tvl-depot/absl/container/fixed_array_test.cc
Abseil Team 518f17501e Export of internal Abseil changes
--
79913a12f0cad4baf948430315aabf53f03b6475 by Abseil Team <absl-team@google.com>:

Don't inline (Un)LockSlow.

PiperOrigin-RevId: 302502344

--
6b340e80f0690655f24799c8de6707b3a95b8579 by Derek Mauro <dmauro@google.com>:

Add hardening assertions to absl::optional's dereference operators

PiperOrigin-RevId: 302492862

--
a9951bf4852d8c1aec472cb4b539830411270e4c by Derek Mauro <dmauro@google.com>:

Correctly add hardware AES compiler flags under Linux X86-64
Fixes #643

PiperOrigin-RevId: 302490673

--
314c3621ee4d57b6bc8d64338a1f1d48a69741d1 by Derek Mauro <dmauro@google.com>:

Upgrade to hardening assertions in absl::Span::remove_prefix and absl::Span::remove_suffix

PiperOrigin-RevId: 302481191

--
a142b8c6c62705c5f0d4fe3113150f0c0b7822b9 by Derek Mauro <dmauro@google.com>:

Update docker containers to Bazel 2.2.0, GCC 9.3, and new Clang snapshot

PiperOrigin-RevId: 302454042

--
afedeb70a2adc87010030c9ba6f06fe35ec26407 by Derek Mauro <dmauro@google.com>:

Add hardening assertions for the preconditions of absl::FixedArray

PiperOrigin-RevId: 302441767

--
44442bfbc0a9a742df32f07cee86a47712efb8b4 by Derek Mauro <dmauro@google.com>:

Fix new Clang warning about SpinLock doing operations on enums of different types

PiperOrigin-RevId: 302430387

--
69eaff7f97231779f696321c2ba8b88debf6dd9e by Derek Mauro <dmauro@google.com>:

Convert precondition assertions to ABSL_HARDENING_ASSERT for
absl::InlinedVector

PiperOrigin-RevId: 302427894

--
26b6db906a0942fd18583dc2cdd1bab32919d964 by Gennadiy Rozental <rogeeff@google.com>:

Internal change

PiperOrigin-RevId: 302425283

--
e62e81422979e922505d2cd9000e1de58123c088 by Derek Mauro <dmauro@google.com>:

Add an option to build Abseil in hardened mode

In hardened mode, the ABSL_HARDENING_ASSERT() macro is active even
when NDEBUG is defined. This allows Abseil to perform runtime checks
even in release mode. This should be used to implement things like
bounds checks that could otherwise lead to security vulnerabilities.

Use the new assertion in absl::string_view and absl::Span to test it.

PiperOrigin-RevId: 302119187
GitOrigin-RevId: 79913a12f0cad4baf948430315aabf53f03b6475
Change-Id: I0cc3341fd333a1df313167bab72dc5a759c4a048
2020-03-23 16:24:45 -04:00

896 lines
26 KiB
C++

// Copyright 2019 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/container/fixed_array.h"
#include <stdio.h>
#include <cstring>
#include <list>
#include <memory>
#include <numeric>
#include <scoped_allocator>
#include <stdexcept>
#include <string>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/internal/exception_testing.h"
#include "absl/base/options.h"
#include "absl/hash/hash_testing.h"
#include "absl/memory/memory.h"
using ::testing::ElementsAreArray;
namespace {
// Helper routine to determine if a absl::FixedArray used stack allocation.
template <typename ArrayType>
static bool IsOnStack(const ArrayType& a) {
return a.size() <= ArrayType::inline_elements;
}
class ConstructionTester {
public:
ConstructionTester() : self_ptr_(this), value_(0) { constructions++; }
~ConstructionTester() {
assert(self_ptr_ == this);
self_ptr_ = nullptr;
destructions++;
}
// These are incremented as elements are constructed and destructed so we can
// be sure all elements are properly cleaned up.
static int constructions;
static int destructions;
void CheckConstructed() { assert(self_ptr_ == this); }
void set(int value) { value_ = value; }
int get() { return value_; }
private:
// self_ptr_ should always point to 'this' -- that's how we can be sure the
// constructor has been called.
ConstructionTester* self_ptr_;
int value_;
};
int ConstructionTester::constructions = 0;
int ConstructionTester::destructions = 0;
// ThreeInts will initialize its three ints to the value stored in
// ThreeInts::counter. The constructor increments counter so that each object
// in an array of ThreeInts will have different values.
class ThreeInts {
public:
ThreeInts() {
x_ = counter;
y_ = counter;
z_ = counter;
++counter;
}
static int counter;
int x_, y_, z_;
};
int ThreeInts::counter = 0;
TEST(FixedArrayTest, CopyCtor) {
absl::FixedArray<int, 10> on_stack(5);
std::iota(on_stack.begin(), on_stack.end(), 0);
absl::FixedArray<int, 10> stack_copy = on_stack;
EXPECT_THAT(stack_copy, ElementsAreArray(on_stack));
EXPECT_TRUE(IsOnStack(stack_copy));
absl::FixedArray<int, 10> allocated(15);
std::iota(allocated.begin(), allocated.end(), 0);
absl::FixedArray<int, 10> alloced_copy = allocated;
EXPECT_THAT(alloced_copy, ElementsAreArray(allocated));
EXPECT_FALSE(IsOnStack(alloced_copy));
}
TEST(FixedArrayTest, MoveCtor) {
absl::FixedArray<std::unique_ptr<int>, 10> on_stack(5);
for (int i = 0; i < 5; ++i) {
on_stack[i] = absl::make_unique<int>(i);
}
absl::FixedArray<std::unique_ptr<int>, 10> stack_copy = std::move(on_stack);
for (int i = 0; i < 5; ++i) EXPECT_EQ(*(stack_copy[i]), i);
EXPECT_EQ(stack_copy.size(), on_stack.size());
absl::FixedArray<std::unique_ptr<int>, 10> allocated(15);
for (int i = 0; i < 15; ++i) {
allocated[i] = absl::make_unique<int>(i);
}
absl::FixedArray<std::unique_ptr<int>, 10> alloced_copy =
std::move(allocated);
for (int i = 0; i < 15; ++i) EXPECT_EQ(*(alloced_copy[i]), i);
EXPECT_EQ(allocated.size(), alloced_copy.size());
}
TEST(FixedArrayTest, SmallObjects) {
// Small object arrays
{
// Short arrays should be on the stack
absl::FixedArray<int> array(4);
EXPECT_TRUE(IsOnStack(array));
}
{
// Large arrays should be on the heap
absl::FixedArray<int> array(1048576);
EXPECT_FALSE(IsOnStack(array));
}
{
// Arrays of <= default size should be on the stack
absl::FixedArray<int, 100> array(100);
EXPECT_TRUE(IsOnStack(array));
}
{
// Arrays of > default size should be on the heap
absl::FixedArray<int, 100> array(101);
EXPECT_FALSE(IsOnStack(array));
}
{
// Arrays with different size elements should use approximately
// same amount of stack space
absl::FixedArray<int> array1(0);
absl::FixedArray<char> array2(0);
EXPECT_LE(sizeof(array1), sizeof(array2) + 100);
EXPECT_LE(sizeof(array2), sizeof(array1) + 100);
}
{
// Ensure that vectors are properly constructed inside a fixed array.
absl::FixedArray<std::vector<int>> array(2);
EXPECT_EQ(0, array[0].size());
EXPECT_EQ(0, array[1].size());
}
{
// Regardless of absl::FixedArray implementation, check that a type with a
// low alignment requirement and a non power-of-two size is initialized
// correctly.
ThreeInts::counter = 1;
absl::FixedArray<ThreeInts> array(2);
EXPECT_EQ(1, array[0].x_);
EXPECT_EQ(1, array[0].y_);
EXPECT_EQ(1, array[0].z_);
EXPECT_EQ(2, array[1].x_);
EXPECT_EQ(2, array[1].y_);
EXPECT_EQ(2, array[1].z_);
}
}
TEST(FixedArrayTest, AtThrows) {
absl::FixedArray<int> a = {1, 2, 3};
EXPECT_EQ(a.at(2), 3);
ABSL_BASE_INTERNAL_EXPECT_FAIL(a.at(3), std::out_of_range,
"failed bounds check");
}
TEST(FixedArrayTest, Hardened) {
#if !defined(NDEBUG) || ABSL_OPTION_HARDENED
absl::FixedArray<int> a = {1, 2, 3};
EXPECT_EQ(a[2], 3);
EXPECT_DEATH_IF_SUPPORTED(a[3], "");
EXPECT_DEATH_IF_SUPPORTED(a[-1], "");
absl::FixedArray<int> empty(0);
EXPECT_DEATH_IF_SUPPORTED(empty[0], "");
EXPECT_DEATH_IF_SUPPORTED(empty[-1], "");
EXPECT_DEATH_IF_SUPPORTED(empty.front(), "");
EXPECT_DEATH_IF_SUPPORTED(empty.back(), "");
#endif
}
TEST(FixedArrayRelationalsTest, EqualArrays) {
for (int i = 0; i < 10; ++i) {
absl::FixedArray<int, 5> a1(i);
std::iota(a1.begin(), a1.end(), 0);
absl::FixedArray<int, 5> a2(a1.begin(), a1.end());
EXPECT_TRUE(a1 == a2);
EXPECT_FALSE(a1 != a2);
EXPECT_TRUE(a2 == a1);
EXPECT_FALSE(a2 != a1);
EXPECT_FALSE(a1 < a2);
EXPECT_FALSE(a1 > a2);
EXPECT_FALSE(a2 < a1);
EXPECT_FALSE(a2 > a1);
EXPECT_TRUE(a1 <= a2);
EXPECT_TRUE(a1 >= a2);
EXPECT_TRUE(a2 <= a1);
EXPECT_TRUE(a2 >= a1);
}
}
TEST(FixedArrayRelationalsTest, UnequalArrays) {
for (int i = 1; i < 10; ++i) {
absl::FixedArray<int, 5> a1(i);
std::iota(a1.begin(), a1.end(), 0);
absl::FixedArray<int, 5> a2(a1.begin(), a1.end());
--a2[i / 2];
EXPECT_FALSE(a1 == a2);
EXPECT_TRUE(a1 != a2);
EXPECT_FALSE(a2 == a1);
EXPECT_TRUE(a2 != a1);
EXPECT_FALSE(a1 < a2);
EXPECT_TRUE(a1 > a2);
EXPECT_TRUE(a2 < a1);
EXPECT_FALSE(a2 > a1);
EXPECT_FALSE(a1 <= a2);
EXPECT_TRUE(a1 >= a2);
EXPECT_TRUE(a2 <= a1);
EXPECT_FALSE(a2 >= a1);
}
}
template <int stack_elements>
static void TestArray(int n) {
SCOPED_TRACE(n);
SCOPED_TRACE(stack_elements);
ConstructionTester::constructions = 0;
ConstructionTester::destructions = 0;
{
absl::FixedArray<ConstructionTester, stack_elements> array(n);
EXPECT_THAT(array.size(), n);
EXPECT_THAT(array.memsize(), sizeof(ConstructionTester) * n);
EXPECT_THAT(array.begin() + n, array.end());
// Check that all elements were constructed
for (int i = 0; i < n; i++) {
array[i].CheckConstructed();
}
// Check that no other elements were constructed
EXPECT_THAT(ConstructionTester::constructions, n);
// Test operator[]
for (int i = 0; i < n; i++) {
array[i].set(i);
}
for (int i = 0; i < n; i++) {
EXPECT_THAT(array[i].get(), i);
EXPECT_THAT(array.data()[i].get(), i);
}
// Test data()
for (int i = 0; i < n; i++) {
array.data()[i].set(i + 1);
}
for (int i = 0; i < n; i++) {
EXPECT_THAT(array[i].get(), i + 1);
EXPECT_THAT(array.data()[i].get(), i + 1);
}
} // Close scope containing 'array'.
// Check that all constructed elements were destructed.
EXPECT_EQ(ConstructionTester::constructions,
ConstructionTester::destructions);
}
template <int elements_per_inner_array, int inline_elements>
static void TestArrayOfArrays(int n) {
SCOPED_TRACE(n);
SCOPED_TRACE(inline_elements);
SCOPED_TRACE(elements_per_inner_array);
ConstructionTester::constructions = 0;
ConstructionTester::destructions = 0;
{
using InnerArray = ConstructionTester[elements_per_inner_array];
// Heap-allocate the FixedArray to avoid blowing the stack frame.
auto array_ptr =
absl::make_unique<absl::FixedArray<InnerArray, inline_elements>>(n);
auto& array = *array_ptr;
ASSERT_EQ(array.size(), n);
ASSERT_EQ(array.memsize(),
sizeof(ConstructionTester) * elements_per_inner_array * n);
ASSERT_EQ(array.begin() + n, array.end());
// Check that all elements were constructed
for (int i = 0; i < n; i++) {
for (int j = 0; j < elements_per_inner_array; j++) {
(array[i])[j].CheckConstructed();
}
}
// Check that no other elements were constructed
ASSERT_EQ(ConstructionTester::constructions, n * elements_per_inner_array);
// Test operator[]
for (int i = 0; i < n; i++) {
for (int j = 0; j < elements_per_inner_array; j++) {
(array[i])[j].set(i * elements_per_inner_array + j);
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < elements_per_inner_array; j++) {
ASSERT_EQ((array[i])[j].get(), i * elements_per_inner_array + j);
ASSERT_EQ((array.data()[i])[j].get(), i * elements_per_inner_array + j);
}
}
// Test data()
for (int i = 0; i < n; i++) {
for (int j = 0; j < elements_per_inner_array; j++) {
(array.data()[i])[j].set((i + 1) * elements_per_inner_array + j);
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < elements_per_inner_array; j++) {
ASSERT_EQ((array[i])[j].get(), (i + 1) * elements_per_inner_array + j);
ASSERT_EQ((array.data()[i])[j].get(),
(i + 1) * elements_per_inner_array + j);
}
}
} // Close scope containing 'array'.
// Check that all constructed elements were destructed.
EXPECT_EQ(ConstructionTester::constructions,
ConstructionTester::destructions);
}
TEST(IteratorConstructorTest, NonInline) {
int const kInput[] = {2, 3, 5, 7, 11, 13, 17};
absl::FixedArray<int, ABSL_ARRAYSIZE(kInput) - 1> const fixed(
kInput, kInput + ABSL_ARRAYSIZE(kInput));
ASSERT_EQ(ABSL_ARRAYSIZE(kInput), fixed.size());
for (size_t i = 0; i < ABSL_ARRAYSIZE(kInput); ++i) {
ASSERT_EQ(kInput[i], fixed[i]);
}
}
TEST(IteratorConstructorTest, Inline) {
int const kInput[] = {2, 3, 5, 7, 11, 13, 17};
absl::FixedArray<int, ABSL_ARRAYSIZE(kInput)> const fixed(
kInput, kInput + ABSL_ARRAYSIZE(kInput));
ASSERT_EQ(ABSL_ARRAYSIZE(kInput), fixed.size());
for (size_t i = 0; i < ABSL_ARRAYSIZE(kInput); ++i) {
ASSERT_EQ(kInput[i], fixed[i]);
}
}
TEST(IteratorConstructorTest, NonPod) {
char const* kInput[] = {"red", "orange", "yellow", "green",
"blue", "indigo", "violet"};
absl::FixedArray<std::string> const fixed(kInput,
kInput + ABSL_ARRAYSIZE(kInput));
ASSERT_EQ(ABSL_ARRAYSIZE(kInput), fixed.size());
for (size_t i = 0; i < ABSL_ARRAYSIZE(kInput); ++i) {
ASSERT_EQ(kInput[i], fixed[i]);
}
}
TEST(IteratorConstructorTest, FromEmptyVector) {
std::vector<int> const empty;
absl::FixedArray<int> const fixed(empty.begin(), empty.end());
EXPECT_EQ(0, fixed.size());
EXPECT_EQ(empty.size(), fixed.size());
}
TEST(IteratorConstructorTest, FromNonEmptyVector) {
int const kInput[] = {2, 3, 5, 7, 11, 13, 17};
std::vector<int> const items(kInput, kInput + ABSL_ARRAYSIZE(kInput));
absl::FixedArray<int> const fixed(items.begin(), items.end());
ASSERT_EQ(items.size(), fixed.size());
for (size_t i = 0; i < items.size(); ++i) {
ASSERT_EQ(items[i], fixed[i]);
}
}
TEST(IteratorConstructorTest, FromBidirectionalIteratorRange) {
int const kInput[] = {2, 3, 5, 7, 11, 13, 17};
std::list<int> const items(kInput, kInput + ABSL_ARRAYSIZE(kInput));
absl::FixedArray<int> const fixed(items.begin(), items.end());
EXPECT_THAT(fixed, testing::ElementsAreArray(kInput));
}
TEST(InitListConstructorTest, InitListConstruction) {
absl::FixedArray<int> fixed = {1, 2, 3};
EXPECT_THAT(fixed, testing::ElementsAreArray({1, 2, 3}));
}
TEST(FillConstructorTest, NonEmptyArrays) {
absl::FixedArray<int> stack_array(4, 1);
EXPECT_THAT(stack_array, testing::ElementsAreArray({1, 1, 1, 1}));
absl::FixedArray<int, 0> heap_array(4, 1);
EXPECT_THAT(stack_array, testing::ElementsAreArray({1, 1, 1, 1}));
}
TEST(FillConstructorTest, EmptyArray) {
absl::FixedArray<int> empty_fill(0, 1);
absl::FixedArray<int> empty_size(0);
EXPECT_EQ(empty_fill, empty_size);
}
TEST(FillConstructorTest, NotTriviallyCopyable) {
std::string str = "abcd";
absl::FixedArray<std::string> strings = {str, str, str, str};
absl::FixedArray<std::string> array(4, str);
EXPECT_EQ(array, strings);
}
TEST(FillConstructorTest, Disambiguation) {
absl::FixedArray<size_t> a(1, 2);
EXPECT_THAT(a, testing::ElementsAre(2));
}
TEST(FixedArrayTest, ManySizedArrays) {
std::vector<int> sizes;
for (int i = 1; i < 100; i++) sizes.push_back(i);
for (int i = 100; i <= 1000; i += 100) sizes.push_back(i);
for (int n : sizes) {
TestArray<0>(n);
TestArray<1>(n);
TestArray<64>(n);
TestArray<1000>(n);
}
}
TEST(FixedArrayTest, ManySizedArraysOfArraysOf1) {
for (int n = 1; n < 1000; n++) {
ASSERT_NO_FATAL_FAILURE((TestArrayOfArrays<1, 0>(n)));
ASSERT_NO_FATAL_FAILURE((TestArrayOfArrays<1, 1>(n)));
ASSERT_NO_FATAL_FAILURE((TestArrayOfArrays<1, 64>(n)));
ASSERT_NO_FATAL_FAILURE((TestArrayOfArrays<1, 1000>(n)));
}
}
TEST(FixedArrayTest, ManySizedArraysOfArraysOf2) {
for (int n = 1; n < 1000; n++) {
TestArrayOfArrays<2, 0>(n);
TestArrayOfArrays<2, 1>(n);
TestArrayOfArrays<2, 64>(n);
TestArrayOfArrays<2, 1000>(n);
}
}
// If value_type is put inside of a struct container,
// we might evoke this error in a hardened build unless data() is carefully
// written, so check on that.
// error: call to int __builtin___sprintf_chk(etc...)
// will always overflow destination buffer [-Werror]
TEST(FixedArrayTest, AvoidParanoidDiagnostics) {
absl::FixedArray<char, 32> buf(32);
sprintf(buf.data(), "foo"); // NOLINT(runtime/printf)
}
TEST(FixedArrayTest, TooBigInlinedSpace) {
struct TooBig {
char c[1 << 20];
}; // too big for even one on the stack
// Simulate the data members of absl::FixedArray, a pointer and a size_t.
struct Data {
TooBig* p;
size_t size;
};
// Make sure TooBig objects are not inlined for 0 or default size.
static_assert(sizeof(absl::FixedArray<TooBig, 0>) == sizeof(Data),
"0-sized absl::FixedArray should have same size as Data.");
static_assert(alignof(absl::FixedArray<TooBig, 0>) == alignof(Data),
"0-sized absl::FixedArray should have same alignment as Data.");
static_assert(sizeof(absl::FixedArray<TooBig>) == sizeof(Data),
"default-sized absl::FixedArray should have same size as Data");
static_assert(
alignof(absl::FixedArray<TooBig>) == alignof(Data),
"default-sized absl::FixedArray should have same alignment as Data.");
}
// PickyDelete EXPECTs its class-scope deallocation funcs are unused.
struct PickyDelete {
PickyDelete() {}
~PickyDelete() {}
void operator delete(void* p) {
EXPECT_TRUE(false) << __FUNCTION__;
::operator delete(p);
}
void operator delete[](void* p) {
EXPECT_TRUE(false) << __FUNCTION__;
::operator delete[](p);
}
};
TEST(FixedArrayTest, UsesGlobalAlloc) { absl::FixedArray<PickyDelete, 0> a(5); }
TEST(FixedArrayTest, Data) {
static const int kInput[] = {2, 3, 5, 7, 11, 13, 17};
absl::FixedArray<int> fa(std::begin(kInput), std::end(kInput));
EXPECT_EQ(fa.data(), &*fa.begin());
EXPECT_EQ(fa.data(), &fa[0]);
const absl::FixedArray<int>& cfa = fa;
EXPECT_EQ(cfa.data(), &*cfa.begin());
EXPECT_EQ(cfa.data(), &cfa[0]);
}
TEST(FixedArrayTest, Empty) {
absl::FixedArray<int> empty(0);
absl::FixedArray<int> inline_filled(1);
absl::FixedArray<int, 0> heap_filled(1);
EXPECT_TRUE(empty.empty());
EXPECT_FALSE(inline_filled.empty());
EXPECT_FALSE(heap_filled.empty());
}
TEST(FixedArrayTest, FrontAndBack) {
absl::FixedArray<int, 3 * sizeof(int)> inlined = {1, 2, 3};
EXPECT_EQ(inlined.front(), 1);
EXPECT_EQ(inlined.back(), 3);
absl::FixedArray<int, 0> allocated = {1, 2, 3};
EXPECT_EQ(allocated.front(), 1);
EXPECT_EQ(allocated.back(), 3);
absl::FixedArray<int> one_element = {1};
EXPECT_EQ(one_element.front(), one_element.back());
}
TEST(FixedArrayTest, ReverseIteratorInlined) {
absl::FixedArray<int, 5 * sizeof(int)> a = {0, 1, 2, 3, 4};
int counter = 5;
for (absl::FixedArray<int>::reverse_iterator iter = a.rbegin();
iter != a.rend(); ++iter) {
counter--;
EXPECT_EQ(counter, *iter);
}
EXPECT_EQ(counter, 0);
counter = 5;
for (absl::FixedArray<int>::const_reverse_iterator iter = a.rbegin();
iter != a.rend(); ++iter) {
counter--;
EXPECT_EQ(counter, *iter);
}
EXPECT_EQ(counter, 0);
counter = 5;
for (auto iter = a.crbegin(); iter != a.crend(); ++iter) {
counter--;
EXPECT_EQ(counter, *iter);
}
EXPECT_EQ(counter, 0);
}
TEST(FixedArrayTest, ReverseIteratorAllocated) {
absl::FixedArray<int, 0> a = {0, 1, 2, 3, 4};
int counter = 5;
for (absl::FixedArray<int>::reverse_iterator iter = a.rbegin();
iter != a.rend(); ++iter) {
counter--;
EXPECT_EQ(counter, *iter);
}
EXPECT_EQ(counter, 0);
counter = 5;
for (absl::FixedArray<int>::const_reverse_iterator iter = a.rbegin();
iter != a.rend(); ++iter) {
counter--;
EXPECT_EQ(counter, *iter);
}
EXPECT_EQ(counter, 0);
counter = 5;
for (auto iter = a.crbegin(); iter != a.crend(); ++iter) {
counter--;
EXPECT_EQ(counter, *iter);
}
EXPECT_EQ(counter, 0);
}
TEST(FixedArrayTest, Fill) {
absl::FixedArray<int, 5 * sizeof(int)> inlined(5);
int fill_val = 42;
inlined.fill(fill_val);
for (int i : inlined) EXPECT_EQ(i, fill_val);
absl::FixedArray<int, 0> allocated(5);
allocated.fill(fill_val);
for (int i : allocated) EXPECT_EQ(i, fill_val);
// It doesn't do anything, just make sure this compiles.
absl::FixedArray<int> empty(0);
empty.fill(fill_val);
}
#ifndef __GNUC__
TEST(FixedArrayTest, DefaultCtorDoesNotValueInit) {
using T = char;
constexpr auto capacity = 10;
using FixedArrType = absl::FixedArray<T, capacity>;
constexpr auto scrubbed_bits = 0x95;
constexpr auto length = capacity / 2;
alignas(FixedArrType) unsigned char buff[sizeof(FixedArrType)];
std::memset(std::addressof(buff), scrubbed_bits, sizeof(FixedArrType));
FixedArrType* arr =
::new (static_cast<void*>(std::addressof(buff))) FixedArrType(length);
EXPECT_THAT(*arr, testing::Each(scrubbed_bits));
arr->~FixedArrType();
}
#endif // __GNUC__
// This is a stateful allocator, but the state lives outside of the
// allocator (in whatever test is using the allocator). This is odd
// but helps in tests where the allocator is propagated into nested
// containers - that chain of allocators uses the same state and is
// thus easier to query for aggregate allocation information.
template <typename T>
class CountingAllocator : public std::allocator<T> {
public:
using Alloc = std::allocator<T>;
using pointer = typename Alloc::pointer;
using size_type = typename Alloc::size_type;
CountingAllocator() : bytes_used_(nullptr), instance_count_(nullptr) {}
explicit CountingAllocator(int64_t* b)
: bytes_used_(b), instance_count_(nullptr) {}
CountingAllocator(int64_t* b, int64_t* a)
: bytes_used_(b), instance_count_(a) {}
template <typename U>
explicit CountingAllocator(const CountingAllocator<U>& x)
: Alloc(x),
bytes_used_(x.bytes_used_),
instance_count_(x.instance_count_) {}
pointer allocate(size_type n, const void* const hint = nullptr) {
assert(bytes_used_ != nullptr);
*bytes_used_ += n * sizeof(T);
return Alloc::allocate(n, hint);
}
void deallocate(pointer p, size_type n) {
Alloc::deallocate(p, n);
assert(bytes_used_ != nullptr);
*bytes_used_ -= n * sizeof(T);
}
template <typename... Args>
void construct(pointer p, Args&&... args) {
Alloc::construct(p, absl::forward<Args>(args)...);
if (instance_count_) {
*instance_count_ += 1;
}
}
void destroy(pointer p) {
Alloc::destroy(p);
if (instance_count_) {
*instance_count_ -= 1;
}
}
template <typename U>
class rebind {
public:
using other = CountingAllocator<U>;
};
int64_t* bytes_used_;
int64_t* instance_count_;
};
TEST(AllocatorSupportTest, CountInlineAllocations) {
constexpr size_t inlined_size = 4;
using Alloc = CountingAllocator<int>;
using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>;
int64_t allocated = 0;
int64_t active_instances = 0;
{
const int ia[] = {0, 1, 2, 3, 4, 5, 6, 7};
Alloc alloc(&allocated, &active_instances);
AllocFxdArr arr(ia, ia + inlined_size, alloc);
static_cast<void>(arr);
}
EXPECT_EQ(allocated, 0);
EXPECT_EQ(active_instances, 0);
}
TEST(AllocatorSupportTest, CountOutoflineAllocations) {
constexpr size_t inlined_size = 4;
using Alloc = CountingAllocator<int>;
using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>;
int64_t allocated = 0;
int64_t active_instances = 0;
{
const int ia[] = {0, 1, 2, 3, 4, 5, 6, 7};
Alloc alloc(&allocated, &active_instances);
AllocFxdArr arr(ia, ia + ABSL_ARRAYSIZE(ia), alloc);
EXPECT_EQ(allocated, arr.size() * sizeof(int));
static_cast<void>(arr);
}
EXPECT_EQ(active_instances, 0);
}
TEST(AllocatorSupportTest, CountCopyInlineAllocations) {
constexpr size_t inlined_size = 4;
using Alloc = CountingAllocator<int>;
using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>;
int64_t allocated1 = 0;
int64_t allocated2 = 0;
int64_t active_instances = 0;
Alloc alloc(&allocated1, &active_instances);
Alloc alloc2(&allocated2, &active_instances);
{
int initial_value = 1;
AllocFxdArr arr1(inlined_size / 2, initial_value, alloc);
EXPECT_EQ(allocated1, 0);
AllocFxdArr arr2(arr1, alloc2);
EXPECT_EQ(allocated2, 0);
static_cast<void>(arr1);
static_cast<void>(arr2);
}
EXPECT_EQ(active_instances, 0);
}
TEST(AllocatorSupportTest, CountCopyOutoflineAllocations) {
constexpr size_t inlined_size = 4;
using Alloc = CountingAllocator<int>;
using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>;
int64_t allocated1 = 0;
int64_t allocated2 = 0;
int64_t active_instances = 0;
Alloc alloc(&allocated1, &active_instances);
Alloc alloc2(&allocated2, &active_instances);
{
int initial_value = 1;
AllocFxdArr arr1(inlined_size * 2, initial_value, alloc);
EXPECT_EQ(allocated1, arr1.size() * sizeof(int));
AllocFxdArr arr2(arr1, alloc2);
EXPECT_EQ(allocated2, inlined_size * 2 * sizeof(int));
static_cast<void>(arr1);
static_cast<void>(arr2);
}
EXPECT_EQ(active_instances, 0);
}
TEST(AllocatorSupportTest, SizeValAllocConstructor) {
using testing::AllOf;
using testing::Each;
using testing::SizeIs;
constexpr size_t inlined_size = 4;
using Alloc = CountingAllocator<int>;
using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>;
{
auto len = inlined_size / 2;
auto val = 0;
int64_t allocated = 0;
AllocFxdArr arr(len, val, Alloc(&allocated));
EXPECT_EQ(allocated, 0);
EXPECT_THAT(arr, AllOf(SizeIs(len), Each(0)));
}
{
auto len = inlined_size * 2;
auto val = 0;
int64_t allocated = 0;
AllocFxdArr arr(len, val, Alloc(&allocated));
EXPECT_EQ(allocated, len * sizeof(int));
EXPECT_THAT(arr, AllOf(SizeIs(len), Each(0)));
}
}
#ifdef ADDRESS_SANITIZER
TEST(FixedArrayTest, AddressSanitizerAnnotations1) {
absl::FixedArray<int, 32> a(10);
int* raw = a.data();
raw[0] = 0;
raw[9] = 0;
EXPECT_DEATH(raw[-2] = 0, "container-overflow");
EXPECT_DEATH(raw[-1] = 0, "container-overflow");
EXPECT_DEATH(raw[10] = 0, "container-overflow");
EXPECT_DEATH(raw[31] = 0, "container-overflow");
}
TEST(FixedArrayTest, AddressSanitizerAnnotations2) {
absl::FixedArray<char, 17> a(12);
char* raw = a.data();
raw[0] = 0;
raw[11] = 0;
EXPECT_DEATH(raw[-7] = 0, "container-overflow");
EXPECT_DEATH(raw[-1] = 0, "container-overflow");
EXPECT_DEATH(raw[12] = 0, "container-overflow");
EXPECT_DEATH(raw[17] = 0, "container-overflow");
}
TEST(FixedArrayTest, AddressSanitizerAnnotations3) {
absl::FixedArray<uint64_t, 20> a(20);
uint64_t* raw = a.data();
raw[0] = 0;
raw[19] = 0;
EXPECT_DEATH(raw[-1] = 0, "container-overflow");
EXPECT_DEATH(raw[20] = 0, "container-overflow");
}
TEST(FixedArrayTest, AddressSanitizerAnnotations4) {
absl::FixedArray<ThreeInts> a(10);
ThreeInts* raw = a.data();
raw[0] = ThreeInts();
raw[9] = ThreeInts();
// Note: raw[-1] is pointing to 12 bytes before the container range. However,
// there is only a 8-byte red zone before the container range, so we only
// access the last 4 bytes of the struct to make sure it stays within the red
// zone.
EXPECT_DEATH(raw[-1].z_ = 0, "container-overflow");
EXPECT_DEATH(raw[10] = ThreeInts(), "container-overflow");
// The actual size of storage is kDefaultBytes=256, 21*12 = 252,
// so reading raw[21] should still trigger the correct warning.
EXPECT_DEATH(raw[21] = ThreeInts(), "container-overflow");
}
#endif // ADDRESS_SANITIZER
TEST(FixedArrayTest, AbslHashValueWorks) {
using V = absl::FixedArray<int>;
std::vector<V> cases;
// Generate a variety of vectors some of these are small enough for the inline
// space but are stored out of line.
for (int i = 0; i < 10; ++i) {
V v(i);
for (int j = 0; j < i; ++j) {
v[j] = j;
}
cases.push_back(v);
}
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(cases));
}
} // namespace