1213b086a1
Change-Id: I9636a41ad44b4218293833fd3e9456d9b07c731b
212 lines
5.4 KiB
C++
212 lines
5.4 KiB
C++
//
|
|
// immer: immutable data structures for C++
|
|
// Copyright (C) 2016, 2017, 2018 Juan Pedro Bolivar Puente
|
|
//
|
|
// This software is distributed under the Boost Software License, Version 1.0.
|
|
// See accompanying file LICENSE or copy at http://boost.org/LICENSE_1_0.txt
|
|
//
|
|
|
|
#pragma once
|
|
|
|
#include <utility>
|
|
#include <cstddef>
|
|
#include <limits>
|
|
|
|
#include "benchmark/config.hpp"
|
|
|
|
#if IMMER_BENCHMARK_LIBRRB
|
|
extern "C" {
|
|
#define restrict __restrict__
|
|
#include <rrb.h>
|
|
#undef restrict
|
|
}
|
|
#include <immer/heap/gc_heap.hpp>
|
|
#endif
|
|
|
|
namespace immer {
|
|
template <typename T, typename MP> class array;
|
|
} // namespace immer
|
|
|
|
namespace {
|
|
|
|
auto make_generator(std::size_t runs)
|
|
{
|
|
assert(runs > 0);
|
|
auto engine = std::default_random_engine{42};
|
|
auto dist = std::uniform_int_distribution<std::size_t>{0, runs-1};
|
|
auto r = std::vector<std::size_t>(runs);
|
|
std::generate_n(r.begin(), runs, std::bind(dist, engine));
|
|
return r;
|
|
}
|
|
|
|
struct push_back_fn
|
|
{
|
|
template <typename T, typename U>
|
|
auto operator() (T&& v, U&& x)
|
|
{ return std::forward<T>(v).push_back(std::forward<U>(x)); }
|
|
};
|
|
|
|
struct push_front_fn
|
|
{
|
|
template <typename T, typename U>
|
|
auto operator() (T&& v, U&& x)
|
|
{ return std::forward<T>(v).push_front(std::forward<U>(x)); }
|
|
};
|
|
|
|
struct set_fn
|
|
{
|
|
template <typename T, typename I, typename U>
|
|
decltype(auto) operator() (T&& v, I i, U&& x)
|
|
{ return std::forward<T>(v).set(i, std::forward<U>(x)); }
|
|
};
|
|
|
|
struct store_fn
|
|
{
|
|
template <typename T, typename I, typename U>
|
|
decltype(auto) operator() (T&& v, I i, U&& x)
|
|
{ return std::forward<T>(v).store(i, std::forward<U>(x)); }
|
|
};
|
|
|
|
template <typename T>
|
|
struct get_limit : std::integral_constant<
|
|
std::size_t, std::numeric_limits<std::size_t>::max()> {};
|
|
|
|
template <typename T, typename MP>
|
|
struct get_limit<immer::array<T, MP>> : std::integral_constant<
|
|
std::size_t, 10000> {};
|
|
|
|
auto make_librrb_vector(std::size_t n)
|
|
{
|
|
auto v = rrb_create();
|
|
for (auto i = 0u; i < n; ++i) {
|
|
v = rrb_push(v, reinterpret_cast<void*>(i));
|
|
}
|
|
return v;
|
|
}
|
|
|
|
auto make_librrb_vector_f(std::size_t n)
|
|
{
|
|
auto v = rrb_create();
|
|
for (auto i = 0u; i < n; ++i) {
|
|
auto f = rrb_push(rrb_create(),
|
|
reinterpret_cast<void*>(i));
|
|
v = rrb_concat(f, v);
|
|
}
|
|
return v;
|
|
}
|
|
|
|
|
|
// copied from:
|
|
// https://github.com/ivmai/bdwgc/blob/master/include/gc_allocator.h
|
|
|
|
template <class GC_tp>
|
|
struct GC_type_traits
|
|
{
|
|
std::false_type GC_is_ptr_free;
|
|
};
|
|
|
|
# define GC_DECLARE_PTRFREE(T) \
|
|
template<> struct GC_type_traits<T> { \
|
|
std::true_type GC_is_ptr_free; \
|
|
}
|
|
|
|
GC_DECLARE_PTRFREE(char);
|
|
GC_DECLARE_PTRFREE(signed char);
|
|
GC_DECLARE_PTRFREE(unsigned char);
|
|
GC_DECLARE_PTRFREE(signed short);
|
|
GC_DECLARE_PTRFREE(unsigned short);
|
|
GC_DECLARE_PTRFREE(signed int);
|
|
GC_DECLARE_PTRFREE(unsigned int);
|
|
GC_DECLARE_PTRFREE(signed long);
|
|
GC_DECLARE_PTRFREE(unsigned long);
|
|
GC_DECLARE_PTRFREE(float);
|
|
GC_DECLARE_PTRFREE(double);
|
|
GC_DECLARE_PTRFREE(long double);
|
|
|
|
template <class IsPtrFree>
|
|
inline void* GC_selective_alloc(size_t n, IsPtrFree, bool ignore_off_page)
|
|
{
|
|
return ignore_off_page
|
|
? GC_MALLOC_IGNORE_OFF_PAGE(n)
|
|
: GC_MALLOC(n);
|
|
}
|
|
|
|
template <>
|
|
inline void* GC_selective_alloc<std::true_type>(size_t n,
|
|
std::true_type,
|
|
bool ignore_off_page)
|
|
{
|
|
return ignore_off_page
|
|
? GC_MALLOC_ATOMIC_IGNORE_OFF_PAGE(n)
|
|
: GC_MALLOC_ATOMIC(n);
|
|
}
|
|
|
|
template <class T>
|
|
class gc_allocator
|
|
{
|
|
public:
|
|
typedef size_t size_type;
|
|
typedef ptrdiff_t difference_type;
|
|
typedef T* pointer;
|
|
typedef const T* const_pointer;
|
|
typedef T& reference;
|
|
typedef const T& const_reference;
|
|
typedef T value_type;
|
|
|
|
template <class T1> struct rebind {
|
|
typedef gc_allocator<T1> other;
|
|
};
|
|
|
|
gc_allocator() {}
|
|
gc_allocator(const gc_allocator&) throw() {}
|
|
template <class T1>
|
|
explicit gc_allocator(const gc_allocator<T1>&) throw() {}
|
|
~gc_allocator() throw() {}
|
|
|
|
pointer address(reference GC_x) const { return &GC_x; }
|
|
const_pointer address(const_reference GC_x) const { return &GC_x; }
|
|
|
|
// GC_n is permitted to be 0. The C++ standard says nothing about what
|
|
// the return value is when GC_n == 0.
|
|
T* allocate(size_type GC_n, const void* = 0)
|
|
{
|
|
GC_type_traits<T> traits;
|
|
return static_cast<T *>
|
|
(GC_selective_alloc(GC_n * sizeof(T),
|
|
traits.GC_is_ptr_free, false));
|
|
}
|
|
|
|
// p is not permitted to be a null pointer.
|
|
void deallocate(pointer p, size_type /* GC_n */)
|
|
{ GC_FREE(p); }
|
|
|
|
size_type max_size() const throw()
|
|
{ return size_t(-1) / sizeof(T); }
|
|
|
|
void construct(pointer p, const T& __val) { new(p) T(__val); }
|
|
void destroy(pointer p) { p->~T(); }
|
|
};
|
|
|
|
template<>
|
|
class gc_allocator<void>
|
|
{
|
|
typedef size_t size_type;
|
|
typedef ptrdiff_t difference_type;
|
|
typedef void* pointer;
|
|
typedef const void* const_pointer;
|
|
typedef void value_type;
|
|
|
|
template <class T1> struct rebind {
|
|
typedef gc_allocator<T1> other;
|
|
};
|
|
};
|
|
|
|
template <class T1, class T2>
|
|
inline bool operator==(const gc_allocator<T1>&, const gc_allocator<T2>&)
|
|
{ return true; }
|
|
|
|
template <class T1, class T2>
|
|
inline bool operator!=(const gc_allocator<T1>&, const gc_allocator<T2>&)
|
|
{ return false; }
|
|
|
|
} // anonymous namespace
|