863dcff6c5
representation of closures as ATerms in the Nix store. Instead, the file system pointer graph is now stored in the Nix database. This has many advantages: - It greatly simplifies the implementation (we can drop the notion of `successors', and so on). - It makes registering roots for the garbage collector much easier. Instead of specifying the closure expression as a root, you can simply specify the store path that must be retained as a root. This could not be done previously, since there was no way to find the closure store expression containing a given store path. - Better traceability: it is now possible to query what paths are referenced by a path, and what paths refer to a path.
389 lines
12 KiB
C++
389 lines
12 KiB
C++
#include "normalise.hh"
|
|
#include "eval.hh"
|
|
#include "globals.hh"
|
|
#include "nixexpr-ast.hh"
|
|
|
|
|
|
/* Load and evaluate an expression from path specified by the
|
|
argument. */
|
|
static Expr primImport(EvalState & state, const ATermVector & args)
|
|
{
|
|
ATerm path;
|
|
Expr fn = evalExpr(state, args[0]);
|
|
if (!matchPath(fn, path))
|
|
throw Error("path expected");
|
|
return evalFile(state, aterm2String(path));
|
|
}
|
|
|
|
|
|
#if 0
|
|
static PathSet storeExprRootsCached(EvalState & state, const Path & nePath)
|
|
{
|
|
DrvRoots::iterator i = state.drvRoots.find(nePath);
|
|
if (i != state.drvRoots.end())
|
|
return i->second;
|
|
else {
|
|
PathSet paths = storeExprRoots(nePath);
|
|
state.drvRoots[nePath] = paths;
|
|
return paths;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
/* Returns the hash of a derivation modulo fixed-output
|
|
subderivations. A fixed-output derivation is a derivation with one
|
|
output (`out') for which an expected hash and hash algorithm are
|
|
specified (using the `outputHash' and `outputHashAlgo'
|
|
attributes). We don't want changes to such derivations to
|
|
propagate upwards through the dependency graph, changing output
|
|
paths everywhere.
|
|
|
|
For instance, if we change the url in a call to the `fetchurl'
|
|
function, we do not want to rebuild everything depending on it
|
|
(after all, (the hash of) the file being downloaded is unchanged).
|
|
So the *output paths* should not change. On the other hand, the
|
|
*derivation store expression paths* should change to reflect the
|
|
new dependency graph.
|
|
|
|
That's what this function does: it returns a hash which is just the
|
|
of the derivation ATerm, except that any input store expression
|
|
paths have been replaced by the result of a recursive call to this
|
|
function, and that for fixed-output derivations we return
|
|
(basically) its outputHash. */
|
|
static Hash hashDerivationModulo(EvalState & state, Derivation drv)
|
|
{
|
|
/* Return a fixed hash for fixed-output derivations. */
|
|
if (drv.outputs.size() == 1) {
|
|
DerivationOutputs::const_iterator i = drv.outputs.begin();
|
|
if (i->first == "out" &&
|
|
i->second.hash != "")
|
|
{
|
|
return hashString(htSHA256, "fixed:out:"
|
|
+ i->second.hashAlgo + ":"
|
|
+ i->second.hash + ":"
|
|
+ i->second.path);
|
|
}
|
|
}
|
|
|
|
/* For other derivations, replace the inputs paths with recursive
|
|
calls to this function.*/
|
|
PathSet inputs2;
|
|
for (PathSet::iterator i = drv.inputDrvs.begin();
|
|
i != drv.inputDrvs.end(); ++i)
|
|
{
|
|
Hash h = state.drvHashes[*i];
|
|
if (h.type == htUnknown) {
|
|
Derivation drv2 = derivationFromPath(*i);
|
|
h = hashDerivationModulo(state, drv2);
|
|
state.drvHashes[*i] = h;
|
|
}
|
|
inputs2.insert(printHash(h));
|
|
}
|
|
drv.inputDrvs = inputs2;
|
|
|
|
return hashTerm(unparseDerivation(drv));
|
|
}
|
|
|
|
|
|
static void processBinding(EvalState & state, Expr e, Derivation & drv,
|
|
Strings & ss)
|
|
{
|
|
e = evalExpr(state, e);
|
|
|
|
ATerm s;
|
|
ATermList es;
|
|
int n;
|
|
Expr e1, e2;
|
|
|
|
if (matchStr(e, s)) ss.push_back(aterm2String(s));
|
|
else if (matchUri(e, s)) ss.push_back(aterm2String(s));
|
|
else if (e == eTrue) ss.push_back("1");
|
|
else if (e == eFalse) ss.push_back("");
|
|
|
|
else if (matchInt(e, n)) {
|
|
ostringstream st;
|
|
st << n;
|
|
ss.push_back(st.str());
|
|
}
|
|
|
|
else if (matchAttrs(e, es)) {
|
|
Expr a = queryAttr(e, "type");
|
|
if (a && evalString(state, a) == "derivation") {
|
|
a = queryAttr(e, "drvPath");
|
|
if (!a) throw Error("derivation name missing");
|
|
Path drvPath = evalPath(state, a);
|
|
|
|
a = queryAttr(e, "outPath");
|
|
if (!a) throw Error("output path missing");
|
|
/* !!! supports only single output path */
|
|
Path outPath = evalPath(state, a);
|
|
|
|
drv.inputDrvs.insert(drvPath);
|
|
ss.push_back(outPath);
|
|
} else
|
|
throw Error("invalid derivation attribute");
|
|
}
|
|
|
|
else if (matchPath(e, s)) {
|
|
Path srcPath(aterm2String(s));
|
|
Path dstPath(addToStore(srcPath));
|
|
printMsg(lvlChatty, format("copied source `%1%' -> `%2%'")
|
|
% srcPath % dstPath);
|
|
drv.inputSrcs.insert(dstPath);
|
|
ss.push_back(dstPath);
|
|
}
|
|
|
|
else if (matchList(e, es)) {
|
|
for (ATermIterator i(es); i; ++i) {
|
|
startNest(nest, lvlVomit, format("processing list element"));
|
|
processBinding(state, evalExpr(state, *i), drv, ss);
|
|
}
|
|
}
|
|
|
|
else if (matchNull(e)) ss.push_back("");
|
|
|
|
else if (matchSubPath(e, e1, e2)) {
|
|
Strings ss2;
|
|
processBinding(state, evalExpr(state, e1), drv, ss2);
|
|
if (ss2.size() != 1)
|
|
throw Error("left-hand side of `~' operator cannot be a list");
|
|
e2 = evalExpr(state, e2);
|
|
if (!(matchStr(e2, s) || matchPath(e2, s)))
|
|
throw Error("right-hand side of `~' operator must be a path or string");
|
|
ss.push_back(canonPath(ss2.front() + "/" + aterm2String(s)));
|
|
}
|
|
|
|
else throw Error("invalid derivation attribute");
|
|
}
|
|
|
|
|
|
static string concatStrings(const Strings & ss)
|
|
{
|
|
string s;
|
|
bool first = true;
|
|
for (Strings::const_iterator i = ss.begin(); i != ss.end(); ++i) {
|
|
if (!first) s += " "; else first = false;
|
|
s += *i;
|
|
}
|
|
return s;
|
|
}
|
|
|
|
|
|
/* Construct (as a unobservable side effect) a Nix derivation
|
|
expression that performs the derivation described by the argument
|
|
set. Returns the original set extended with the following
|
|
attributes: `outPath' containing the primary output path of the
|
|
derivation; `drvPath' containing the path of the Nix expression;
|
|
and `type' set to `derivation' to indicate that this is a
|
|
derivation. */
|
|
static Expr primDerivation(EvalState & state, const ATermVector & _args)
|
|
{
|
|
startNest(nest, lvlVomit, "evaluating derivation");
|
|
|
|
ATermMap attrs;
|
|
Expr args = _args[0];
|
|
args = evalExpr(state, args);
|
|
queryAllAttrs(args, attrs, true);
|
|
|
|
/* Build the derivation expression by processing the attributes. */
|
|
Derivation drv;
|
|
|
|
string drvName;
|
|
|
|
string outputHash;
|
|
string outputHashAlgo;
|
|
|
|
for (ATermIterator i(attrs.keys()); i; ++i) {
|
|
string key = aterm2String(*i);
|
|
ATerm value;
|
|
Expr pos;
|
|
ATerm rhs = attrs.get(key);
|
|
if (!matchAttrRHS(rhs, value, pos)) abort();
|
|
startNest(nest, lvlVomit, format("processing attribute `%1%'") % key);
|
|
|
|
Strings ss;
|
|
try {
|
|
processBinding(state, value, drv, ss);
|
|
} catch (Error & e) {
|
|
throw Error(format("while processing the derivation attribute `%1%' at %2%:\n%3%")
|
|
% key % showPos(pos) % e.msg());
|
|
}
|
|
|
|
/* The `args' attribute is special: it supplies the
|
|
command-line arguments to the builder. */
|
|
if (key == "args") {
|
|
for (Strings::iterator i = ss.begin(); i != ss.end(); ++i)
|
|
drv.args.push_back(*i);
|
|
}
|
|
|
|
/* All other attributes are passed to the builder through the
|
|
environment. */
|
|
else {
|
|
string s = concatStrings(ss);
|
|
drv.env[key] = s;
|
|
if (key == "builder") drv.builder = s;
|
|
else if (key == "system") drv.platform = s;
|
|
else if (key == "name") drvName = s;
|
|
else if (key == "outputHash") outputHash = s;
|
|
else if (key == "outputHashAlgo") outputHashAlgo = s;
|
|
}
|
|
}
|
|
|
|
/* Do we have all required attributes? */
|
|
if (drv.builder == "")
|
|
throw Error("required attribute `builder' missing");
|
|
if (drv.platform == "")
|
|
throw Error("required attribute `system' missing");
|
|
if (drvName == "")
|
|
throw Error("required attribute `name' missing");
|
|
|
|
/* If an output hash was given, check it. */
|
|
if (outputHash == "")
|
|
outputHashAlgo = "";
|
|
else {
|
|
HashType ht = parseHashType(outputHashAlgo);
|
|
if (ht == htUnknown)
|
|
throw Error(format("unknown hash algorithm `%1%'") % outputHashAlgo);
|
|
Hash h;
|
|
if (outputHash.size() == Hash(ht).hashSize * 2)
|
|
/* hexadecimal representation */
|
|
h = parseHash(ht, outputHash);
|
|
else
|
|
/* base-32 representation */
|
|
h = parseHash32(ht, outputHash);
|
|
string s = outputHash;
|
|
outputHash = printHash(h);
|
|
}
|
|
|
|
/* Check the derivation name. It shouldn't contain whitespace,
|
|
but we are conservative here: we check whether only
|
|
alphanumerics and some other characters appear. */
|
|
string validChars = "+-._?=";
|
|
for (string::iterator i = drvName.begin(); i != drvName.end(); ++i)
|
|
if (!((*i >= 'A' && *i <= 'Z') ||
|
|
(*i >= 'a' && *i <= 'z') ||
|
|
(*i >= '0' && *i <= '9') ||
|
|
validChars.find(*i) != string::npos))
|
|
{
|
|
throw Error(format("invalid character `%1%' in derivation name `%2%'")
|
|
% *i % drvName);
|
|
}
|
|
|
|
/* Construct the "masked" derivation store expression, which is
|
|
the final one except that in the list of outputs, the output
|
|
paths are empty, and the corresponding environment variables
|
|
have an empty value. This ensures that changes in the set of
|
|
output names do get reflected in the hash. */
|
|
drv.env["out"] = "";
|
|
drv.outputs["out"] =
|
|
DerivationOutput("", outputHashAlgo, outputHash);
|
|
|
|
/* Use the masked derivation expression to compute the output
|
|
path. */
|
|
Path outPath = makeStorePath("output:out",
|
|
hashDerivationModulo(state, drv), drvName);
|
|
|
|
/* Construct the final derivation store expression. */
|
|
drv.env["out"] = outPath;
|
|
drv.outputs["out"] =
|
|
DerivationOutput(outPath, outputHashAlgo, outputHash);
|
|
|
|
/* Write the resulting term into the Nix store directory. */
|
|
Path drvPath = writeTerm(unparseDerivation(drv), "d-" + drvName);
|
|
|
|
printMsg(lvlChatty, format("instantiated `%1%' -> `%2%'")
|
|
% drvName % drvPath);
|
|
|
|
/* Optimisation, but required in read-only mode! because in that
|
|
case we don't actually write store expressions, so we can't
|
|
read them later. */
|
|
state.drvHashes[drvPath] = hashDerivationModulo(state, drv);
|
|
|
|
/* !!! assumes a single output */
|
|
attrs.set("outPath", makeAttrRHS(makePath(toATerm(outPath)), makeNoPos()));
|
|
attrs.set("drvPath", makeAttrRHS(makePath(toATerm(drvPath)), makeNoPos()));
|
|
attrs.set("type", makeAttrRHS(makeStr(toATerm("derivation")), makeNoPos()));
|
|
|
|
return makeAttrs(attrs);
|
|
}
|
|
|
|
|
|
/* Return the base name of the given string, i.e., everything
|
|
following the last slash. */
|
|
static Expr primBaseNameOf(EvalState & state, const ATermVector & args)
|
|
{
|
|
return makeStr(toATerm(baseNameOf(evalString(state, args[0]))));
|
|
}
|
|
|
|
|
|
/* Convert the argument (which can be a path or a uri) to a string. */
|
|
static Expr primToString(EvalState & state, const ATermVector & args)
|
|
{
|
|
Expr arg = evalExpr(state, args[0]);
|
|
ATerm s;
|
|
if (matchStr(arg, s) || matchPath(arg, s) || matchUri(arg, s))
|
|
return makeStr(s);
|
|
else throw Error("cannot coerce value to string");
|
|
}
|
|
|
|
|
|
/* Boolean constructors. */
|
|
static Expr primTrue(EvalState & state, const ATermVector & args)
|
|
{
|
|
return eTrue;
|
|
}
|
|
|
|
|
|
static Expr primFalse(EvalState & state, const ATermVector & args)
|
|
{
|
|
return eFalse;
|
|
}
|
|
|
|
|
|
/* Return the null value. */
|
|
Expr primNull(EvalState & state, const ATermVector & args)
|
|
{
|
|
return makeNull();
|
|
}
|
|
|
|
|
|
/* Determine whether the argument is the null value. */
|
|
Expr primIsNull(EvalState & state, const ATermVector & args)
|
|
{
|
|
return makeBool(matchNull(evalExpr(state, args[0])));
|
|
}
|
|
|
|
|
|
/* Apply a function to every element of a list. */
|
|
Expr primMap(EvalState & state, const ATermVector & args)
|
|
{
|
|
Expr fun = evalExpr(state, args[0]);
|
|
Expr list = evalExpr(state, args[1]);
|
|
|
|
ATermList list2;
|
|
if (!matchList(list, list2))
|
|
throw Error("`map' expects a list as its second argument");
|
|
|
|
ATermList list3 = ATempty;
|
|
for (ATermIterator i(list2); i; ++i)
|
|
list3 = ATinsert(list3, makeCall(fun, *i));
|
|
|
|
return makeList(ATreverse(list3));
|
|
}
|
|
|
|
|
|
void EvalState::addPrimOps()
|
|
{
|
|
addPrimOp("true", 0, primTrue);
|
|
addPrimOp("false", 0, primFalse);
|
|
addPrimOp("null", 0, primNull);
|
|
|
|
addPrimOp("import", 1, primImport);
|
|
addPrimOp("derivation", 1, primDerivation);
|
|
addPrimOp("baseNameOf", 1, primBaseNameOf);
|
|
addPrimOp("toString", 1, primToString);
|
|
addPrimOp("isNull", 1, primIsNull);
|
|
|
|
addPrimOp("map", 2, primMap);
|
|
}
|