tvl-depot/absl/flags/internal/flag.h
Abseil Team d43b7997c0 Export of internal Abseil changes
--
7a9e8d95f795be037aa2dce4e44809ad0166aaec by Samuel Benzaquen <sbenza@google.com>:

Make end() iterator be nullptr.
This makes the creation of and comparison with end() smaller and faster. `find()!=end()` becomes leaner.

PiperOrigin-RevId: 304681605

--
8f3024979446b391b79b1b60ada7d00a504d6aa6 by Derek Mauro <dmauro@google.com>:

Fix Bazel's distdir detection and prefer double brackets (bash recommendation)

PiperOrigin-RevId: 304615725

--
f1d709cb4b2b3743d548b814dd19602fb057a5e6 by Abseil Team <absl-team@google.com>:

Internal change

PiperOrigin-RevId: 304570545

--
2bbfa5bda52057e1938a96c286ad33ff64e535e0 by Gennadiy Rozental <rogeeff@google.com>:

Implement general storage case as aligned buffer.

Aside from eliminating dynamic memory allocation for flag storage, we also saving 11 bytes per int flag, 15 bytes per double and string flag.

PiperOrigin-RevId: 304511965

--
9e1aed2a95d7d060f8b906fe8c67fc3ba537b521 by Derek Mauro <dmauro@google.com>:

Use reserve to make a bad_alloc less likely in endian_test

This happened once and shouldn't have happened, so it was probably
just a flake, but might as well make this change.

PiperOrigin-RevId: 304505572

--
c2faf22ba2d4d66753390e6959494214895581f0 by Gennadiy Rozental <rogeeff@google.com>:

Use anonymous bit fields to enforce separation between const and mutable bit fields.

We also move init_control field (which is now safe) to save 8 bytes per flag (based on size_tester output)

PiperOrigin-RevId: 304505215

--
7ec51250a84bb03e826b3caad64431e91748186a by Krzysztof Kosiński <krzysio@google.com>:

Change the buffer size in AppendNumberUnit to constexpr.

PiperOrigin-RevId: 304492779

--
a6c8db1be4f421ea7b7c02f7a01b4f48bad61883 by Gennadiy Rozental <rogeeff@google.com>:

Add test cases for two word storage.

Some additional tests were added for other storage kinds as well. These came about after I started to look into a coverage output and noticed that some cases (like reading flag values via reflection) were not covered by this test at all. It does not make sense to just add tests for two word values, so I've covered other storage kinds as well.

PiperOrigin-RevId: 304432511

--
2644ecc32e1215cd6451efcb2f1054fd77e7c812 by Abseil Team <absl-team@google.com>:

Internal change

PiperOrigin-RevId: 304254681

--
4949a6b20c2bb4b9b2c811f439ccb893abc08df5 by Abseil Team <absl-team@google.com>:

Internal change

PiperOrigin-RevId: 304250274
GitOrigin-RevId: 7a9e8d95f795be037aa2dce4e44809ad0166aaec
Change-Id: I01623de87355bec5cf87cc5932a1ca44cade9aae
2020-04-04 17:08:50 -04:00

686 lines
24 KiB
C++

//
// Copyright 2019 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_FLAGS_INTERNAL_FLAG_H_
#define ABSL_FLAGS_INTERNAL_FLAG_H_
#include <stdint.h>
#include <atomic>
#include <cstring>
#include <memory>
#include <string>
#include <type_traits>
#include <typeinfo>
#include "absl/base/call_once.h"
#include "absl/base/config.h"
#include "absl/base/thread_annotations.h"
#include "absl/flags/config.h"
#include "absl/flags/internal/commandlineflag.h"
#include "absl/flags/internal/registry.h"
#include "absl/memory/memory.h"
#include "absl/meta/type_traits.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/string_view.h"
#include "absl/synchronization/mutex.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace flags_internal {
///////////////////////////////////////////////////////////////////////////////
// Flag value type operations, eg., parsing, copying, etc. are provided
// by function specific to that type with a signature matching FlagOpFn.
enum class FlagOp {
kAlloc,
kDelete,
kCopy,
kCopyConstruct,
kSizeof,
kFastTypeId,
kRuntimeTypeId,
kParse,
kUnparse,
kValueOffset,
};
using FlagOpFn = void* (*)(FlagOp, const void*, void*, void*);
// Forward declaration for Flag value specific operations.
template <typename T>
void* FlagOps(FlagOp op, const void* v1, void* v2, void* v3);
// Allocate aligned memory for a flag value.
inline void* Alloc(FlagOpFn op) {
return op(FlagOp::kAlloc, nullptr, nullptr, nullptr);
}
// Deletes memory interpreting obj as flag value type pointer.
inline void Delete(FlagOpFn op, void* obj) {
op(FlagOp::kDelete, nullptr, obj, nullptr);
}
// Copies src to dst interpreting as flag value type pointers.
inline void Copy(FlagOpFn op, const void* src, void* dst) {
op(FlagOp::kCopy, src, dst, nullptr);
}
// Construct a copy of flag value in a location pointed by dst
// based on src - pointer to the flag's value.
inline void CopyConstruct(FlagOpFn op, const void* src, void* dst) {
op(FlagOp::kCopyConstruct, src, dst, nullptr);
}
// Makes a copy of flag value pointed by obj.
inline void* Clone(FlagOpFn op, const void* obj) {
void* res = flags_internal::Alloc(op);
flags_internal::CopyConstruct(op, obj, res);
return res;
}
// Returns true if parsing of input text is successfull.
inline bool Parse(FlagOpFn op, absl::string_view text, void* dst,
std::string* error) {
return op(FlagOp::kParse, &text, dst, error) != nullptr;
}
// Returns string representing supplied value.
inline std::string Unparse(FlagOpFn op, const void* val) {
std::string result;
op(FlagOp::kUnparse, val, &result, nullptr);
return result;
}
// Returns size of flag value type.
inline size_t Sizeof(FlagOpFn op) {
// This sequence of casts reverses the sequence from
// `flags_internal::FlagOps()`
return static_cast<size_t>(reinterpret_cast<intptr_t>(
op(FlagOp::kSizeof, nullptr, nullptr, nullptr)));
}
// Returns fast type id coresponding to the value type.
inline FlagFastTypeId FastTypeId(FlagOpFn op) {
return reinterpret_cast<FlagFastTypeId>(
op(FlagOp::kFastTypeId, nullptr, nullptr, nullptr));
}
// Returns fast type id coresponding to the value type.
inline const std::type_info* RuntimeTypeId(FlagOpFn op) {
return reinterpret_cast<const std::type_info*>(
op(FlagOp::kRuntimeTypeId, nullptr, nullptr, nullptr));
}
// Returns offset of the field value_ from the field impl_ inside of
// absl::Flag<T> data. Given FlagImpl pointer p you can get the
// location of the corresponding value as:
// reinterpret_cast<char*>(p) + ValueOffset().
inline ptrdiff_t ValueOffset(FlagOpFn op) {
// This sequence of casts reverses the sequence from
// `flags_internal::FlagOps()`
return static_cast<ptrdiff_t>(reinterpret_cast<intptr_t>(
op(FlagOp::kValueOffset, nullptr, nullptr, nullptr)));
}
// Returns an address of RTTI's typeid(T).
template <typename T>
inline const std::type_info* GenRuntimeTypeId() {
#if defined(ABSL_FLAGS_INTERNAL_HAS_RTTI)
return &typeid(T);
#else
return nullptr;
#endif
}
///////////////////////////////////////////////////////////////////////////////
// Flag help auxiliary structs.
// This is help argument for absl::Flag encapsulating the string literal pointer
// or pointer to function generating it as well as enum descriminating two
// cases.
using HelpGenFunc = std::string (*)();
union FlagHelpMsg {
constexpr explicit FlagHelpMsg(const char* help_msg) : literal(help_msg) {}
constexpr explicit FlagHelpMsg(HelpGenFunc help_gen) : gen_func(help_gen) {}
const char* literal;
HelpGenFunc gen_func;
};
enum class FlagHelpKind : uint8_t { kLiteral = 0, kGenFunc = 1 };
struct FlagHelpArg {
FlagHelpMsg source;
FlagHelpKind kind;
};
extern const char kStrippedFlagHelp[];
// HelpConstexprWrap is used by struct AbslFlagHelpGenFor##name generated by
// ABSL_FLAG macro. It is only used to silence the compiler in the case where
// help message expression is not constexpr and does not have type const char*.
// If help message expression is indeed constexpr const char* HelpConstexprWrap
// is just a trivial identity function.
template <typename T>
const char* HelpConstexprWrap(const T&) {
return nullptr;
}
constexpr const char* HelpConstexprWrap(const char* p) { return p; }
constexpr const char* HelpConstexprWrap(char* p) { return p; }
// These two HelpArg overloads allows us to select at compile time one of two
// way to pass Help argument to absl::Flag. We'll be passing
// AbslFlagHelpGenFor##name as T and integer 0 as a single argument to prefer
// first overload if possible. If T::Const is evaluatable on constexpr
// context (see non template int parameter below) we'll choose first overload.
// In this case the help message expression is immediately evaluated and is used
// to construct the absl::Flag. No additionl code is generated by ABSL_FLAG.
// Otherwise SFINAE kicks in and first overload is dropped from the
// consideration, in which case the second overload will be used. The second
// overload does not attempt to evaluate the help message expression
// immediately and instead delays the evaluation by returing the function
// pointer (&T::NonConst) genering the help message when necessary. This is
// evaluatable in constexpr context, but the cost is an extra function being
// generated in the ABSL_FLAG code.
template <typename T, int = (T::Const(), 1)>
constexpr FlagHelpArg HelpArg(int) {
return {FlagHelpMsg(T::Const()), FlagHelpKind::kLiteral};
}
template <typename T>
constexpr FlagHelpArg HelpArg(char) {
return {FlagHelpMsg(&T::NonConst), FlagHelpKind::kGenFunc};
}
///////////////////////////////////////////////////////////////////////////////
// Flag default value auxiliary structs.
// Signature for the function generating the initial flag value (usually
// based on default value supplied in flag's definition)
using FlagDfltGenFunc = void (*)(void*);
union FlagDefaultSrc {
constexpr explicit FlagDefaultSrc(FlagDfltGenFunc gen_func_arg)
: gen_func(gen_func_arg) {}
void* dynamic_value;
FlagDfltGenFunc gen_func;
};
enum class FlagDefaultKind : uint8_t { kDynamicValue = 0, kGenFunc = 1 };
///////////////////////////////////////////////////////////////////////////////
// Flag current value auxiliary structs.
constexpr int64_t UninitializedFlagValue() { return 0xababababababababll; }
template <typename T>
using FlagUseOneWordStorage = std::integral_constant<
bool, absl::type_traits_internal::is_trivially_copyable<T>::value &&
(sizeof(T) <= 8)>;
#if defined(ABSL_FLAGS_INTERNAL_ATOMIC_DOUBLE_WORD)
// Clang does not always produce cmpxchg16b instruction when alignment of a 16
// bytes type is not 16.
struct alignas(16) AlignedTwoWords {
int64_t first;
int64_t second;
bool IsInitialized() const {
return first != flags_internal::UninitializedFlagValue();
}
};
template <typename T>
using FlagUseTwoWordsStorage = std::integral_constant<
bool, absl::type_traits_internal::is_trivially_copyable<T>::value &&
(sizeof(T) > 8) && (sizeof(T) <= 16)>;
#else
// This is actually unused and only here to avoid ifdefs in other palces.
struct AlignedTwoWords {
constexpr AlignedTwoWords() noexcept : dummy() {}
constexpr AlignedTwoWords(int64_t, int64_t) noexcept : dummy() {}
char dummy;
bool IsInitialized() const {
std::abort();
return true;
}
};
// This trait should be type dependent, otherwise SFINAE below will fail
template <typename T>
using FlagUseTwoWordsStorage =
std::integral_constant<bool, sizeof(T) != sizeof(T)>;
#endif
template <typename T>
using FlagUseBufferStorage =
std::integral_constant<bool, !FlagUseOneWordStorage<T>::value &&
!FlagUseTwoWordsStorage<T>::value>;
enum class FlagValueStorageKind : uint8_t {
kAlignedBuffer = 0,
kOneWordAtomic = 1,
kTwoWordsAtomic = 2
};
template <typename T>
static constexpr FlagValueStorageKind StorageKind() {
return FlagUseBufferStorage<T>::value
? FlagValueStorageKind::kAlignedBuffer
: FlagUseOneWordStorage<T>::value
? FlagValueStorageKind::kOneWordAtomic
: FlagValueStorageKind::kTwoWordsAtomic;
}
struct FlagOneWordValue {
constexpr FlagOneWordValue() : value(UninitializedFlagValue()) {}
std::atomic<int64_t> value;
};
struct FlagTwoWordsValue {
constexpr FlagTwoWordsValue()
: value(AlignedTwoWords{UninitializedFlagValue(), 0}) {}
std::atomic<AlignedTwoWords> value;
};
template <typename T,
FlagValueStorageKind Kind = flags_internal::StorageKind<T>()>
struct FlagValue;
template <typename T>
struct FlagValue<T, FlagValueStorageKind::kAlignedBuffer> {
bool Get(T*) const { return false; }
alignas(T) char value[sizeof(T)];
};
template <typename T>
struct FlagValue<T, FlagValueStorageKind::kOneWordAtomic> : FlagOneWordValue {
bool Get(T* dst) const {
int64_t one_word_val = value.load(std::memory_order_acquire);
if (ABSL_PREDICT_FALSE(one_word_val == UninitializedFlagValue())) {
return false;
}
std::memcpy(dst, static_cast<const void*>(&one_word_val), sizeof(T));
return true;
}
};
template <typename T>
struct FlagValue<T, FlagValueStorageKind::kTwoWordsAtomic> : FlagTwoWordsValue {
bool Get(T* dst) const {
AlignedTwoWords two_words_val = value.load(std::memory_order_acquire);
if (ABSL_PREDICT_FALSE(!two_words_val.IsInitialized())) {
return false;
}
std::memcpy(dst, static_cast<const void*>(&two_words_val), sizeof(T));
return true;
}
};
///////////////////////////////////////////////////////////////////////////////
// Flag callback auxiliary structs.
// Signature for the mutation callback used by watched Flags
// The callback is noexcept.
// TODO(rogeeff): add noexcept after C++17 support is added.
using FlagCallbackFunc = void (*)();
struct FlagCallback {
FlagCallbackFunc func;
absl::Mutex guard; // Guard for concurrent callback invocations.
};
///////////////////////////////////////////////////////////////////////////////
// Flag implementation, which does not depend on flag value type.
// The class encapsulates the Flag's data and access to it.
struct DynValueDeleter {
explicit DynValueDeleter(FlagOpFn op_arg = nullptr);
void operator()(void* ptr) const;
FlagOpFn op;
};
class FlagState;
class FlagImpl final : public flags_internal::CommandLineFlag {
public:
constexpr FlagImpl(const char* name, const char* filename, FlagOpFn op,
FlagHelpArg help, FlagValueStorageKind value_kind,
FlagDfltGenFunc default_value_gen)
: name_(name),
filename_(filename),
op_(op),
help_(help.source),
help_source_kind_(static_cast<uint8_t>(help.kind)),
value_storage_kind_(static_cast<uint8_t>(value_kind)),
def_kind_(static_cast<uint8_t>(FlagDefaultKind::kGenFunc)),
modified_(false),
on_command_line_(false),
counter_(0),
callback_(nullptr),
default_value_(default_value_gen),
data_guard_{} {}
// Constant access methods
void Read(void* dst) const override ABSL_LOCKS_EXCLUDED(*DataGuard());
// Mutating access methods
void Write(const void* src) ABSL_LOCKS_EXCLUDED(*DataGuard());
// Interfaces to operate on callbacks.
void SetCallback(const FlagCallbackFunc mutation_callback)
ABSL_LOCKS_EXCLUDED(*DataGuard());
void InvokeCallback() const ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
// Used in read/write operations to validate source/target has correct type.
// For example if flag is declared as absl::Flag<int> FLAGS_foo, a call to
// absl::GetFlag(FLAGS_foo) validates that the type of FLAGS_foo is indeed
// int. To do that we pass the "assumed" type id (which is deduced from type
// int) as an argument `type_id`, which is in turn is validated against the
// type id stored in flag object by flag definition statement.
void AssertValidType(FlagFastTypeId type_id,
const std::type_info* (*gen_rtti)()) const;
private:
template <typename T>
friend class Flag;
friend class FlagState;
// Ensures that `data_guard_` is initialized and returns it.
absl::Mutex* DataGuard() const ABSL_LOCK_RETURNED((absl::Mutex*)&data_guard_);
// Returns heap allocated value of type T initialized with default value.
std::unique_ptr<void, DynValueDeleter> MakeInitValue() const
ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
// Flag initialization called via absl::call_once.
void Init();
// Offset value access methods. One per storage kind. These methods to not
// respect const correctness, so be very carefull using them.
// This is a shared helper routine which encapsulates most of the magic. Since
// it is only used inside the three routines below, which are defined in
// flag.cc, we can define it in that file as well.
template <typename StorageT>
StorageT* OffsetValue() const;
// This is an accessor for a value stored in an aligned buffer storage.
// Returns a mutable pointer to the start of a buffer.
void* AlignedBufferValue() const;
// This is an accessor for a value stored as one word atomic. Returns a
// mutable reference to an atomic value.
std::atomic<int64_t>& OneWordValue() const;
// This is an accessor for a value stored as two words atomic. Returns a
// mutable reference to an atomic value.
std::atomic<AlignedTwoWords>& TwoWordsValue() const;
// Attempts to parse supplied `value` string. If parsing is successful,
// returns new value. Otherwise returns nullptr.
std::unique_ptr<void, DynValueDeleter> TryParse(absl::string_view value,
std::string* err) const
ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
// Stores the flag value based on the pointer to the source.
void StoreValue(const void* src) ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
FlagHelpKind HelpSourceKind() const {
return static_cast<FlagHelpKind>(help_source_kind_);
}
FlagValueStorageKind ValueStorageKind() const {
return static_cast<FlagValueStorageKind>(value_storage_kind_);
}
FlagDefaultKind DefaultKind() const
ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard()) {
return static_cast<FlagDefaultKind>(def_kind_);
}
// CommandLineFlag interface implementation
absl::string_view Name() const override;
std::string Filename() const override;
absl::string_view Typename() const override;
std::string Help() const override;
FlagFastTypeId TypeId() const override;
bool IsModified() const override ABSL_LOCKS_EXCLUDED(*DataGuard());
bool IsSpecifiedOnCommandLine() const override
ABSL_LOCKS_EXCLUDED(*DataGuard());
std::string DefaultValue() const override ABSL_LOCKS_EXCLUDED(*DataGuard());
std::string CurrentValue() const override ABSL_LOCKS_EXCLUDED(*DataGuard());
bool ValidateInputValue(absl::string_view value) const override
ABSL_LOCKS_EXCLUDED(*DataGuard());
void CheckDefaultValueParsingRoundtrip() const override
ABSL_LOCKS_EXCLUDED(*DataGuard());
// Interfaces to save and restore flags to/from persistent state.
// Returns current flag state or nullptr if flag does not support
// saving and restoring a state.
std::unique_ptr<FlagStateInterface> SaveState() override
ABSL_LOCKS_EXCLUDED(*DataGuard());
// Restores the flag state to the supplied state object. If there is
// nothing to restore returns false. Otherwise returns true.
bool RestoreState(const FlagState& flag_state)
ABSL_LOCKS_EXCLUDED(*DataGuard());
bool ParseFrom(absl::string_view value, FlagSettingMode set_mode,
ValueSource source, std::string* error) override
ABSL_LOCKS_EXCLUDED(*DataGuard());
// Immutable flag's state.
// Flags name passed to ABSL_FLAG as second arg.
const char* const name_;
// The file name where ABSL_FLAG resides.
const char* const filename_;
// Type-specific operations "vtable".
const FlagOpFn op_;
// Help message literal or function to generate it.
const FlagHelpMsg help_;
// Indicates if help message was supplied as literal or generator func.
const uint8_t help_source_kind_ : 1;
// Kind of storage this flag is using for the flag's value.
const uint8_t value_storage_kind_ : 2;
uint8_t : 0; // The bytes containing the const bitfields must not be
// shared with bytes containing the mutable bitfields.
// Mutable flag's state (guarded by `data_guard_`).
// If def_kind_ == kDynamicValue, default_value_ holds a dynamically allocated
// value.
uint8_t def_kind_ : 1 ABSL_GUARDED_BY(*DataGuard());
// Has this flag's value been modified?
bool modified_ : 1 ABSL_GUARDED_BY(*DataGuard());
// Has this flag been specified on command line.
bool on_command_line_ : 1 ABSL_GUARDED_BY(*DataGuard());
// Unique tag for absl::call_once call to initialize this flag.
absl::once_flag init_control_;
// Mutation counter
int64_t counter_ ABSL_GUARDED_BY(*DataGuard());
// Optional flag's callback and absl::Mutex to guard the invocations.
FlagCallback* callback_ ABSL_GUARDED_BY(*DataGuard());
// Either a pointer to the function generating the default value based on the
// value specified in ABSL_FLAG or pointer to the dynamically set default
// value via SetCommandLineOptionWithMode. def_kind_ is used to distinguish
// these two cases.
FlagDefaultSrc default_value_;
// This is reserved space for an absl::Mutex to guard flag data. It will be
// initialized in FlagImpl::Init via placement new.
// We can't use "absl::Mutex data_guard_", since this class is not literal.
// We do not want to use "absl::Mutex* data_guard_", since this would require
// heap allocation during initialization, which is both slows program startup
// and can fail. Using reserved space + placement new allows us to avoid both
// problems.
alignas(absl::Mutex) mutable char data_guard_[sizeof(absl::Mutex)];
};
///////////////////////////////////////////////////////////////////////////////
// The Flag object parameterized by the flag's value type. This class implements
// flag reflection handle interface.
template <typename T>
class Flag {
public:
constexpr Flag(const char* name, const char* filename, const FlagHelpArg help,
const FlagDfltGenFunc default_value_gen)
: impl_(name, filename, &FlagOps<T>, help,
flags_internal::StorageKind<T>(), default_value_gen),
value_() {}
T Get() const {
// See implementation notes in CommandLineFlag::Get().
union U {
T value;
U() {}
~U() { value.~T(); }
};
U u;
#if !defined(NDEBUG)
impl_.AssertValidType(base_internal::FastTypeId<T>(), &GenRuntimeTypeId<T>);
#endif
if (!value_.Get(&u.value)) impl_.Read(&u.value);
return std::move(u.value);
}
void Set(const T& v) {
impl_.AssertValidType(base_internal::FastTypeId<T>(), &GenRuntimeTypeId<T>);
impl_.Write(&v);
}
void SetCallback(const FlagCallbackFunc mutation_callback) {
impl_.SetCallback(mutation_callback);
}
// CommandLineFlag interface
absl::string_view Name() const { return impl_.Name(); }
std::string Filename() const { return impl_.Filename(); }
absl::string_view Typename() const { return ""; }
std::string Help() const { return impl_.Help(); }
bool IsModified() const { return impl_.IsModified(); }
bool IsSpecifiedOnCommandLine() const {
return impl_.IsSpecifiedOnCommandLine();
}
std::string DefaultValue() const { return impl_.DefaultValue(); }
std::string CurrentValue() const { return impl_.CurrentValue(); }
private:
template <typename U, bool do_register>
friend class FlagRegistrar;
// Flag's data
// The implementation depends on value_ field to be placed exactly after the
// impl_ field, so that impl_ can figure out the offset to the value and
// access it.
FlagImpl impl_;
FlagValue<T> value_;
};
///////////////////////////////////////////////////////////////////////////////
// Implementation of Flag value specific operations routine.
template <typename T>
void* FlagOps(FlagOp op, const void* v1, void* v2, void* v3) {
switch (op) {
case FlagOp::kAlloc: {
std::allocator<T> alloc;
return std::allocator_traits<std::allocator<T>>::allocate(alloc, 1);
}
case FlagOp::kDelete: {
T* p = static_cast<T*>(v2);
p->~T();
std::allocator<T> alloc;
std::allocator_traits<std::allocator<T>>::deallocate(alloc, p, 1);
return nullptr;
}
case FlagOp::kCopy:
*static_cast<T*>(v2) = *static_cast<const T*>(v1);
return nullptr;
case FlagOp::kCopyConstruct:
new (v2) T(*static_cast<const T*>(v1));
return nullptr;
case FlagOp::kSizeof:
return reinterpret_cast<void*>(static_cast<uintptr_t>(sizeof(T)));
case FlagOp::kFastTypeId:
return const_cast<void*>(base_internal::FastTypeId<T>());
case FlagOp::kRuntimeTypeId:
return const_cast<std::type_info*>(GenRuntimeTypeId<T>());
case FlagOp::kParse: {
// Initialize the temporary instance of type T based on current value in
// destination (which is going to be flag's default value).
T temp(*static_cast<T*>(v2));
if (!absl::ParseFlag<T>(*static_cast<const absl::string_view*>(v1), &temp,
static_cast<std::string*>(v3))) {
return nullptr;
}
*static_cast<T*>(v2) = std::move(temp);
return v2;
}
case FlagOp::kUnparse:
*static_cast<std::string*>(v2) =
absl::UnparseFlag<T>(*static_cast<const T*>(v1));
return nullptr;
case FlagOp::kValueOffset: {
// Round sizeof(FlagImp) to a multiple of alignof(FlagValue<T>) to get the
// offset of the data.
ptrdiff_t round_to = alignof(FlagValue<T>);
ptrdiff_t offset =
(sizeof(FlagImpl) + round_to - 1) / round_to * round_to;
return reinterpret_cast<void*>(offset);
}
}
return nullptr;
}
///////////////////////////////////////////////////////////////////////////////
// This class facilitates Flag object registration and tail expression-based
// flag definition, for example:
// ABSL_FLAG(int, foo, 42, "Foo help").OnUpdate(NotifyFooWatcher);
struct FlagRegistrarEmpty {};
template <typename T, bool do_register>
class FlagRegistrar {
public:
explicit FlagRegistrar(Flag<T>* flag) : flag_(flag) {
if (do_register) flags_internal::RegisterCommandLineFlag(&flag_->impl_);
}
FlagRegistrar& OnUpdate(FlagCallbackFunc cb) && {
flag_->SetCallback(cb);
return *this;
}
// Make the registrar "die" gracefully as an empty struct on a line where
// registration happens. Registrar objects are intended to live only as
// temporary.
operator FlagRegistrarEmpty() const { return {}; } // NOLINT
private:
Flag<T>* flag_; // Flag being registered (not owned).
};
// This struct and corresponding overload to MakeDefaultValue are used to
// facilitate usage of {} as default value in ABSL_FLAG macro.
struct EmptyBraces {};
template <typename T>
void MakeFromDefaultValue(void* dst, T t) {
new (dst) T(std::move(t));
}
template <typename T>
void MakeFromDefaultValue(void* dst, EmptyBraces) {
new (dst) T{};
}
} // namespace flags_internal
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_FLAGS_INTERNAL_FLAG_H_