_(nothrow)_swappable()`
|
|
// which is introduced in C++17. So we assume `is_swappable()` is always
|
|
// true and `is_nothrow_swappable()` is same as `std::is_trivial()`.
|
|
void swap(variant& rhs) noexcept(
|
|
absl::conjunction<std::is_trivial<T0>, std::is_trivial<Tn>...>::value) {
|
|
return variant_internal::VisitIndices<sizeof...(Tn) + 1>::Run(
|
|
variant_internal::Swap<T0, Tn...>{this, &rhs}, rhs.index());
|
|
}
|
|
};
|
|
|
|
// We need a valid declaration of variant<> for SFINAE and overload resolution
|
|
// to work properly above, but we don't need a full declaration since this type
|
|
// will never be constructed. This declaration, though incomplete, suffices.
|
|
template <>
|
|
class variant<>;
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Relational Operators
|
|
//------------------------------------------------------------------------------
|
|
//
|
|
// If neither operand is in the `variant::valueless_by_exception` state:
|
|
//
|
|
// * If the index of both variants is the same, the relational operator
|
|
// returns the result of the corresponding relational operator for the
|
|
// corresponding alternative type.
|
|
// * If the index of both variants is not the same, the relational operator
|
|
// returns the result of that operation applied to the value of the left
|
|
// operand's index and the value of the right operand's index.
|
|
// * If at least one operand is in the valueless_by_exception state:
|
|
// - A variant in the valueless_by_exception state is only considered equal
|
|
// to another variant in the valueless_by_exception state.
|
|
// - If exactly one operand is in the valueless_by_exception state, the
|
|
// variant in the valueless_by_exception state is less than the variant
|
|
// that is not in the valueless_by_exception state.
|
|
//
|
|
// Note: The value 1 is added to each index in the relational comparisons such
|
|
// that the index corresponding to the valueless_by_exception state wraps around
|
|
// to 0 (the lowest value for the index type), and the remaining indices stay in
|
|
// the same relative order.
|
|
|
|
// Equal-to operator
|
|
template <typename... Types>
|
|
constexpr variant_internal::RequireAllHaveEqualT<Types...> operator==(
|
|
const variant<Types...>& a, const variant<Types...>& b) {
|
|
return (a.index() == b.index()) &&
|
|
variant_internal::VisitIndices<sizeof...(Types)>::Run(
|
|
variant_internal::EqualsOp<Types...>{&a, &b}, a.index());
|
|
}
|
|
|
|
// Not equal operator
|
|
template <typename... Types>
|
|
constexpr variant_internal::RequireAllHaveNotEqualT<Types...> operator!=(
|
|
const variant<Types...>& a, const variant<Types...>& b) {
|
|
return (a.index() != b.index()) ||
|
|
variant_internal::VisitIndices<sizeof...(Types)>::Run(
|
|
variant_internal::NotEqualsOp<Types...>{&a, &b}, a.index());
|
|
}
|
|
|
|
// Less-than operator
|
|
template <typename... Types>
|
|
constexpr variant_internal::RequireAllHaveLessThanT<Types...> operator<(
|
|
const variant<Types...>& a, const variant<Types...>& b) {
|
|
return (a.index() != b.index())
|
|
? (a.index() + 1) < (b.index() + 1)
|
|
: variant_internal::VisitIndices<sizeof...(Types)>::Run(
|
|
variant_internal::LessThanOp<Types...>{&a, &b}, a.index());
|
|
}
|
|
|
|
// Greater-than operator
|
|
template <typename... Types>
|
|
constexpr variant_internal::RequireAllHaveGreaterThanT<Types...> operator>(
|
|
const variant<Types...>& a, const variant<Types...>& b) {
|
|
return (a.index() != b.index())
|
|
? (a.index() + 1) > (b.index() + 1)
|
|
: variant_internal::VisitIndices<sizeof...(Types)>::Run(
|
|
variant_internal::GreaterThanOp<Types...>{&a, &b},
|
|
a.index());
|
|
}
|
|
|
|
// Less-than or equal-to operator
|
|
template <typename... Types>
|
|
constexpr variant_internal::RequireAllHaveLessThanOrEqualT<Types...> operator<=(
|
|
const variant<Types...>& a, const variant<Types...>& b) {
|
|
return (a.index() != b.index())
|
|
? (a.index() + 1) < (b.index() + 1)
|
|
: variant_internal::VisitIndices<sizeof...(Types)>::Run(
|
|
variant_internal::LessThanOrEqualsOp<Types...>{&a, &b},
|
|
a.index());
|
|
}
|
|
|
|
// Greater-than or equal-to operator
|
|
template <typename... Types>
|
|
constexpr variant_internal::RequireAllHaveGreaterThanOrEqualT<Types...>
|
|
operator>=(const variant<Types...>& a, const variant<Types...>& b) {
|
|
return (a.index() != b.index())
|
|
? (a.index() + 1) > (b.index() + 1)
|
|
: variant_internal::VisitIndices<sizeof...(Types)>::Run(
|
|
variant_internal::GreaterThanOrEqualsOp<Types...>{&a, &b},
|
|
a.index());
|
|
}
|
|
|
|
} // namespace absl
|
|
|
|
namespace std {
|
|
|
|
// hash()
|
|
template <> // NOLINT
|
|
struct hash<absl::monostate> {
|
|
std::size_t operator()(absl::monostate) const { return 0; }
|
|
};
|
|
|
|
template <class... T> // NOLINT
|
|
struct hash<absl::variant<T...>>
|
|
: absl::variant_internal::VariantHashBase<absl::variant<T...>, void,
|
|
absl::remove_const_t<T>...> {};
|
|
|
|
} // namespace std
|
|
|
|
#endif // ABSL_HAVE_STD_VARIANT
|
|
|
|
namespace absl {
|
|
namespace variant_internal {
|
|
|
|
// Helper visitor for converting a variant<Ts...>` into another type (mostly
|
|
// variant) that can be constructed from any type.
|
|
template <typename To>
|
|
struct ConversionVisitor {
|
|
template <typename T>
|
|
To operator()(T&& v) const {
|
|
return To(std::forward<T>(v));
|
|
}
|
|
};
|
|
|
|
} // namespace variant_internal
|
|
|
|
// ConvertVariantTo()
|
|
//
|
|
// Helper functions to convert an `absl::variant` to a variant of another set of
|
|
// types, provided that the alternative type of the new variant type can be
|
|
// converted from any type in the source variant.
|
|
//
|
|
// Example:
|
|
//
|
|
// absl::variant<name1, name2, float> InternalReq(const Req&);
|
|
//
|
|
// // name1 and name2 are convertible to name
|
|
// absl::variant<name, float> ExternalReq(const Req& req) {
|
|
// return absl::ConvertVariantTo<absl::variant<name, float>>(
|
|
// InternalReq(req));
|
|
// }
|
|
template <typename To, typename Variant>
|
|
To ConvertVariantTo(Variant&& variant) {
|
|
return absl::visit(variant_internal::ConversionVisitor<To>{},
|
|
std::forward<Variant>(variant));
|
|
}
|
|
|
|
} // namespace absl
|
|
|
|
#endif // ABSL_TYPES_VARIANT_H_
|