e9324d926a
-- 7a6ff16a85beb730c172d5d25cf1b5e1be885c56 by Laramie Leavitt <lar@google.com>: Internal change. PiperOrigin-RevId: 254454546 -- ff8f9bafaefc26d451f576ea4a06d150aed63f6f by Andy Soffer <asoffer@google.com>: Internal changes PiperOrigin-RevId: 254451562 -- deefc5b651b479ce36f0b4ef203e119c0c8936f2 by CJ Johnson <johnsoncj@google.com>: Account for subtracting unsigned values from the size of InlinedVector PiperOrigin-RevId: 254450625 -- 3c677316a27bcadc17e41957c809ca472d5fef14 by Andy Soffer <asoffer@google.com>: Add C++17's std::make_from_tuple to absl/utility/utility.h PiperOrigin-RevId: 254411573 -- 4ee3536a918830eeec402a28fc31a62c7c90b940 by CJ Johnson <johnsoncj@google.com>: Adds benchmark for the rest of the InlinedVector public API PiperOrigin-RevId: 254408378 -- e5a21a00700ee83498ff1efbf649169756463ee4 by CJ Johnson <johnsoncj@google.com>: Updates the definition of InlinedVector::shrink_to_fit() to be exception safe and adds exception safety tests for it. PiperOrigin-RevId: 254401387 -- 2ea82e72b86d82d78b4e4712a63a55981b53c64b by Laramie Leavitt <lar@google.com>: Use absl::InsecureBitGen in place of std::mt19937 in tests absl/random/...distribution_test.cc PiperOrigin-RevId: 254289444 -- fa099e02c413a7ffda732415e8105cad26a90337 by Andy Soffer <asoffer@google.com>: Internal changes PiperOrigin-RevId: 254286334 -- ce34b7f36933b30cfa35b9c9a5697a792b5666e4 by Andy Soffer <asoffer@google.com>: Internal changes PiperOrigin-RevId: 254273059 -- 6f9c473da7c2090c2e85a37c5f00622e8a912a89 by Jorg Brown <jorg@google.com>: Change absl::container_internal::CompressedTuple to instantiate its internal Storage class with the name of the type it's holding, rather than the name of the Tuple. This is not an externally-visible change, other than less compiler memory is used and less debug information is generated. PiperOrigin-RevId: 254269285 -- 8bd3c186bf2fc0c55d8a2dd6f28a5327502c9fba by Andy Soffer <asoffer@google.com>: Adding short-hand IntervalClosed for IntervalClosedClosed and IntervalOpen for IntervalOpenOpen. PiperOrigin-RevId: 254252419 -- ea957f99b6a04fccd42aa05605605f3b44b1ecfd by Abseil Team <absl-team@google.com>: Do not directly use __SIZEOF_INT128__. In order to avoid linker errors when building with clang-cl (__fixunsdfti, __udivti3 and __fixunssfti are undefined), this CL uses ABSL_HAVE_INTRINSIC_INT128 which is not defined for clang-cl. PiperOrigin-RevId: 254250739 -- 89ab385cd26b34d64130bce856253aaba96d2345 by Andy Soffer <asoffer@google.com>: Internal changes PiperOrigin-RevId: 254242321 -- cffc793d93eca6d6bdf7de733847b6ab4a255ae9 by CJ Johnson <johnsoncj@google.com>: Adds benchmark for InlinedVector::reserve(size_type) PiperOrigin-RevId: 254199226 -- c90c7a9fa3c8f0c9d5114036979548b055ea2f2a by Gennadiy Rozental <rogeeff@google.com>: Import of CCTZ from GitHub. PiperOrigin-RevId: 254072387 -- c4c388beae016c9570ab54ffa1d52660e4a85b7b by Laramie Leavitt <lar@google.com>: Internal cleanup. PiperOrigin-RevId: 254062381 -- d3c992e221cc74e5372d0c8fa410170b6a43c062 by Tom Manshreck <shreck@google.com>: Update distributions.h to Abseil standards PiperOrigin-RevId: 254054946 -- d15ad0035c34ef11b14fadc5a4a2d3ec415f5518 by CJ Johnson <johnsoncj@google.com>: Removes functions with only one caller from the implementation details of InlinedVector by manually inlining the definitions PiperOrigin-RevId: 254005427 -- 2f37e807efc3a8ef1f4b539bdd379917d4151520 by Andy Soffer <asoffer@google.com>: Initial release of Abseil Random PiperOrigin-RevId: 253999861 -- 24ed1694b6430791d781ed533a8f8ccf6cac5856 by CJ Johnson <johnsoncj@google.com>: Updates the definition of InlinedVector::assign(...)/InlinedVector::operator=(...) to new, exception-safe implementations with exception safety tests to boot PiperOrigin-RevId: 253993691 -- 5613d95f5a7e34a535cfaeadce801441e990843e by CJ Johnson <johnsoncj@google.com>: Adds benchmarks for InlinedVector::shrink_to_fit() PiperOrigin-RevId: 253989647 -- 2a96ddfdac40bbb8cb6a7f1aeab90917067c6e63 by Abseil Team <absl-team@google.com>: Initial release of Abseil Random PiperOrigin-RevId: 253927497 -- bf1aff8fc9ffa921ad74643e9525ecf25b0d8dc1 by Andy Soffer <asoffer@google.com>: Initial release of Abseil Random PiperOrigin-RevId: 253920512 -- bfc03f4a3dcda3cf3a4b84bdb84cda24e3394f41 by Laramie Leavitt <lar@google.com>: Internal change. PiperOrigin-RevId: 253886486 -- 05036cfcc078ca7c5f581a00dfb0daed568cbb69 by Eric Fiselier <ericwf@google.com>: Don't include `winsock2.h` because it drags in `windows.h` and friends, and they define awful macros like OPAQUE, ERROR, and more. This has the potential to break abseil users. Instead we only forward declare `timeval` and require Windows users include `winsock2.h` themselves. This is both inconsistent and poor QoI, but so including 'windows.h' is bad too. PiperOrigin-RevId: 253852615 GitOrigin-RevId: 7a6ff16a85beb730c172d5d25cf1b5e1be885c56 Change-Id: Icd6aff87da26f29ec8915da856f051129987cef6
260 lines
9.2 KiB
C++
260 lines
9.2 KiB
C++
// Copyright 2017 The Abseil Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#ifndef ABSL_RANDOM_INTERNAL_DISTRIBUTION_IMPL_H_
|
|
#define ABSL_RANDOM_INTERNAL_DISTRIBUTION_IMPL_H_
|
|
|
|
// This file contains some implementation details which are used by one or more
|
|
// of the absl random number distributions.
|
|
|
|
#include <cfloat>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <limits>
|
|
#include <type_traits>
|
|
|
|
#if (defined(_WIN32) || defined(_WIN64)) && defined(_M_IA64)
|
|
#include <intrin.h> // NOLINT(build/include_order)
|
|
#pragma intrinsic(_umul128)
|
|
#define ABSL_INTERNAL_USE_UMUL128 1
|
|
#endif
|
|
|
|
#include "absl/base/config.h"
|
|
#include "absl/base/internal/bits.h"
|
|
#include "absl/numeric/int128.h"
|
|
#include "absl/random/internal/fastmath.h"
|
|
#include "absl/random/internal/traits.h"
|
|
|
|
namespace absl {
|
|
namespace random_internal {
|
|
|
|
// Creates a double from `bits`, with the template fields controlling the
|
|
// output.
|
|
//
|
|
// RandU64To is both more efficient and generates more unique values in the
|
|
// result interval than known implementations of std::generate_canonical().
|
|
//
|
|
// The `Signed` parameter controls whether positive, negative, or both are
|
|
// returned (thus affecting the output interval).
|
|
// When Signed == SignedValueT, range is U(-1, 1)
|
|
// When Signed == NegativeValueT, range is U(-1, 0)
|
|
// When Signed == PositiveValueT, range is U(0, 1)
|
|
//
|
|
// When the `IncludeZero` parameter is true, the function may return 0 for some
|
|
// inputs, otherwise it never returns 0.
|
|
//
|
|
// The `ExponentBias` parameter determines the scale of the output range by
|
|
// adjusting the exponent.
|
|
//
|
|
// When a value in U(0,1) is required, use:
|
|
// RandU64ToDouble<PositiveValueT, true, 0>();
|
|
//
|
|
// When a value in U(-1,1) is required, use:
|
|
// RandU64ToDouble<SignedValueT, false, 0>() => U(-1, 1)
|
|
// This generates more distinct values than the mathematically equivalent
|
|
// expression `U(0, 1) * 2.0 - 1.0`, and is preferable.
|
|
//
|
|
// Scaling the result by powers of 2 (and avoiding a multiply) is also possible:
|
|
// RandU64ToDouble<PositiveValueT, false, 1>(); => U(0, 2)
|
|
// RandU64ToDouble<PositiveValueT, false, -1>(); => U(0, 0.5)
|
|
//
|
|
|
|
// Tristate types controlling the output.
|
|
struct PositiveValueT {};
|
|
struct NegativeValueT {};
|
|
struct SignedValueT {};
|
|
|
|
// RandU64ToDouble is the double-result variant of RandU64To, described above.
|
|
template <typename Signed, bool IncludeZero, int ExponentBias = 0>
|
|
inline double RandU64ToDouble(uint64_t bits) {
|
|
static_assert(std::is_same<Signed, PositiveValueT>::value ||
|
|
std::is_same<Signed, NegativeValueT>::value ||
|
|
std::is_same<Signed, SignedValueT>::value,
|
|
"");
|
|
|
|
// Maybe use the left-most bit for a sign bit.
|
|
uint64_t sign = std::is_same<Signed, NegativeValueT>::value
|
|
? 0x8000000000000000ull
|
|
: 0; // Sign bits.
|
|
|
|
if (std::is_same<Signed, SignedValueT>::value) {
|
|
sign = bits & 0x8000000000000000ull;
|
|
bits = bits & 0x7FFFFFFFFFFFFFFFull;
|
|
}
|
|
if (IncludeZero) {
|
|
if (bits == 0u) return 0;
|
|
}
|
|
|
|
// Number of leading zeros is mapped to the exponent: 2^-clz
|
|
int clz = base_internal::CountLeadingZeros64(bits);
|
|
// Shift number left to erase leading zeros.
|
|
bits <<= IncludeZero ? clz : (clz & 63);
|
|
|
|
// Shift number right to remove bits that overflow double mantissa. The
|
|
// direction of the shift depends on `clz`.
|
|
bits >>= (64 - DBL_MANT_DIG);
|
|
|
|
// Compute IEEE 754 double exponent.
|
|
// In the Signed case, bits is a 63-bit number with a 0 msb. Adjust the
|
|
// exponent to account for that.
|
|
const uint64_t exp =
|
|
(std::is_same<Signed, SignedValueT>::value ? 1023U : 1022U) +
|
|
static_cast<uint64_t>(ExponentBias - clz);
|
|
constexpr int kExp = DBL_MANT_DIG - 1;
|
|
// Construct IEEE 754 double from exponent and mantissa.
|
|
const uint64_t val = sign | (exp << kExp) | (bits & ((1ULL << kExp) - 1U));
|
|
|
|
double res;
|
|
static_assert(sizeof(res) == sizeof(val), "double is not 64 bit");
|
|
// Memcpy value from "val" to "res" to avoid aliasing problems. Assumes that
|
|
// endian-ness is same for double and uint64_t.
|
|
std::memcpy(&res, &val, sizeof(res));
|
|
|
|
return res;
|
|
}
|
|
|
|
// RandU64ToFloat is the float-result variant of RandU64To, described above.
|
|
template <typename Signed, bool IncludeZero, int ExponentBias = 0>
|
|
inline float RandU64ToFloat(uint64_t bits) {
|
|
static_assert(std::is_same<Signed, PositiveValueT>::value ||
|
|
std::is_same<Signed, NegativeValueT>::value ||
|
|
std::is_same<Signed, SignedValueT>::value,
|
|
"");
|
|
|
|
// Maybe use the left-most bit for a sign bit.
|
|
uint64_t sign = std::is_same<Signed, NegativeValueT>::value
|
|
? 0x80000000ul
|
|
: 0; // Sign bits.
|
|
|
|
if (std::is_same<Signed, SignedValueT>::value) {
|
|
uint64_t a = bits & 0x8000000000000000ull;
|
|
sign = static_cast<uint32_t>(a >> 32);
|
|
bits = bits & 0x7FFFFFFFFFFFFFFFull;
|
|
}
|
|
if (IncludeZero) {
|
|
if (bits == 0u) return 0;
|
|
}
|
|
|
|
// Number of leading zeros is mapped to the exponent: 2^-clz
|
|
int clz = base_internal::CountLeadingZeros64(bits);
|
|
// Shift number left to erase leading zeros.
|
|
bits <<= IncludeZero ? clz : (clz & 63);
|
|
// Shift number right to remove bits that overflow double mantissa. The
|
|
// direction of the shift depends on `clz`.
|
|
bits >>= (64 - FLT_MANT_DIG);
|
|
|
|
// Construct IEEE 754 float exponent.
|
|
// In the Signed case, bits is a 63-bit number with a 0 msb. Adjust the
|
|
// exponent to account for that.
|
|
const uint32_t exp =
|
|
(std::is_same<Signed, SignedValueT>::value ? 127U : 126U) +
|
|
static_cast<uint32_t>(ExponentBias - clz);
|
|
constexpr int kExp = FLT_MANT_DIG - 1;
|
|
const uint32_t val = sign | (exp << kExp) | (bits & ((1U << kExp) - 1U));
|
|
|
|
float res;
|
|
static_assert(sizeof(res) == sizeof(val), "float is not 32 bit");
|
|
// Assumes that endian-ness is same for float and uint32_t.
|
|
std::memcpy(&res, &val, sizeof(res));
|
|
|
|
return res;
|
|
}
|
|
|
|
template <typename Result>
|
|
struct RandU64ToReal {
|
|
template <typename Signed, bool IncludeZero, int ExponentBias = 0>
|
|
static inline Result Value(uint64_t bits) {
|
|
return RandU64ToDouble<Signed, IncludeZero, ExponentBias>(bits);
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct RandU64ToReal<float> {
|
|
template <typename Signed, bool IncludeZero, int ExponentBias = 0>
|
|
static inline float Value(uint64_t bits) {
|
|
return RandU64ToFloat<Signed, IncludeZero, ExponentBias>(bits);
|
|
}
|
|
};
|
|
|
|
inline uint128 MultiplyU64ToU128(uint64_t a, uint64_t b) {
|
|
#if defined(ABSL_HAVE_INTRINSIC_INT128)
|
|
return uint128(static_cast<__uint128_t>(a) * b);
|
|
#elif defined(ABSL_INTERNAL_USE_UMUL128)
|
|
// uint64_t * uint64_t => uint128 multiply using imul intrinsic on MSVC.
|
|
uint64_t high = 0;
|
|
const uint64_t low = _umul128(a, b, &high);
|
|
return absl::MakeUint128(high, low);
|
|
#else
|
|
// uint128(a) * uint128(b) in emulated mode computes a full 128-bit x 128-bit
|
|
// multiply. However there are many cases where that is not necessary, and it
|
|
// is only necessary to support a 64-bit x 64-bit = 128-bit multiply. This is
|
|
// for those cases.
|
|
const uint64_t a00 = static_cast<uint32_t>(a);
|
|
const uint64_t a32 = a >> 32;
|
|
const uint64_t b00 = static_cast<uint32_t>(b);
|
|
const uint64_t b32 = b >> 32;
|
|
|
|
const uint64_t c00 = a00 * b00;
|
|
const uint64_t c32a = a00 * b32;
|
|
const uint64_t c32b = a32 * b00;
|
|
const uint64_t c64 = a32 * b32;
|
|
|
|
const uint32_t carry =
|
|
static_cast<uint32_t>(((c00 >> 32) + static_cast<uint32_t>(c32a) +
|
|
static_cast<uint32_t>(c32b)) >>
|
|
32);
|
|
|
|
return absl::MakeUint128(c64 + (c32a >> 32) + (c32b >> 32) + carry,
|
|
c00 + (c32a << 32) + (c32b << 32));
|
|
#endif
|
|
}
|
|
|
|
// wide_multiply<T> multiplies two N-bit values to a 2N-bit result.
|
|
template <typename UIntType>
|
|
struct wide_multiply {
|
|
static constexpr size_t kN = std::numeric_limits<UIntType>::digits;
|
|
using input_type = UIntType;
|
|
using result_type = typename random_internal::unsigned_bits<kN * 2>::type;
|
|
|
|
static result_type multiply(input_type a, input_type b) {
|
|
return static_cast<result_type>(a) * b;
|
|
}
|
|
|
|
static input_type hi(result_type r) { return r >> kN; }
|
|
static input_type lo(result_type r) { return r; }
|
|
|
|
static_assert(std::is_unsigned<UIntType>::value,
|
|
"Class-template wide_multiply<> argument must be unsigned.");
|
|
};
|
|
|
|
#ifndef ABSL_HAVE_INTRINSIC_INT128
|
|
template <>
|
|
struct wide_multiply<uint64_t> {
|
|
using input_type = uint64_t;
|
|
using result_type = uint128;
|
|
|
|
static result_type multiply(uint64_t a, uint64_t b) {
|
|
return MultiplyU64ToU128(a, b);
|
|
}
|
|
|
|
static uint64_t hi(result_type r) { return Uint128High64(r); }
|
|
static uint64_t lo(result_type r) { return Uint128Low64(r); }
|
|
};
|
|
#endif
|
|
|
|
} // namespace random_internal
|
|
} // namespace absl
|
|
|
|
#endif // ABSL_RANDOM_INTERNAL_DISTRIBUTION_IMPL_H_
|