tvl-depot/absl/flags/internal/flag.h
Abseil Team 72382c21fe Export of internal Abseil changes
--
dea3e4f33f16bdb1d89cad1f8055b81c0c0cb554 by Andy Getzendanner <durandal@google.com>:

Validate in log_severity_test that flags of type absl::LogSeverity are lock-free.

PiperOrigin-RevId: 293454285

--
2a0cd2d8dc193a0cbff4ffa6c5c7037745507419 by Derek Mauro <dmauro@google.com>:

Update the testing instructions in CONTRIBUTING.md

PiperOrigin-RevId: 293436013

--
cec91c3f635b0b4c8a60955e5926dba4ed980898 by Gennadiy Rozental <rogeeff@google.com>:

Introduce struct to represent storage for flag value and normalize naming of internal structs in Flag implementation.

There is no semantic changes in this CL. All the internal structs are now named as Flag... We also stop using flags_internal:: qualifications for most of them since the names are unique enough by themselves.

PiperOrigin-RevId: 293251467
GitOrigin-RevId: dea3e4f33f16bdb1d89cad1f8055b81c0c0cb554
Change-Id: I161aecc9509edae3e4b77eead02df684b2ce7087
2020-02-05 17:48:17 -05:00

559 lines
20 KiB
C++

//
// Copyright 2019 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_FLAGS_INTERNAL_FLAG_H_
#define ABSL_FLAGS_INTERNAL_FLAG_H_
#include <stdint.h>
#include <atomic>
#include <cstring>
#include <memory>
#include <string>
#include <type_traits>
#include "absl/base/config.h"
#include "absl/base/thread_annotations.h"
#include "absl/flags/config.h"
#include "absl/flags/internal/commandlineflag.h"
#include "absl/flags/internal/registry.h"
#include "absl/memory/memory.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/string_view.h"
#include "absl/synchronization/mutex.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace flags_internal {
template <typename T>
class Flag;
///////////////////////////////////////////////////////////////////////////////
// Persistent state of the flag data.
template <typename T>
class FlagState : public flags_internal::FlagStateInterface {
public:
FlagState(Flag<T>* flag, T&& cur, bool modified, bool on_command_line,
int64_t counter)
: flag_(flag),
cur_value_(std::move(cur)),
modified_(modified),
on_command_line_(on_command_line),
counter_(counter) {}
~FlagState() override = default;
private:
friend class Flag<T>;
// Restores the flag to the saved state.
void Restore() const override;
// Flag and saved flag data.
Flag<T>* flag_;
T cur_value_;
bool modified_;
bool on_command_line_;
int64_t counter_;
};
///////////////////////////////////////////////////////////////////////////////
// Flag help auxiliary structs.
// This is help argument for absl::Flag encapsulating the string literal pointer
// or pointer to function generating it as well as enum descriminating two
// cases.
using HelpGenFunc = std::string (*)();
union FlagHelpMsg {
constexpr explicit FlagHelpMsg(const char* help_msg) : literal(help_msg) {}
constexpr explicit FlagHelpMsg(HelpGenFunc help_gen) : gen_func(help_gen) {}
const char* literal;
HelpGenFunc gen_func;
};
enum class FlagHelpKind : int8_t { kLiteral, kGenFunc };
struct FlagHelpArg {
FlagHelpMsg source;
FlagHelpKind kind;
};
extern const char kStrippedFlagHelp[];
// HelpConstexprWrap is used by struct AbslFlagHelpGenFor##name generated by
// ABSL_FLAG macro. It is only used to silence the compiler in the case where
// help message expression is not constexpr and does not have type const char*.
// If help message expression is indeed constexpr const char* HelpConstexprWrap
// is just a trivial identity function.
template <typename T>
const char* HelpConstexprWrap(const T&) {
return nullptr;
}
constexpr const char* HelpConstexprWrap(const char* p) { return p; }
constexpr const char* HelpConstexprWrap(char* p) { return p; }
// These two HelpArg overloads allows us to select at compile time one of two
// way to pass Help argument to absl::Flag. We'll be passing
// AbslFlagHelpGenFor##name as T and integer 0 as a single argument to prefer
// first overload if possible. If T::Const is evaluatable on constexpr
// context (see non template int parameter below) we'll choose first overload.
// In this case the help message expression is immediately evaluated and is used
// to construct the absl::Flag. No additionl code is generated by ABSL_FLAG.
// Otherwise SFINAE kicks in and first overload is dropped from the
// consideration, in which case the second overload will be used. The second
// overload does not attempt to evaluate the help message expression
// immediately and instead delays the evaluation by returing the function
// pointer (&T::NonConst) genering the help message when necessary. This is
// evaluatable in constexpr context, but the cost is an extra function being
// generated in the ABSL_FLAG code.
template <typename T, int = (T::Const(), 1)>
constexpr FlagHelpArg HelpArg(int) {
return {FlagHelpMsg(T::Const()), FlagHelpKind::kLiteral};
}
template <typename T>
constexpr FlagHelpArg HelpArg(char) {
return {FlagHelpMsg(&T::NonConst), FlagHelpKind::kGenFunc};
}
///////////////////////////////////////////////////////////////////////////////
// Flag default value auxiliary structs.
// Signature for the function generating the initial flag value (usually
// based on default value supplied in flag's definition)
using FlagDfltGenFunc = void* (*)();
union FlagDefaultSrc {
constexpr explicit FlagDefaultSrc(FlagDfltGenFunc gen_func_arg)
: gen_func(gen_func_arg) {}
void* dynamic_value;
FlagDfltGenFunc gen_func;
};
enum class FlagDefaultSrcKind : int8_t { kDynamicValue, kGenFunc };
///////////////////////////////////////////////////////////////////////////////
// Flag current value auxiliary structs.
// The minimum atomic size we believe to generate lock free code, i.e. all
// trivially copyable types not bigger this size generate lock free code.
static constexpr int kMinLockFreeAtomicSize = 8;
// The same as kMinLockFreeAtomicSize but maximum atomic size. As double words
// might use two registers, we want to dispatch the logic for them.
#if defined(ABSL_FLAGS_INTERNAL_ATOMIC_DOUBLE_WORD)
static constexpr int kMaxLockFreeAtomicSize = 16;
#else
static constexpr int kMaxLockFreeAtomicSize = 8;
#endif
// We can use atomic in cases when it fits in the register, trivially copyable
// in order to make memcpy operations.
template <typename T>
struct IsAtomicFlagTypeTrait {
static constexpr bool value =
(sizeof(T) <= kMaxLockFreeAtomicSize &&
type_traits_internal::is_trivially_copyable<T>::value);
};
// Clang does not always produce cmpxchg16b instruction when alignment of a 16
// bytes type is not 16.
struct alignas(16) FlagsInternalTwoWordsType {
int64_t first;
int64_t second;
};
constexpr bool operator==(const FlagsInternalTwoWordsType& that,
const FlagsInternalTwoWordsType& other) {
return that.first == other.first && that.second == other.second;
}
constexpr bool operator!=(const FlagsInternalTwoWordsType& that,
const FlagsInternalTwoWordsType& other) {
return !(that == other);
}
constexpr int64_t SmallAtomicInit() { return 0xababababababababll; }
template <typename T, typename S = void>
struct BestAtomicType {
using type = int64_t;
static constexpr int64_t AtomicInit() { return SmallAtomicInit(); }
};
template <typename T>
struct BestAtomicType<
T, typename std::enable_if<(kMinLockFreeAtomicSize < sizeof(T) &&
sizeof(T) <= kMaxLockFreeAtomicSize),
void>::type> {
using type = FlagsInternalTwoWordsType;
static constexpr FlagsInternalTwoWordsType AtomicInit() {
return {SmallAtomicInit(), SmallAtomicInit()};
}
};
struct FlagValue {
// Heap allocated value.
void* dynamic = nullptr;
// For some types, a copy of the current value is kept in an atomically
// accessible field.
union Atomics {
// Using small atomic for small types.
std::atomic<int64_t> small_atomic;
template <typename T,
typename K = typename std::enable_if<
(sizeof(T) <= kMinLockFreeAtomicSize), void>::type>
int64_t load() const {
return small_atomic.load(std::memory_order_acquire);
}
#if defined(ABSL_FLAGS_INTERNAL_ATOMIC_DOUBLE_WORD)
// Using big atomics for big types.
std::atomic<FlagsInternalTwoWordsType> big_atomic;
template <typename T, typename K = typename std::enable_if<
(kMinLockFreeAtomicSize < sizeof(T) &&
sizeof(T) <= kMaxLockFreeAtomicSize),
void>::type>
FlagsInternalTwoWordsType load() const {
return big_atomic.load(std::memory_order_acquire);
}
constexpr Atomics()
: big_atomic{FlagsInternalTwoWordsType{SmallAtomicInit(),
SmallAtomicInit()}} {}
#else
constexpr Atomics() : small_atomic{SmallAtomicInit()} {}
#endif
};
Atomics atomics{};
};
///////////////////////////////////////////////////////////////////////////////
// Flag callback auxiliary structs.
// Signature for the mutation callback used by watched Flags
// The callback is noexcept.
// TODO(rogeeff): add noexcept after C++17 support is added.
using FlagCallbackFunc = void (*)();
struct FlagCallback {
FlagCallbackFunc func;
absl::Mutex guard; // Guard for concurrent callback invocations.
};
///////////////////////////////////////////////////////////////////////////////
// Flag implementation, which does not depend on flag value type.
// The class encapsulates the Flag's data and access to it.
struct DynValueDeleter {
explicit DynValueDeleter(FlagOpFn op_arg = nullptr) : op(op_arg) {}
void operator()(void* ptr) const {
if (op != nullptr) Delete(op, ptr);
}
const FlagOpFn op;
};
class FlagImpl {
public:
constexpr FlagImpl(const char* name, const char* filename, FlagOpFn op,
FlagMarshallingOpFn marshalling_op, FlagHelpArg help,
FlagDfltGenFunc default_value_gen)
: name_(name),
filename_(filename),
op_(op),
marshalling_op_(marshalling_op),
help_(help.source),
help_source_kind_(help.kind),
def_kind_(FlagDefaultSrcKind::kGenFunc),
default_src_(default_value_gen),
data_guard_{} {}
// Forces destruction of the Flag's data.
void Destroy();
// Constant access methods
absl::string_view Name() const;
std::string Filename() const;
std::string Help() const;
bool IsModified() const ABSL_LOCKS_EXCLUDED(*DataGuard());
bool IsSpecifiedOnCommandLine() const ABSL_LOCKS_EXCLUDED(*DataGuard());
std::string DefaultValue() const ABSL_LOCKS_EXCLUDED(*DataGuard());
std::string CurrentValue() const ABSL_LOCKS_EXCLUDED(*DataGuard());
void Read(void* dst, const FlagOpFn dst_op) const
ABSL_LOCKS_EXCLUDED(*DataGuard());
// Attempts to parse supplied `value` std::string. If parsing is successful, then
// it replaces `dst` with the new value.
bool TryParse(void** dst, absl::string_view value, std::string* err) const
ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
#ifndef NDEBUG
template <typename T>
void Get(T* dst) const {
Read(dst, &FlagOps<T>);
}
#else
template <typename T, typename std::enable_if<
!IsAtomicFlagTypeTrait<T>::value, int>::type = 0>
void Get(T* dst) const {
Read(dst, &FlagOps<T>);
}
// Overload for `GetFlag()` for types that support lock-free reads.
template <typename T, typename std::enable_if<IsAtomicFlagTypeTrait<T>::value,
int>::type = 0>
void Get(T* dst) const {
using U = BestAtomicType<T>;
const typename U::type r = value_.atomics.template load<T>();
if (r != U::AtomicInit()) {
std::memcpy(static_cast<void*>(dst), &r, sizeof(T));
} else {
Read(dst, &FlagOps<T>);
}
}
#endif
// Mutating access methods
void Write(const void* src, const FlagOpFn src_op)
ABSL_LOCKS_EXCLUDED(*DataGuard());
bool SetFromString(absl::string_view value, FlagSettingMode set_mode,
ValueSource source, std::string* err)
ABSL_LOCKS_EXCLUDED(*DataGuard());
// If possible, updates copy of the Flag's value that is stored in an
// atomic word.
void StoreAtomic() ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
// Interfaces to operate on callbacks.
void SetCallback(const FlagCallbackFunc mutation_callback)
ABSL_LOCKS_EXCLUDED(*DataGuard());
void InvokeCallback() const ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
// Interfaces to save/restore mutable flag data
template <typename T>
std::unique_ptr<FlagStateInterface> SaveState(Flag<T>* flag) const
ABSL_LOCKS_EXCLUDED(*DataGuard()) {
T&& cur_value = flag->Get();
absl::MutexLock l(DataGuard());
return absl::make_unique<FlagState<T>>(
flag, std::move(cur_value), modified_, on_command_line_, counter_);
}
bool RestoreState(const void* value, bool modified, bool on_command_line,
int64_t counter) ABSL_LOCKS_EXCLUDED(*DataGuard());
// Value validation interfaces.
void CheckDefaultValueParsingRoundtrip() const
ABSL_LOCKS_EXCLUDED(*DataGuard());
bool ValidateInputValue(absl::string_view value) const
ABSL_LOCKS_EXCLUDED(*DataGuard());
private:
// Ensures that `data_guard_` is initialized and returns it.
absl::Mutex* DataGuard() const ABSL_LOCK_RETURNED((absl::Mutex*)&data_guard_);
// Returns heap allocated value of type T initialized with default value.
std::unique_ptr<void, DynValueDeleter> MakeInitValue() const
ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
// Lazy initialization of the Flag's data.
void Init();
// Immutable flag's state.
// Flags name passed to ABSL_FLAG as second arg.
const char* const name_;
// The file name where ABSL_FLAG resides.
const char* const filename_;
// Type-specific handler.
const FlagOpFn op_;
// Marshalling ops handler.
const FlagMarshallingOpFn marshalling_op_;
// Help message literal or function to generate it.
const FlagHelpMsg help_;
// Indicates if help message was supplied as literal or generator func.
const FlagHelpKind help_source_kind_;
// Indicates that the Flag state is initialized.
std::atomic<bool> inited_{false};
// Mutable flag's state (guarded by `data_guard_`).
// Protects against multiple concurrent constructions of `data_guard_`.
bool is_data_guard_inited_ = false;
// Has this flag's value been modified?
bool modified_ ABSL_GUARDED_BY(*DataGuard()) = false;
// Has this flag been specified on command line.
bool on_command_line_ ABSL_GUARDED_BY(*DataGuard()) = false;
// Mutation counter
int64_t counter_ ABSL_GUARDED_BY(*DataGuard()) = 0;
// Optional flag's callback and absl::Mutex to guard the invocations.
FlagCallback* callback_ ABSL_GUARDED_BY(*DataGuard()) = nullptr;
// If def_kind_ == kDynamicValue, default_src_ holds a dynamically allocated
// value.
FlagDefaultSrcKind def_kind_ ABSL_GUARDED_BY(*DataGuard());
// Either a pointer to the function generating the default value based on the
// value specified in ABSL_FLAG or pointer to the dynamically set default
// value via SetCommandLineOptionWithMode. def_kind_ is used to distinguish
// these two cases.
FlagDefaultSrc default_src_ ABSL_GUARDED_BY(*DataGuard());
// Current Flag Value
FlagValue value_;
// This is reserved space for an absl::Mutex to guard flag data. It will be
// initialized in FlagImpl::Init via placement new.
// We can't use "absl::Mutex data_guard_", since this class is not literal.
// We do not want to use "absl::Mutex* data_guard_", since this would require
// heap allocation during initialization, which is both slows program startup
// and can fail. Using reserved space + placement new allows us to avoid both
// problems.
alignas(absl::Mutex) mutable char data_guard_[sizeof(absl::Mutex)];
};
///////////////////////////////////////////////////////////////////////////////
// The "unspecified" implementation of Flag object parameterized by the
// flag's value type.
template <typename T>
class Flag final : public flags_internal::CommandLineFlag {
public:
constexpr Flag(const char* name, const char* filename,
const FlagMarshallingOpFn marshalling_op,
const FlagHelpArg help,
const FlagDfltGenFunc default_value_gen)
: impl_(name, filename, &FlagOps<T>, marshalling_op, help,
default_value_gen) {}
T Get() const {
// See implementation notes in CommandLineFlag::Get().
union U {
T value;
U() {}
~U() { value.~T(); }
};
U u;
impl_.Get(&u.value);
return std::move(u.value);
}
void Set(const T& v) { impl_.Write(&v, &FlagOps<T>); }
void SetCallback(const FlagCallbackFunc mutation_callback) {
impl_.SetCallback(mutation_callback);
}
// CommandLineFlag interface
absl::string_view Name() const override { return impl_.Name(); }
std::string Filename() const override { return impl_.Filename(); }
absl::string_view Typename() const override { return ""; }
std::string Help() const override { return impl_.Help(); }
bool IsModified() const override { return impl_.IsModified(); }
bool IsSpecifiedOnCommandLine() const override {
return impl_.IsSpecifiedOnCommandLine();
}
std::string DefaultValue() const override { return impl_.DefaultValue(); }
std::string CurrentValue() const override { return impl_.CurrentValue(); }
bool ValidateInputValue(absl::string_view value) const override {
return impl_.ValidateInputValue(value);
}
// Interfaces to save and restore flags to/from persistent state.
// Returns current flag state or nullptr if flag does not support
// saving and restoring a state.
std::unique_ptr<FlagStateInterface> SaveState() override {
return impl_.SaveState(this);
}
// Restores the flag state to the supplied state object. If there is
// nothing to restore returns false. Otherwise returns true.
bool RestoreState(const FlagState<T>& flag_state) {
return impl_.RestoreState(&flag_state.cur_value_, flag_state.modified_,
flag_state.on_command_line_, flag_state.counter_);
}
bool SetFromString(absl::string_view value, FlagSettingMode set_mode,
ValueSource source, std::string* error) override {
return impl_.SetFromString(value, set_mode, source, error);
}
void CheckDefaultValueParsingRoundtrip() const override {
impl_.CheckDefaultValueParsingRoundtrip();
}
private:
friend class FlagState<T>;
void Destroy() override { impl_.Destroy(); }
void Read(void* dst) const override { impl_.Read(dst, &FlagOps<T>); }
FlagOpFn TypeId() const override { return &FlagOps<T>; }
// Flag's implementation with value type abstracted out.
FlagImpl impl_;
};
template <typename T>
inline void FlagState<T>::Restore() const {
if (flag_->RestoreState(*this)) {
ABSL_INTERNAL_LOG(INFO,
absl::StrCat("Restore saved value of ", flag_->Name(),
" to: ", flag_->CurrentValue()));
}
}
// This class facilitates Flag object registration and tail expression-based
// flag definition, for example:
// ABSL_FLAG(int, foo, 42, "Foo help").OnUpdate(NotifyFooWatcher);
template <typename T, bool do_register>
class FlagRegistrar {
public:
explicit FlagRegistrar(Flag<T>* flag) : flag_(flag) {
if (do_register) flags_internal::RegisterCommandLineFlag(flag_);
}
FlagRegistrar& OnUpdate(FlagCallbackFunc cb) && {
flag_->SetCallback(cb);
return *this;
}
// Make the registrar "die" gracefully as a bool on a line where registration
// happens. Registrar objects are intended to live only as temporary.
operator bool() const { return true; } // NOLINT
private:
Flag<T>* flag_; // Flag being registered (not owned).
};
// This struct and corresponding overload to MakeDefaultValue are used to
// facilitate usage of {} as default value in ABSL_FLAG macro.
struct EmptyBraces {};
template <typename T>
T* MakeFromDefaultValue(T t) {
return new T(std::move(t));
}
template <typename T>
T* MakeFromDefaultValue(EmptyBraces) {
return new T;
}
} // namespace flags_internal
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_FLAGS_INTERNAL_FLAG_H_