93d155bc44
-- 3d20ce6cd6541579abecaba169d4b8716d511272 by Jon Cohen <cohenjon@google.com>: Only use LSAN for clang version >= 3.5. This should fix https://github.com/abseil/abseil-cpp/issues/244 PiperOrigin-RevId: 234675129 -- e15bd4ec7a81aa95cc3d09fa1e0e81d58ae478fb by Conrad Parker <conradparker@google.com>: Fix errors in apply() sample code The following changes are made: * Make the example method public. * Give the two user functions different names to avoid confusion about whether apply() can select the correct overload of a function based on its tuple argument (it can't). * Pass tuple2 to the second example apply() invocation, instead of passing its contents individually. * Fix a s/tuple/tuple3/ typo in the third example apply() invocation. PiperOrigin-RevId: 234223407 -- de0ed71e21bc76ddf9fe715fdbaef74cd0df95c7 by Abseil Team <absl-team@google.com>: First test if a macro is defined to avoid -Wundef. ABSL clients may need to compile their code with the -Wundef warning flag. It will be helpful if ABSL header files can be compiled without the -Wundef warning. How to avoid the -Wundef warning: If a macro may be undefined, we need to first test whether the macro is defined before testing its value. We can't rely on the C preprocessor rule that an undefined macro has the value 0L. PiperOrigin-RevId: 234201123 -- fa484ad7dae0cac21140a96662809ecb0ec8eb5d by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 234185697 -- d69b1baef681e27954b065375ecf9c2320463b2b by Samuel Benzaquen <sbenza@google.com>: Mix pointers more thoroughly. Some pointer alignments interact badly with the mixing constant. By mixing twice we reduce this problem. PiperOrigin-RevId: 234178401 -- 1041d0e474610f3a8fea0db90958857327d6da1c by Samuel Benzaquen <sbenza@google.com>: Record rehashes in the hashtablez struct. Only recording the probe length on insertion causes a huge overestimation of the total probe length at any given time. With natural growth, elements are inserted when the load factor is between (max load/2, max load). However, after a rehash the majority of elements are actually inserted when the load factor is less than max/2 and have a much lower average probe length. Also reset some values when the table is cleared. PiperOrigin-RevId: 234013580 -- 299205caf3c89c47339f7409bc831746602cea84 by Mark Barolak <mbar@google.com>: Fix a sample code snippet that assumes `absl::string_view::const_iterator` is `const char*`. This is generally true, however in C++17 builds, absl::string_view is an alias for std::string_view and on MSVC, the std::string_view::const_iterator is an object instead of just a pointer. PiperOrigin-RevId: 233844595 -- af6c6370cf51a1e6c1469c79dfb2a486a4009136 by Abseil Team <absl-team@google.com>: Internal change. PiperOrigin-RevId: 233773470 -- 6e59e4b8e2bb6101b448f0f32b0bea81fe399ccf by Abseil Team <absl-team@google.com>: fix typo in {Starts|Ends}WithIgnoreCase comment in match.h PiperOrigin-RevId: 233662951 GitOrigin-RevId: 3d20ce6cd6541579abecaba169d4b8716d511272 Change-Id: Ib9a29b1c38c6aedf5d9f3f7f00596e8d30e864dd
438 lines
16 KiB
C++
438 lines
16 KiB
C++
// Copyright 2018 The Abseil Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#ifndef ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_
|
|
#define ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_
|
|
|
|
#ifdef ADDRESS_SANITIZER
|
|
#include <sanitizer/asan_interface.h>
|
|
#endif
|
|
|
|
#ifdef MEMORY_SANITIZER
|
|
#include <sanitizer/msan_interface.h>
|
|
#endif
|
|
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <memory>
|
|
#include <tuple>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
|
|
#include "absl/memory/memory.h"
|
|
#include "absl/utility/utility.h"
|
|
|
|
namespace absl {
|
|
namespace container_internal {
|
|
|
|
// Allocates at least n bytes aligned to the specified alignment.
|
|
// Alignment must be a power of 2. It must be positive.
|
|
//
|
|
// Note that many allocators don't honor alignment requirements above certain
|
|
// threshold (usually either alignof(std::max_align_t) or alignof(void*)).
|
|
// Allocate() doesn't apply alignment corrections. If the underlying allocator
|
|
// returns insufficiently alignment pointer, that's what you are going to get.
|
|
template <size_t Alignment, class Alloc>
|
|
void* Allocate(Alloc* alloc, size_t n) {
|
|
static_assert(Alignment > 0, "");
|
|
assert(n && "n must be positive");
|
|
struct alignas(Alignment) M {};
|
|
using A = typename absl::allocator_traits<Alloc>::template rebind_alloc<M>;
|
|
using AT = typename absl::allocator_traits<Alloc>::template rebind_traits<M>;
|
|
A mem_alloc(*alloc);
|
|
void* p = AT::allocate(mem_alloc, (n + sizeof(M) - 1) / sizeof(M));
|
|
assert(reinterpret_cast<uintptr_t>(p) % Alignment == 0 &&
|
|
"allocator does not respect alignment");
|
|
return p;
|
|
}
|
|
|
|
// The pointer must have been previously obtained by calling
|
|
// Allocate<Alignment>(alloc, n).
|
|
template <size_t Alignment, class Alloc>
|
|
void Deallocate(Alloc* alloc, void* p, size_t n) {
|
|
static_assert(Alignment > 0, "");
|
|
assert(n && "n must be positive");
|
|
struct alignas(Alignment) M {};
|
|
using A = typename absl::allocator_traits<Alloc>::template rebind_alloc<M>;
|
|
using AT = typename absl::allocator_traits<Alloc>::template rebind_traits<M>;
|
|
A mem_alloc(*alloc);
|
|
AT::deallocate(mem_alloc, static_cast<M*>(p),
|
|
(n + sizeof(M) - 1) / sizeof(M));
|
|
}
|
|
|
|
namespace memory_internal {
|
|
|
|
// Constructs T into uninitialized storage pointed by `ptr` using the args
|
|
// specified in the tuple.
|
|
template <class Alloc, class T, class Tuple, size_t... I>
|
|
void ConstructFromTupleImpl(Alloc* alloc, T* ptr, Tuple&& t,
|
|
absl::index_sequence<I...>) {
|
|
absl::allocator_traits<Alloc>::construct(
|
|
*alloc, ptr, std::get<I>(std::forward<Tuple>(t))...);
|
|
}
|
|
|
|
template <class T, class F>
|
|
struct WithConstructedImplF {
|
|
template <class... Args>
|
|
decltype(std::declval<F>()(std::declval<T>())) operator()(
|
|
Args&&... args) const {
|
|
return std::forward<F>(f)(T(std::forward<Args>(args)...));
|
|
}
|
|
F&& f;
|
|
};
|
|
|
|
template <class T, class Tuple, size_t... Is, class F>
|
|
decltype(std::declval<F>()(std::declval<T>())) WithConstructedImpl(
|
|
Tuple&& t, absl::index_sequence<Is...>, F&& f) {
|
|
return WithConstructedImplF<T, F>{std::forward<F>(f)}(
|
|
std::get<Is>(std::forward<Tuple>(t))...);
|
|
}
|
|
|
|
template <class T, size_t... Is>
|
|
auto TupleRefImpl(T&& t, absl::index_sequence<Is...>)
|
|
-> decltype(std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...)) {
|
|
return std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...);
|
|
}
|
|
|
|
// Returns a tuple of references to the elements of the input tuple. T must be a
|
|
// tuple.
|
|
template <class T>
|
|
auto TupleRef(T&& t) -> decltype(
|
|
TupleRefImpl(std::forward<T>(t),
|
|
absl::make_index_sequence<
|
|
std::tuple_size<typename std::decay<T>::type>::value>())) {
|
|
return TupleRefImpl(
|
|
std::forward<T>(t),
|
|
absl::make_index_sequence<
|
|
std::tuple_size<typename std::decay<T>::type>::value>());
|
|
}
|
|
|
|
template <class F, class K, class V>
|
|
decltype(std::declval<F>()(std::declval<const K&>(), std::piecewise_construct,
|
|
std::declval<std::tuple<K>>(), std::declval<V>()))
|
|
DecomposePairImpl(F&& f, std::pair<std::tuple<K>, V> p) {
|
|
const auto& key = std::get<0>(p.first);
|
|
return std::forward<F>(f)(key, std::piecewise_construct, std::move(p.first),
|
|
std::move(p.second));
|
|
}
|
|
|
|
} // namespace memory_internal
|
|
|
|
// Constructs T into uninitialized storage pointed by `ptr` using the args
|
|
// specified in the tuple.
|
|
template <class Alloc, class T, class Tuple>
|
|
void ConstructFromTuple(Alloc* alloc, T* ptr, Tuple&& t) {
|
|
memory_internal::ConstructFromTupleImpl(
|
|
alloc, ptr, std::forward<Tuple>(t),
|
|
absl::make_index_sequence<
|
|
std::tuple_size<typename std::decay<Tuple>::type>::value>());
|
|
}
|
|
|
|
// Constructs T using the args specified in the tuple and calls F with the
|
|
// constructed value.
|
|
template <class T, class Tuple, class F>
|
|
decltype(std::declval<F>()(std::declval<T>())) WithConstructed(
|
|
Tuple&& t, F&& f) {
|
|
return memory_internal::WithConstructedImpl<T>(
|
|
std::forward<Tuple>(t),
|
|
absl::make_index_sequence<
|
|
std::tuple_size<typename std::decay<Tuple>::type>::value>(),
|
|
std::forward<F>(f));
|
|
}
|
|
|
|
// Given arguments of an std::pair's consructor, PairArgs() returns a pair of
|
|
// tuples with references to the passed arguments. The tuples contain
|
|
// constructor arguments for the first and the second elements of the pair.
|
|
//
|
|
// The following two snippets are equivalent.
|
|
//
|
|
// 1. std::pair<F, S> p(args...);
|
|
//
|
|
// 2. auto a = PairArgs(args...);
|
|
// std::pair<F, S> p(std::piecewise_construct,
|
|
// std::move(p.first), std::move(p.second));
|
|
inline std::pair<std::tuple<>, std::tuple<>> PairArgs() { return {}; }
|
|
template <class F, class S>
|
|
std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(F&& f, S&& s) {
|
|
return {std::piecewise_construct, std::forward_as_tuple(std::forward<F>(f)),
|
|
std::forward_as_tuple(std::forward<S>(s))};
|
|
}
|
|
template <class F, class S>
|
|
std::pair<std::tuple<const F&>, std::tuple<const S&>> PairArgs(
|
|
const std::pair<F, S>& p) {
|
|
return PairArgs(p.first, p.second);
|
|
}
|
|
template <class F, class S>
|
|
std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(std::pair<F, S>&& p) {
|
|
return PairArgs(std::forward<F>(p.first), std::forward<S>(p.second));
|
|
}
|
|
template <class F, class S>
|
|
auto PairArgs(std::piecewise_construct_t, F&& f, S&& s)
|
|
-> decltype(std::make_pair(memory_internal::TupleRef(std::forward<F>(f)),
|
|
memory_internal::TupleRef(std::forward<S>(s)))) {
|
|
return std::make_pair(memory_internal::TupleRef(std::forward<F>(f)),
|
|
memory_internal::TupleRef(std::forward<S>(s)));
|
|
}
|
|
|
|
// A helper function for implementing apply() in map policies.
|
|
template <class F, class... Args>
|
|
auto DecomposePair(F&& f, Args&&... args)
|
|
-> decltype(memory_internal::DecomposePairImpl(
|
|
std::forward<F>(f), PairArgs(std::forward<Args>(args)...))) {
|
|
return memory_internal::DecomposePairImpl(
|
|
std::forward<F>(f), PairArgs(std::forward<Args>(args)...));
|
|
}
|
|
|
|
// A helper function for implementing apply() in set policies.
|
|
template <class F, class Arg>
|
|
decltype(std::declval<F>()(std::declval<const Arg&>(), std::declval<Arg>()))
|
|
DecomposeValue(F&& f, Arg&& arg) {
|
|
const auto& key = arg;
|
|
return std::forward<F>(f)(key, std::forward<Arg>(arg));
|
|
}
|
|
|
|
// Helper functions for asan and msan.
|
|
inline void SanitizerPoisonMemoryRegion(const void* m, size_t s) {
|
|
#ifdef ADDRESS_SANITIZER
|
|
ASAN_POISON_MEMORY_REGION(m, s);
|
|
#endif
|
|
#ifdef MEMORY_SANITIZER
|
|
__msan_poison(m, s);
|
|
#endif
|
|
(void)m;
|
|
(void)s;
|
|
}
|
|
|
|
inline void SanitizerUnpoisonMemoryRegion(const void* m, size_t s) {
|
|
#ifdef ADDRESS_SANITIZER
|
|
ASAN_UNPOISON_MEMORY_REGION(m, s);
|
|
#endif
|
|
#ifdef MEMORY_SANITIZER
|
|
__msan_unpoison(m, s);
|
|
#endif
|
|
(void)m;
|
|
(void)s;
|
|
}
|
|
|
|
template <typename T>
|
|
inline void SanitizerPoisonObject(const T* object) {
|
|
SanitizerPoisonMemoryRegion(object, sizeof(T));
|
|
}
|
|
|
|
template <typename T>
|
|
inline void SanitizerUnpoisonObject(const T* object) {
|
|
SanitizerUnpoisonMemoryRegion(object, sizeof(T));
|
|
}
|
|
|
|
namespace memory_internal {
|
|
|
|
// If Pair is a standard-layout type, OffsetOf<Pair>::kFirst and
|
|
// OffsetOf<Pair>::kSecond are equivalent to offsetof(Pair, first) and
|
|
// offsetof(Pair, second) respectively. Otherwise they are -1.
|
|
//
|
|
// The purpose of OffsetOf is to avoid calling offsetof() on non-standard-layout
|
|
// type, which is non-portable.
|
|
template <class Pair, class = std::true_type>
|
|
struct OffsetOf {
|
|
static constexpr size_t kFirst = -1;
|
|
static constexpr size_t kSecond = -1;
|
|
};
|
|
|
|
template <class Pair>
|
|
struct OffsetOf<Pair, typename std::is_standard_layout<Pair>::type> {
|
|
static constexpr size_t kFirst = offsetof(Pair, first);
|
|
static constexpr size_t kSecond = offsetof(Pair, second);
|
|
};
|
|
|
|
template <class K, class V>
|
|
struct IsLayoutCompatible {
|
|
private:
|
|
struct Pair {
|
|
K first;
|
|
V second;
|
|
};
|
|
|
|
// Is P layout-compatible with Pair?
|
|
template <class P>
|
|
static constexpr bool LayoutCompatible() {
|
|
return std::is_standard_layout<P>() && sizeof(P) == sizeof(Pair) &&
|
|
alignof(P) == alignof(Pair) &&
|
|
memory_internal::OffsetOf<P>::kFirst ==
|
|
memory_internal::OffsetOf<Pair>::kFirst &&
|
|
memory_internal::OffsetOf<P>::kSecond ==
|
|
memory_internal::OffsetOf<Pair>::kSecond;
|
|
}
|
|
|
|
public:
|
|
// Whether pair<const K, V> and pair<K, V> are layout-compatible. If they are,
|
|
// then it is safe to store them in a union and read from either.
|
|
static constexpr bool value = std::is_standard_layout<K>() &&
|
|
std::is_standard_layout<Pair>() &&
|
|
memory_internal::OffsetOf<Pair>::kFirst == 0 &&
|
|
LayoutCompatible<std::pair<K, V>>() &&
|
|
LayoutCompatible<std::pair<const K, V>>();
|
|
};
|
|
|
|
} // namespace memory_internal
|
|
|
|
// The internal storage type for key-value containers like flat_hash_map.
|
|
//
|
|
// It is convenient for the value_type of a flat_hash_map<K, V> to be
|
|
// pair<const K, V>; the "const K" prevents accidental modification of the key
|
|
// when dealing with the reference returned from find() and similar methods.
|
|
// However, this creates other problems; we want to be able to emplace(K, V)
|
|
// efficiently with move operations, and similarly be able to move a
|
|
// pair<K, V> in insert().
|
|
//
|
|
// The solution is this union, which aliases the const and non-const versions
|
|
// of the pair. This also allows flat_hash_map<const K, V> to work, even though
|
|
// that has the same efficiency issues with move in emplace() and insert() -
|
|
// but people do it anyway.
|
|
//
|
|
// If kMutableKeys is false, only the value member can be accessed.
|
|
//
|
|
// If kMutableKeys is true, key can be accessed through all slots while value
|
|
// and mutable_value must be accessed only via INITIALIZED slots. Slots are
|
|
// created and destroyed via mutable_value so that the key can be moved later.
|
|
//
|
|
// Accessing one of the union fields while the other is active is safe as
|
|
// long as they are layout-compatible, which is guaranteed by the definition of
|
|
// kMutableKeys. For C++11, the relevant section of the standard is
|
|
// https://timsong-cpp.github.io/cppwp/n3337/class.mem#19 (9.2.19)
|
|
template <class K, class V>
|
|
union map_slot_type {
|
|
map_slot_type() {}
|
|
~map_slot_type() = delete;
|
|
using value_type = std::pair<const K, V>;
|
|
using mutable_value_type = std::pair<K, V>;
|
|
|
|
value_type value;
|
|
mutable_value_type mutable_value;
|
|
K key;
|
|
};
|
|
|
|
template <class K, class V>
|
|
struct map_slot_policy {
|
|
using slot_type = map_slot_type<K, V>;
|
|
using value_type = std::pair<const K, V>;
|
|
using mutable_value_type = std::pair<K, V>;
|
|
|
|
private:
|
|
static void emplace(slot_type* slot) {
|
|
// The construction of union doesn't do anything at runtime but it allows us
|
|
// to access its members without violating aliasing rules.
|
|
new (slot) slot_type;
|
|
}
|
|
// If pair<const K, V> and pair<K, V> are layout-compatible, we can accept one
|
|
// or the other via slot_type. We are also free to access the key via
|
|
// slot_type::key in this case.
|
|
using kMutableKeys = memory_internal::IsLayoutCompatible<K, V>;
|
|
|
|
public:
|
|
static value_type& element(slot_type* slot) { return slot->value; }
|
|
static const value_type& element(const slot_type* slot) {
|
|
return slot->value;
|
|
}
|
|
|
|
static const K& key(const slot_type* slot) {
|
|
return kMutableKeys::value ? slot->key : slot->value.first;
|
|
}
|
|
|
|
template <class Allocator, class... Args>
|
|
static void construct(Allocator* alloc, slot_type* slot, Args&&... args) {
|
|
emplace(slot);
|
|
if (kMutableKeys::value) {
|
|
absl::allocator_traits<Allocator>::construct(*alloc, &slot->mutable_value,
|
|
std::forward<Args>(args)...);
|
|
} else {
|
|
absl::allocator_traits<Allocator>::construct(*alloc, &slot->value,
|
|
std::forward<Args>(args)...);
|
|
}
|
|
}
|
|
|
|
// Construct this slot by moving from another slot.
|
|
template <class Allocator>
|
|
static void construct(Allocator* alloc, slot_type* slot, slot_type* other) {
|
|
emplace(slot);
|
|
if (kMutableKeys::value) {
|
|
absl::allocator_traits<Allocator>::construct(
|
|
*alloc, &slot->mutable_value, std::move(other->mutable_value));
|
|
} else {
|
|
absl::allocator_traits<Allocator>::construct(*alloc, &slot->value,
|
|
std::move(other->value));
|
|
}
|
|
}
|
|
|
|
template <class Allocator>
|
|
static void destroy(Allocator* alloc, slot_type* slot) {
|
|
if (kMutableKeys::value) {
|
|
absl::allocator_traits<Allocator>::destroy(*alloc, &slot->mutable_value);
|
|
} else {
|
|
absl::allocator_traits<Allocator>::destroy(*alloc, &slot->value);
|
|
}
|
|
}
|
|
|
|
template <class Allocator>
|
|
static void transfer(Allocator* alloc, slot_type* new_slot,
|
|
slot_type* old_slot) {
|
|
emplace(new_slot);
|
|
if (kMutableKeys::value) {
|
|
absl::allocator_traits<Allocator>::construct(
|
|
*alloc, &new_slot->mutable_value, std::move(old_slot->mutable_value));
|
|
} else {
|
|
absl::allocator_traits<Allocator>::construct(*alloc, &new_slot->value,
|
|
std::move(old_slot->value));
|
|
}
|
|
destroy(alloc, old_slot);
|
|
}
|
|
|
|
template <class Allocator>
|
|
static void swap(Allocator* alloc, slot_type* a, slot_type* b) {
|
|
if (kMutableKeys::value) {
|
|
using std::swap;
|
|
swap(a->mutable_value, b->mutable_value);
|
|
} else {
|
|
value_type tmp = std::move(a->value);
|
|
absl::allocator_traits<Allocator>::destroy(*alloc, &a->value);
|
|
absl::allocator_traits<Allocator>::construct(*alloc, &a->value,
|
|
std::move(b->value));
|
|
absl::allocator_traits<Allocator>::destroy(*alloc, &b->value);
|
|
absl::allocator_traits<Allocator>::construct(*alloc, &b->value,
|
|
std::move(tmp));
|
|
}
|
|
}
|
|
|
|
template <class Allocator>
|
|
static void move(Allocator* alloc, slot_type* src, slot_type* dest) {
|
|
if (kMutableKeys::value) {
|
|
dest->mutable_value = std::move(src->mutable_value);
|
|
} else {
|
|
absl::allocator_traits<Allocator>::destroy(*alloc, &dest->value);
|
|
absl::allocator_traits<Allocator>::construct(*alloc, &dest->value,
|
|
std::move(src->value));
|
|
}
|
|
}
|
|
|
|
template <class Allocator>
|
|
static void move(Allocator* alloc, slot_type* first, slot_type* last,
|
|
slot_type* result) {
|
|
for (slot_type *src = first, *dest = result; src != last; ++src, ++dest)
|
|
move(alloc, src, dest);
|
|
}
|
|
};
|
|
|
|
} // namespace container_internal
|
|
} // namespace absl
|
|
|
|
#endif // ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_
|