tvl-depot/absl/container/internal/raw_hash_set_test.cc
Abseil Team 7c7754fb3e Export of internal Abseil changes.
--
89b5e681db1d4f0b039daebb86c49bda77c8931b by Tom Manshreck <shreck@google.com>:

Add clarification that absl::Hash does not produce stable values across instances.

PiperOrigin-RevId: 238316564

--
56dec1d1e37fb2a02aa10d7c81bcd78f8486c093 by Eric Fiselier <ericwf@google.com>:

Add SFINAE to absl::optional::optional(in_place_t, Args...)

This constructor previously didn't have SFINAE because the SFINAE
acted badly when Clang was trying to figure out what special
members to declare. Specifically, while considering copy
constructors it would attempt to call `optional(in_place_t) [ with Args = <>
]`, which evaluated `is_constructible<T>`, which shouldn't have been
evaluated.

This patch avoids the eager SFINAE bug by deducing the in_place_t tag
and short-circuting the SFINAE if the argument passed is not exactly
in_place_t.

I fixed the same bug in libc++ in the same way.

PiperOrigin-RevId: 238290810

--
ffe6d087df495f7f990c89b0a4e1f1664c2c4f9d by Jon Cohen <cohenjon@google.com>:

Remove absl_internal_blah names form CMake.  We are always creating the alias target now, since use of these targets still requires including a header with internal in the name. This simplifies target naming a bit, especially for installation where we have to generate non-prefixed target names to export in the absl:: namespace.

PiperOrigin-RevId: 238280135

--
9d8ae92ff8727fa49391f7f5386810ff81e80aa7 by Derek Mauro <dmauro@google.com>:

Use ABSL_TEST_COPTS for spinlock_benchmark_common and mutex_benchmark_common.
Despite being cc_library, these are really tests and the warning for the
used-but-marked-unused iterator in Google Benchmark needs to be supressed.

PiperOrigin-RevId: 238225200

--
fcde1a79420ce15c8925944c45b69f9fd5226f12 by Matt Armstrong <marmstrong@google.com>:

Qualify calls to certain functions from the cmath library.

PiperOrigin-RevId: 238163972

--
4b931e5ef4ba76961b0e2a9edab1e586ba12dfd4 by Tom Manshreck <shreck@google.com>:

Add clarification that absl::Hash does not produce stable values across instances.

PiperOrigin-RevId: 238125817

--
8963ea8c65cac1e396a72fe77d6eb6a7313d76db by Derek Mauro <dmauro@google.com>:

Fix -Wc++14-binary-literal warning.

PiperOrigin-RevId: 238069157
GitOrigin-RevId: 89b5e681db1d4f0b039daebb86c49bda77c8931b
Change-Id: Ib06f1ee8efcddb7e2f332bc5bf1c1325458e1073
2019-03-14 11:32:24 -04:00

1879 lines
56 KiB
C++

// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/container/internal/raw_hash_set.h"
#include <cmath>
#include <cstdint>
#include <deque>
#include <functional>
#include <memory>
#include <numeric>
#include <random>
#include <string>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/attributes.h"
#include "absl/base/internal/cycleclock.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/container/internal/container_memory.h"
#include "absl/container/internal/hash_function_defaults.h"
#include "absl/container/internal/hash_policy_testing.h"
#include "absl/container/internal/hashtable_debug.h"
#include "absl/strings/string_view.h"
namespace absl {
namespace container_internal {
struct RawHashSetTestOnlyAccess {
template <typename C>
static auto GetSlots(const C& c) -> decltype(c.slots_) {
return c.slots_;
}
};
namespace {
using ::testing::DoubleNear;
using ::testing::ElementsAre;
using ::testing::Ge;
using ::testing::Lt;
using ::testing::Optional;
using ::testing::Pair;
using ::testing::UnorderedElementsAre;
TEST(Util, NormalizeCapacity) {
EXPECT_EQ(1, NormalizeCapacity(0));
EXPECT_EQ(1, NormalizeCapacity(1));
EXPECT_EQ(3, NormalizeCapacity(2));
EXPECT_EQ(3, NormalizeCapacity(3));
EXPECT_EQ(7, NormalizeCapacity(4));
EXPECT_EQ(7, NormalizeCapacity(7));
EXPECT_EQ(15, NormalizeCapacity(8));
EXPECT_EQ(15, NormalizeCapacity(15));
EXPECT_EQ(15 * 2 + 1, NormalizeCapacity(15 + 1));
EXPECT_EQ(15 * 2 + 1, NormalizeCapacity(15 + 2));
}
TEST(Util, GrowthAndCapacity) {
// Verify that GrowthToCapacity gives the minimum capacity that has enough
// growth.
for (size_t growth = 0; growth < 10000; ++growth) {
SCOPED_TRACE(growth);
size_t capacity = NormalizeCapacity(GrowthToLowerboundCapacity(growth));
// The capacity is large enough for `growth`
EXPECT_THAT(CapacityToGrowth(capacity), Ge(growth));
if (growth != 0 && capacity > 1) {
// There is no smaller capacity that works.
EXPECT_THAT(CapacityToGrowth(capacity / 2), Lt(growth));
}
}
for (size_t capacity = Group::kWidth - 1; capacity < 10000;
capacity = 2 * capacity + 1) {
SCOPED_TRACE(capacity);
size_t growth = CapacityToGrowth(capacity);
EXPECT_THAT(growth, Lt(capacity));
EXPECT_LE(GrowthToLowerboundCapacity(growth), capacity);
EXPECT_EQ(NormalizeCapacity(GrowthToLowerboundCapacity(growth)), capacity);
}
}
TEST(Util, probe_seq) {
probe_seq<16> seq(0, 127);
auto gen = [&]() {
size_t res = seq.offset();
seq.next();
return res;
};
std::vector<size_t> offsets(8);
std::generate_n(offsets.begin(), 8, gen);
EXPECT_THAT(offsets, ElementsAre(0, 16, 48, 96, 32, 112, 80, 64));
seq = probe_seq<16>(128, 127);
std::generate_n(offsets.begin(), 8, gen);
EXPECT_THAT(offsets, ElementsAre(0, 16, 48, 96, 32, 112, 80, 64));
}
TEST(BitMask, Smoke) {
EXPECT_FALSE((BitMask<uint8_t, 8>(0)));
EXPECT_TRUE((BitMask<uint8_t, 8>(5)));
EXPECT_THAT((BitMask<uint8_t, 8>(0)), ElementsAre());
EXPECT_THAT((BitMask<uint8_t, 8>(0x1)), ElementsAre(0));
EXPECT_THAT((BitMask<uint8_t, 8>(0x2)), ElementsAre(1));
EXPECT_THAT((BitMask<uint8_t, 8>(0x3)), ElementsAre(0, 1));
EXPECT_THAT((BitMask<uint8_t, 8>(0x4)), ElementsAre(2));
EXPECT_THAT((BitMask<uint8_t, 8>(0x5)), ElementsAre(0, 2));
EXPECT_THAT((BitMask<uint8_t, 8>(0x55)), ElementsAre(0, 2, 4, 6));
EXPECT_THAT((BitMask<uint8_t, 8>(0xAA)), ElementsAre(1, 3, 5, 7));
}
TEST(BitMask, WithShift) {
// See the non-SSE version of Group for details on what this math is for.
uint64_t ctrl = 0x1716151413121110;
uint64_t hash = 0x12;
constexpr uint64_t msbs = 0x8080808080808080ULL;
constexpr uint64_t lsbs = 0x0101010101010101ULL;
auto x = ctrl ^ (lsbs * hash);
uint64_t mask = (x - lsbs) & ~x & msbs;
EXPECT_EQ(0x0000000080800000, mask);
BitMask<uint64_t, 8, 3> b(mask);
EXPECT_EQ(*b, 2);
}
TEST(BitMask, LeadingTrailing) {
EXPECT_EQ((BitMask<uint32_t, 16>(0x00001a40).LeadingZeros()), 3);
EXPECT_EQ((BitMask<uint32_t, 16>(0x00001a40).TrailingZeros()), 6);
EXPECT_EQ((BitMask<uint32_t, 16>(0x00000001).LeadingZeros()), 15);
EXPECT_EQ((BitMask<uint32_t, 16>(0x00000001).TrailingZeros()), 0);
EXPECT_EQ((BitMask<uint32_t, 16>(0x00008000).LeadingZeros()), 0);
EXPECT_EQ((BitMask<uint32_t, 16>(0x00008000).TrailingZeros()), 15);
EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x0000008080808000).LeadingZeros()), 3);
EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x0000008080808000).TrailingZeros()), 1);
EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x0000000000000080).LeadingZeros()), 7);
EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x0000000000000080).TrailingZeros()), 0);
EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x8000000000000000).LeadingZeros()), 0);
EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x8000000000000000).TrailingZeros()), 7);
}
TEST(Group, EmptyGroup) {
for (h2_t h = 0; h != 128; ++h) EXPECT_FALSE(Group{EmptyGroup()}.Match(h));
}
TEST(Group, Match) {
if (Group::kWidth == 16) {
ctrl_t group[] = {kEmpty, 1, kDeleted, 3, kEmpty, 5, kSentinel, 7,
7, 5, 3, 1, 1, 1, 1, 1};
EXPECT_THAT(Group{group}.Match(0), ElementsAre());
EXPECT_THAT(Group{group}.Match(1), ElementsAre(1, 11, 12, 13, 14, 15));
EXPECT_THAT(Group{group}.Match(3), ElementsAre(3, 10));
EXPECT_THAT(Group{group}.Match(5), ElementsAre(5, 9));
EXPECT_THAT(Group{group}.Match(7), ElementsAre(7, 8));
} else if (Group::kWidth == 8) {
ctrl_t group[] = {kEmpty, 1, 2, kDeleted, 2, 1, kSentinel, 1};
EXPECT_THAT(Group{group}.Match(0), ElementsAre());
EXPECT_THAT(Group{group}.Match(1), ElementsAre(1, 5, 7));
EXPECT_THAT(Group{group}.Match(2), ElementsAre(2, 4));
} else {
FAIL() << "No test coverage for Group::kWidth==" << Group::kWidth;
}
}
TEST(Group, MatchEmpty) {
if (Group::kWidth == 16) {
ctrl_t group[] = {kEmpty, 1, kDeleted, 3, kEmpty, 5, kSentinel, 7,
7, 5, 3, 1, 1, 1, 1, 1};
EXPECT_THAT(Group{group}.MatchEmpty(), ElementsAre(0, 4));
} else if (Group::kWidth == 8) {
ctrl_t group[] = {kEmpty, 1, 2, kDeleted, 2, 1, kSentinel, 1};
EXPECT_THAT(Group{group}.MatchEmpty(), ElementsAre(0));
} else {
FAIL() << "No test coverage for Group::kWidth==" << Group::kWidth;
}
}
TEST(Group, MatchEmptyOrDeleted) {
if (Group::kWidth == 16) {
ctrl_t group[] = {kEmpty, 1, kDeleted, 3, kEmpty, 5, kSentinel, 7,
7, 5, 3, 1, 1, 1, 1, 1};
EXPECT_THAT(Group{group}.MatchEmptyOrDeleted(), ElementsAre(0, 2, 4));
} else if (Group::kWidth == 8) {
ctrl_t group[] = {kEmpty, 1, 2, kDeleted, 2, 1, kSentinel, 1};
EXPECT_THAT(Group{group}.MatchEmptyOrDeleted(), ElementsAre(0, 3));
} else {
FAIL() << "No test coverage for Group::kWidth==" << Group::kWidth;
}
}
TEST(Batch, DropDeletes) {
constexpr size_t kCapacity = 63;
constexpr size_t kGroupWidth = container_internal::Group::kWidth;
std::vector<ctrl_t> ctrl(kCapacity + 1 + kGroupWidth);
ctrl[kCapacity] = kSentinel;
std::vector<ctrl_t> pattern = {kEmpty, 2, kDeleted, 2, kEmpty, 1, kDeleted};
for (size_t i = 0; i != kCapacity; ++i) {
ctrl[i] = pattern[i % pattern.size()];
if (i < kGroupWidth - 1)
ctrl[i + kCapacity + 1] = pattern[i % pattern.size()];
}
ConvertDeletedToEmptyAndFullToDeleted(ctrl.data(), kCapacity);
ASSERT_EQ(ctrl[kCapacity], kSentinel);
for (size_t i = 0; i < kCapacity + 1 + kGroupWidth; ++i) {
ctrl_t expected = pattern[i % (kCapacity + 1) % pattern.size()];
if (i == kCapacity) expected = kSentinel;
if (expected == kDeleted) expected = kEmpty;
if (IsFull(expected)) expected = kDeleted;
EXPECT_EQ(ctrl[i], expected)
<< i << " " << int{pattern[i % pattern.size()]};
}
}
TEST(Group, CountLeadingEmptyOrDeleted) {
const std::vector<ctrl_t> empty_examples = {kEmpty, kDeleted};
const std::vector<ctrl_t> full_examples = {0, 1, 2, 3, 5, 9, 127, kSentinel};
for (ctrl_t empty : empty_examples) {
std::vector<ctrl_t> e(Group::kWidth, empty);
EXPECT_EQ(Group::kWidth, Group{e.data()}.CountLeadingEmptyOrDeleted());
for (ctrl_t full : full_examples) {
for (size_t i = 0; i != Group::kWidth; ++i) {
std::vector<ctrl_t> f(Group::kWidth, empty);
f[i] = full;
EXPECT_EQ(i, Group{f.data()}.CountLeadingEmptyOrDeleted());
}
std::vector<ctrl_t> f(Group::kWidth, empty);
f[Group::kWidth * 2 / 3] = full;
f[Group::kWidth / 2] = full;
EXPECT_EQ(
Group::kWidth / 2, Group{f.data()}.CountLeadingEmptyOrDeleted());
}
}
}
struct IntPolicy {
using slot_type = int64_t;
using key_type = int64_t;
using init_type = int64_t;
static void construct(void*, int64_t* slot, int64_t v) { *slot = v; }
static void destroy(void*, int64_t*) {}
static void transfer(void*, int64_t* new_slot, int64_t* old_slot) {
*new_slot = *old_slot;
}
static int64_t& element(slot_type* slot) { return *slot; }
template <class F>
static auto apply(F&& f, int64_t x) -> decltype(std::forward<F>(f)(x, x)) {
return std::forward<F>(f)(x, x);
}
};
class StringPolicy {
template <class F, class K, class V,
class = typename std::enable_if<
std::is_convertible<const K&, absl::string_view>::value>::type>
decltype(std::declval<F>()(
std::declval<const absl::string_view&>(), std::piecewise_construct,
std::declval<std::tuple<K>>(),
std::declval<V>())) static apply_impl(F&& f,
std::pair<std::tuple<K>, V> p) {
const absl::string_view& key = std::get<0>(p.first);
return std::forward<F>(f)(key, std::piecewise_construct, std::move(p.first),
std::move(p.second));
}
public:
struct slot_type {
struct ctor {};
template <class... Ts>
slot_type(ctor, Ts&&... ts) : pair(std::forward<Ts>(ts)...) {}
std::pair<std::string, std::string> pair;
};
using key_type = std::string;
using init_type = std::pair<std::string, std::string>;
template <class allocator_type, class... Args>
static void construct(allocator_type* alloc, slot_type* slot, Args... args) {
std::allocator_traits<allocator_type>::construct(
*alloc, slot, typename slot_type::ctor(), std::forward<Args>(args)...);
}
template <class allocator_type>
static void destroy(allocator_type* alloc, slot_type* slot) {
std::allocator_traits<allocator_type>::destroy(*alloc, slot);
}
template <class allocator_type>
static void transfer(allocator_type* alloc, slot_type* new_slot,
slot_type* old_slot) {
construct(alloc, new_slot, std::move(old_slot->pair));
destroy(alloc, old_slot);
}
static std::pair<std::string, std::string>& element(slot_type* slot) {
return slot->pair;
}
template <class F, class... Args>
static auto apply(F&& f, Args&&... args)
-> decltype(apply_impl(std::forward<F>(f),
PairArgs(std::forward<Args>(args)...))) {
return apply_impl(std::forward<F>(f),
PairArgs(std::forward<Args>(args)...));
}
};
struct StringHash : absl::Hash<absl::string_view> {
using is_transparent = void;
};
struct StringEq : std::equal_to<absl::string_view> {
using is_transparent = void;
};
struct StringTable
: raw_hash_set<StringPolicy, StringHash, StringEq, std::allocator<int>> {
using Base = typename StringTable::raw_hash_set;
StringTable() {}
using Base::Base;
};
struct IntTable
: raw_hash_set<IntPolicy, container_internal::hash_default_hash<int64_t>,
std::equal_to<int64_t>, std::allocator<int64_t>> {
using Base = typename IntTable::raw_hash_set;
IntTable() {}
using Base::Base;
};
struct BadFastHash {
template <class T>
size_t operator()(const T&) const {
return 0;
}
};
struct BadTable : raw_hash_set<IntPolicy, BadFastHash, std::equal_to<int>,
std::allocator<int>> {
using Base = typename BadTable::raw_hash_set;
BadTable() {}
using Base::Base;
};
TEST(Table, EmptyFunctorOptimization) {
static_assert(std::is_empty<std::equal_to<absl::string_view>>::value, "");
static_assert(std::is_empty<std::allocator<int>>::value, "");
struct MockTable {
void* ctrl;
void* slots;
size_t size;
size_t capacity;
size_t growth_left;
void* infoz;
};
struct StatelessHash {
size_t operator()(absl::string_view) const { return 0; }
};
struct StatefulHash : StatelessHash {
size_t dummy;
};
EXPECT_EQ(
sizeof(MockTable),
sizeof(
raw_hash_set<StringPolicy, StatelessHash,
std::equal_to<absl::string_view>, std::allocator<int>>));
EXPECT_EQ(
sizeof(MockTable) + sizeof(StatefulHash),
sizeof(
raw_hash_set<StringPolicy, StatefulHash,
std::equal_to<absl::string_view>, std::allocator<int>>));
}
TEST(Table, Empty) {
IntTable t;
EXPECT_EQ(0, t.size());
EXPECT_TRUE(t.empty());
}
#ifdef __GNUC__
template <class T>
ABSL_ATTRIBUTE_ALWAYS_INLINE inline void DoNotOptimize(const T& v) {
asm volatile("" : : "r,m"(v) : "memory");
}
#endif
TEST(Table, Prefetch) {
IntTable t;
t.emplace(1);
// Works for both present and absent keys.
t.prefetch(1);
t.prefetch(2);
// Do not run in debug mode, when prefetch is not implemented, or when
// sanitizers are enabled.
#if defined(NDEBUG) && defined(__GNUC__) && !defined(ADDRESS_SANITIZER) && \
!defined(MEMORY_SANITIZER) && !defined(THREAD_SANITIZER) && \
!defined(UNDEFINED_BEHAVIOR_SANITIZER)
const auto now = [] { return absl::base_internal::CycleClock::Now(); };
// Make size enough to not fit in L2 cache (16.7 Mb)
static constexpr int size = 1 << 22;
for (int i = 0; i < size; ++i) t.insert(i);
int64_t no_prefetch = 0, prefetch = 0;
for (int iter = 0; iter < 10; ++iter) {
int64_t time = now();
for (int i = 0; i < size; ++i) {
DoNotOptimize(t.find(i));
}
no_prefetch += now() - time;
time = now();
for (int i = 0; i < size; ++i) {
t.prefetch(i + 20);
DoNotOptimize(t.find(i));
}
prefetch += now() - time;
}
// no_prefetch is at least 30% slower.
EXPECT_GE(1.0 * no_prefetch / prefetch, 1.3);
#endif
}
TEST(Table, LookupEmpty) {
IntTable t;
auto it = t.find(0);
EXPECT_TRUE(it == t.end());
}
TEST(Table, Insert1) {
IntTable t;
EXPECT_TRUE(t.find(0) == t.end());
auto res = t.emplace(0);
EXPECT_TRUE(res.second);
EXPECT_THAT(*res.first, 0);
EXPECT_EQ(1, t.size());
EXPECT_THAT(*t.find(0), 0);
}
TEST(Table, Insert2) {
IntTable t;
EXPECT_TRUE(t.find(0) == t.end());
auto res = t.emplace(0);
EXPECT_TRUE(res.second);
EXPECT_THAT(*res.first, 0);
EXPECT_EQ(1, t.size());
EXPECT_TRUE(t.find(1) == t.end());
res = t.emplace(1);
EXPECT_TRUE(res.second);
EXPECT_THAT(*res.first, 1);
EXPECT_EQ(2, t.size());
EXPECT_THAT(*t.find(0), 0);
EXPECT_THAT(*t.find(1), 1);
}
TEST(Table, InsertCollision) {
BadTable t;
EXPECT_TRUE(t.find(1) == t.end());
auto res = t.emplace(1);
EXPECT_TRUE(res.second);
EXPECT_THAT(*res.first, 1);
EXPECT_EQ(1, t.size());
EXPECT_TRUE(t.find(2) == t.end());
res = t.emplace(2);
EXPECT_THAT(*res.first, 2);
EXPECT_TRUE(res.second);
EXPECT_EQ(2, t.size());
EXPECT_THAT(*t.find(1), 1);
EXPECT_THAT(*t.find(2), 2);
}
// Test that we do not add existent element in case we need to search through
// many groups with deleted elements
TEST(Table, InsertCollisionAndFindAfterDelete) {
BadTable t; // all elements go to the same group.
// Have at least 2 groups with Group::kWidth collisions
// plus some extra collisions in the last group.
constexpr size_t kNumInserts = Group::kWidth * 2 + 5;
for (size_t i = 0; i < kNumInserts; ++i) {
auto res = t.emplace(i);
EXPECT_TRUE(res.second);
EXPECT_THAT(*res.first, i);
EXPECT_EQ(i + 1, t.size());
}
// Remove elements one by one and check
// that we still can find all other elements.
for (size_t i = 0; i < kNumInserts; ++i) {
EXPECT_EQ(1, t.erase(i)) << i;
for (size_t j = i + 1; j < kNumInserts; ++j) {
EXPECT_THAT(*t.find(j), j);
auto res = t.emplace(j);
EXPECT_FALSE(res.second) << i << " " << j;
EXPECT_THAT(*res.first, j);
EXPECT_EQ(kNumInserts - i - 1, t.size());
}
}
EXPECT_TRUE(t.empty());
}
TEST(Table, LazyEmplace) {
StringTable t;
bool called = false;
auto it = t.lazy_emplace("abc", [&](const StringTable::constructor& f) {
called = true;
f("abc", "ABC");
});
EXPECT_TRUE(called);
EXPECT_THAT(*it, Pair("abc", "ABC"));
called = false;
it = t.lazy_emplace("abc", [&](const StringTable::constructor& f) {
called = true;
f("abc", "DEF");
});
EXPECT_FALSE(called);
EXPECT_THAT(*it, Pair("abc", "ABC"));
}
TEST(Table, ContainsEmpty) {
IntTable t;
EXPECT_FALSE(t.contains(0));
}
TEST(Table, Contains1) {
IntTable t;
EXPECT_TRUE(t.insert(0).second);
EXPECT_TRUE(t.contains(0));
EXPECT_FALSE(t.contains(1));
EXPECT_EQ(1, t.erase(0));
EXPECT_FALSE(t.contains(0));
}
TEST(Table, Contains2) {
IntTable t;
EXPECT_TRUE(t.insert(0).second);
EXPECT_TRUE(t.contains(0));
EXPECT_FALSE(t.contains(1));
t.clear();
EXPECT_FALSE(t.contains(0));
}
int decompose_constructed;
struct DecomposeType {
DecomposeType(int i) : i(i) { // NOLINT
++decompose_constructed;
}
explicit DecomposeType(const char* d) : DecomposeType(*d) {}
int i;
};
struct DecomposeHash {
using is_transparent = void;
size_t operator()(DecomposeType a) const { return a.i; }
size_t operator()(int a) const { return a; }
size_t operator()(const char* a) const { return *a; }
};
struct DecomposeEq {
using is_transparent = void;
bool operator()(DecomposeType a, DecomposeType b) const { return a.i == b.i; }
bool operator()(DecomposeType a, int b) const { return a.i == b; }
bool operator()(DecomposeType a, const char* b) const { return a.i == *b; }
};
struct DecomposePolicy {
using slot_type = DecomposeType;
using key_type = DecomposeType;
using init_type = DecomposeType;
template <typename T>
static void construct(void*, DecomposeType* slot, T&& v) {
*slot = DecomposeType(std::forward<T>(v));
}
static void destroy(void*, DecomposeType*) {}
static DecomposeType& element(slot_type* slot) { return *slot; }
template <class F, class T>
static auto apply(F&& f, const T& x) -> decltype(std::forward<F>(f)(x, x)) {
return std::forward<F>(f)(x, x);
}
};
template <typename Hash, typename Eq>
void TestDecompose(bool construct_three) {
DecomposeType elem{0};
const int one = 1;
const char* three_p = "3";
const auto& three = three_p;
raw_hash_set<DecomposePolicy, Hash, Eq, std::allocator<int>> set1;
decompose_constructed = 0;
int expected_constructed = 0;
EXPECT_EQ(expected_constructed, decompose_constructed);
set1.insert(elem);
EXPECT_EQ(expected_constructed, decompose_constructed);
set1.insert(1);
EXPECT_EQ(++expected_constructed, decompose_constructed);
set1.emplace("3");
EXPECT_EQ(++expected_constructed, decompose_constructed);
EXPECT_EQ(expected_constructed, decompose_constructed);
{ // insert(T&&)
set1.insert(1);
EXPECT_EQ(expected_constructed, decompose_constructed);
}
{ // insert(const T&)
set1.insert(one);
EXPECT_EQ(expected_constructed, decompose_constructed);
}
{ // insert(hint, T&&)
set1.insert(set1.begin(), 1);
EXPECT_EQ(expected_constructed, decompose_constructed);
}
{ // insert(hint, const T&)
set1.insert(set1.begin(), one);
EXPECT_EQ(expected_constructed, decompose_constructed);
}
{ // emplace(...)
set1.emplace(1);
EXPECT_EQ(expected_constructed, decompose_constructed);
set1.emplace("3");
expected_constructed += construct_three;
EXPECT_EQ(expected_constructed, decompose_constructed);
set1.emplace(one);
EXPECT_EQ(expected_constructed, decompose_constructed);
set1.emplace(three);
expected_constructed += construct_three;
EXPECT_EQ(expected_constructed, decompose_constructed);
}
{ // emplace_hint(...)
set1.emplace_hint(set1.begin(), 1);
EXPECT_EQ(expected_constructed, decompose_constructed);
set1.emplace_hint(set1.begin(), "3");
expected_constructed += construct_three;
EXPECT_EQ(expected_constructed, decompose_constructed);
set1.emplace_hint(set1.begin(), one);
EXPECT_EQ(expected_constructed, decompose_constructed);
set1.emplace_hint(set1.begin(), three);
expected_constructed += construct_three;
EXPECT_EQ(expected_constructed, decompose_constructed);
}
}
TEST(Table, Decompose) {
TestDecompose<DecomposeHash, DecomposeEq>(false);
struct TransparentHashIntOverload {
size_t operator()(DecomposeType a) const { return a.i; }
size_t operator()(int a) const { return a; }
};
struct TransparentEqIntOverload {
bool operator()(DecomposeType a, DecomposeType b) const {
return a.i == b.i;
}
bool operator()(DecomposeType a, int b) const { return a.i == b; }
};
TestDecompose<TransparentHashIntOverload, DecomposeEq>(true);
TestDecompose<TransparentHashIntOverload, TransparentEqIntOverload>(true);
TestDecompose<DecomposeHash, TransparentEqIntOverload>(true);
}
// Returns the largest m such that a table with m elements has the same number
// of buckets as a table with n elements.
size_t MaxDensitySize(size_t n) {
IntTable t;
t.reserve(n);
for (size_t i = 0; i != n; ++i) t.emplace(i);
const size_t c = t.bucket_count();
while (c == t.bucket_count()) t.emplace(n++);
return t.size() - 1;
}
struct Modulo1000Hash {
size_t operator()(int x) const { return x % 1000; }
};
struct Modulo1000HashTable
: public raw_hash_set<IntPolicy, Modulo1000Hash, std::equal_to<int>,
std::allocator<int>> {};
// Test that rehash with no resize happen in case of many deleted slots.
TEST(Table, RehashWithNoResize) {
Modulo1000HashTable t;
// Adding the same length (and the same hash) strings
// to have at least kMinFullGroups groups
// with Group::kWidth collisions. Then fill up to MaxDensitySize;
const size_t kMinFullGroups = 7;
std::vector<int> keys;
for (size_t i = 0; i < MaxDensitySize(Group::kWidth * kMinFullGroups); ++i) {
int k = i * 1000;
t.emplace(k);
keys.push_back(k);
}
const size_t capacity = t.capacity();
// Remove elements from all groups except the first and the last one.
// All elements removed from full groups will be marked as kDeleted.
const size_t erase_begin = Group::kWidth / 2;
const size_t erase_end = (t.size() / Group::kWidth - 1) * Group::kWidth;
for (size_t i = erase_begin; i < erase_end; ++i) {
EXPECT_EQ(1, t.erase(keys[i])) << i;
}
keys.erase(keys.begin() + erase_begin, keys.begin() + erase_end);
auto last_key = keys.back();
size_t last_key_num_probes = GetHashtableDebugNumProbes(t, last_key);
// Make sure that we have to make a lot of probes for last key.
ASSERT_GT(last_key_num_probes, kMinFullGroups);
int x = 1;
// Insert and erase one element, before inplace rehash happen.
while (last_key_num_probes == GetHashtableDebugNumProbes(t, last_key)) {
t.emplace(x);
ASSERT_EQ(capacity, t.capacity());
// All elements should be there.
ASSERT_TRUE(t.find(x) != t.end()) << x;
for (const auto& k : keys) {
ASSERT_TRUE(t.find(k) != t.end()) << k;
}
t.erase(x);
++x;
}
}
TEST(Table, InsertEraseStressTest) {
IntTable t;
const size_t kMinElementCount = 250;
std::deque<int> keys;
size_t i = 0;
for (; i < MaxDensitySize(kMinElementCount); ++i) {
t.emplace(i);
keys.push_back(i);
}
const size_t kNumIterations = 1000000;
for (; i < kNumIterations; ++i) {
ASSERT_EQ(1, t.erase(keys.front()));
keys.pop_front();
t.emplace(i);
keys.push_back(i);
}
}
TEST(Table, InsertOverloads) {
StringTable t;
// These should all trigger the insert(init_type) overload.
t.insert({{}, {}});
t.insert({"ABC", {}});
t.insert({"DEF", "!!!"});
EXPECT_THAT(t, UnorderedElementsAre(Pair("", ""), Pair("ABC", ""),
Pair("DEF", "!!!")));
}
TEST(Table, LargeTable) {
IntTable t;
for (int64_t i = 0; i != 100000; ++i) t.emplace(i << 40);
for (int64_t i = 0; i != 100000; ++i) ASSERT_EQ(i << 40, *t.find(i << 40));
}
// Timeout if copy is quadratic as it was in Rust.
TEST(Table, EnsureNonQuadraticAsInRust) {
static const size_t kLargeSize = 1 << 15;
IntTable t;
for (size_t i = 0; i != kLargeSize; ++i) {
t.insert(i);
}
// If this is quadratic, the test will timeout.
IntTable t2;
for (const auto& entry : t) t2.insert(entry);
}
TEST(Table, ClearBug) {
IntTable t;
constexpr size_t capacity = container_internal::Group::kWidth - 1;
constexpr size_t max_size = capacity / 2 + 1;
for (size_t i = 0; i < max_size; ++i) {
t.insert(i);
}
ASSERT_EQ(capacity, t.capacity());
intptr_t original = reinterpret_cast<intptr_t>(&*t.find(2));
t.clear();
ASSERT_EQ(capacity, t.capacity());
for (size_t i = 0; i < max_size; ++i) {
t.insert(i);
}
ASSERT_EQ(capacity, t.capacity());
intptr_t second = reinterpret_cast<intptr_t>(&*t.find(2));
// We are checking that original and second are close enough to each other
// that they are probably still in the same group. This is not strictly
// guaranteed.
EXPECT_LT(std::abs(original - second),
capacity * sizeof(IntTable::value_type));
}
TEST(Table, Erase) {
IntTable t;
EXPECT_TRUE(t.find(0) == t.end());
auto res = t.emplace(0);
EXPECT_TRUE(res.second);
EXPECT_EQ(1, t.size());
t.erase(res.first);
EXPECT_EQ(0, t.size());
EXPECT_TRUE(t.find(0) == t.end());
}
// Collect N bad keys by following algorithm:
// 1. Create an empty table and reserve it to 2 * N.
// 2. Insert N random elements.
// 3. Take first Group::kWidth - 1 to bad_keys array.
// 4. Clear the table without resize.
// 5. Go to point 2 while N keys not collected
std::vector<int64_t> CollectBadMergeKeys(size_t N) {
static constexpr int kGroupSize = Group::kWidth - 1;
auto topk_range = [](size_t b, size_t e, IntTable* t) -> std::vector<int64_t> {
for (size_t i = b; i != e; ++i) {
t->emplace(i);
}
std::vector<int64_t> res;
res.reserve(kGroupSize);
auto it = t->begin();
for (size_t i = b; i != e && i != b + kGroupSize; ++i, ++it) {
res.push_back(*it);
}
return res;
};
std::vector<int64_t> bad_keys;
bad_keys.reserve(N);
IntTable t;
t.reserve(N * 2);
for (size_t b = 0; bad_keys.size() < N; b += N) {
auto keys = topk_range(b, b + N, &t);
bad_keys.insert(bad_keys.end(), keys.begin(), keys.end());
t.erase(t.begin(), t.end());
EXPECT_TRUE(t.empty());
}
return bad_keys;
}
struct ProbeStats {
// Number of elements with specific probe length over all tested tables.
std::vector<size_t> all_probes_histogram;
// Ratios total_probe_length/size for every tested table.
std::vector<double> single_table_ratios;
friend ProbeStats operator+(const ProbeStats& a, const ProbeStats& b) {
ProbeStats res = a;
res.all_probes_histogram.resize(std::max(res.all_probes_histogram.size(),
b.all_probes_histogram.size()));
std::transform(b.all_probes_histogram.begin(), b.all_probes_histogram.end(),
res.all_probes_histogram.begin(),
res.all_probes_histogram.begin(), std::plus<size_t>());
res.single_table_ratios.insert(res.single_table_ratios.end(),
b.single_table_ratios.begin(),
b.single_table_ratios.end());
return res;
}
// Average ratio total_probe_length/size over tables.
double AvgRatio() const {
return std::accumulate(single_table_ratios.begin(),
single_table_ratios.end(), 0.0) /
single_table_ratios.size();
}
// Maximum ratio total_probe_length/size over tables.
double MaxRatio() const {
return *std::max_element(single_table_ratios.begin(),
single_table_ratios.end());
}
// Percentile ratio total_probe_length/size over tables.
double PercentileRatio(double Percentile = 0.95) const {
auto r = single_table_ratios;
auto mid = r.begin() + static_cast<size_t>(r.size() * Percentile);
if (mid != r.end()) {
std::nth_element(r.begin(), mid, r.end());
return *mid;
} else {
return MaxRatio();
}
}
// Maximum probe length over all elements and all tables.
size_t MaxProbe() const { return all_probes_histogram.size(); }
// Fraction of elements with specified probe length.
std::vector<double> ProbeNormalizedHistogram() const {
double total_elements = std::accumulate(all_probes_histogram.begin(),
all_probes_histogram.end(), 0ull);
std::vector<double> res;
for (size_t p : all_probes_histogram) {
res.push_back(p / total_elements);
}
return res;
}
size_t PercentileProbe(double Percentile = 0.99) const {
size_t idx = 0;
for (double p : ProbeNormalizedHistogram()) {
if (Percentile > p) {
Percentile -= p;
++idx;
} else {
return idx;
}
}
return idx;
}
friend std::ostream& operator<<(std::ostream& out, const ProbeStats& s) {
out << "{AvgRatio:" << s.AvgRatio() << ", MaxRatio:" << s.MaxRatio()
<< ", PercentileRatio:" << s.PercentileRatio()
<< ", MaxProbe:" << s.MaxProbe() << ", Probes=[";
for (double p : s.ProbeNormalizedHistogram()) {
out << p << ",";
}
out << "]}";
return out;
}
};
struct ExpectedStats {
double avg_ratio;
double max_ratio;
std::vector<std::pair<double, double>> pecentile_ratios;
std::vector<std::pair<double, double>> pecentile_probes;
friend std::ostream& operator<<(std::ostream& out, const ExpectedStats& s) {
out << "{AvgRatio:" << s.avg_ratio << ", MaxRatio:" << s.max_ratio
<< ", PercentileRatios: [";
for (auto el : s.pecentile_ratios) {
out << el.first << ":" << el.second << ", ";
}
out << "], PercentileProbes: [";
for (auto el : s.pecentile_probes) {
out << el.first << ":" << el.second << ", ";
}
out << "]}";
return out;
}
};
void VerifyStats(size_t size, const ExpectedStats& exp,
const ProbeStats& stats) {
EXPECT_LT(stats.AvgRatio(), exp.avg_ratio) << size << " " << stats;
EXPECT_LT(stats.MaxRatio(), exp.max_ratio) << size << " " << stats;
for (auto pr : exp.pecentile_ratios) {
EXPECT_LE(stats.PercentileRatio(pr.first), pr.second)
<< size << " " << pr.first << " " << stats;
}
for (auto pr : exp.pecentile_probes) {
EXPECT_LE(stats.PercentileProbe(pr.first), pr.second)
<< size << " " << pr.first << " " << stats;
}
}
using ProbeStatsPerSize = std::map<size_t, ProbeStats>;
// Collect total ProbeStats on num_iters iterations of the following algorithm:
// 1. Create new table and reserve it to keys.size() * 2
// 2. Insert all keys xored with seed
// 3. Collect ProbeStats from final table.
ProbeStats CollectProbeStatsOnKeysXoredWithSeed(const std::vector<int64_t>& keys,
size_t num_iters) {
const size_t reserve_size = keys.size() * 2;
ProbeStats stats;
int64_t seed = 0x71b1a19b907d6e33;
while (num_iters--) {
seed = static_cast<int64_t>(static_cast<uint64_t>(seed) * 17 + 13);
IntTable t1;
t1.reserve(reserve_size);
for (const auto& key : keys) {
t1.emplace(key ^ seed);
}
auto probe_histogram = GetHashtableDebugNumProbesHistogram(t1);
stats.all_probes_histogram.resize(
std::max(stats.all_probes_histogram.size(), probe_histogram.size()));
std::transform(probe_histogram.begin(), probe_histogram.end(),
stats.all_probes_histogram.begin(),
stats.all_probes_histogram.begin(), std::plus<size_t>());
size_t total_probe_seq_length = 0;
for (size_t i = 0; i < probe_histogram.size(); ++i) {
total_probe_seq_length += i * probe_histogram[i];
}
stats.single_table_ratios.push_back(total_probe_seq_length * 1.0 /
keys.size());
t1.erase(t1.begin(), t1.end());
}
return stats;
}
ExpectedStats XorSeedExpectedStats() {
constexpr bool kRandomizesInserts =
#if NDEBUG
false;
#else // NDEBUG
true;
#endif // NDEBUG
// The effective load factor is larger in non-opt mode because we insert
// elements out of order.
switch (container_internal::Group::kWidth) {
case 8:
if (kRandomizesInserts) {
return {0.05,
1.0,
{{0.95, 0.5}},
{{0.95, 0}, {0.99, 2}, {0.999, 4}, {0.9999, 10}}};
} else {
return {0.05,
2.0,
{{0.95, 0.1}},
{{0.95, 0}, {0.99, 2}, {0.999, 4}, {0.9999, 10}}};
}
case 16:
if (kRandomizesInserts) {
return {0.1,
1.0,
{{0.95, 0.1}},
{{0.95, 0}, {0.99, 1}, {0.999, 8}, {0.9999, 15}}};
} else {
return {0.05,
1.0,
{{0.95, 0.05}},
{{0.95, 0}, {0.99, 1}, {0.999, 4}, {0.9999, 10}}};
}
}
ABSL_RAW_LOG(FATAL, "%s", "Unknown Group width");
return {};
}
TEST(Table, DISABLED_EnsureNonQuadraticTopNXorSeedByProbeSeqLength) {
ProbeStatsPerSize stats;
std::vector<size_t> sizes = {Group::kWidth << 5, Group::kWidth << 10};
for (size_t size : sizes) {
stats[size] =
CollectProbeStatsOnKeysXoredWithSeed(CollectBadMergeKeys(size), 200);
}
auto expected = XorSeedExpectedStats();
for (size_t size : sizes) {
auto& stat = stats[size];
VerifyStats(size, expected, stat);
}
}
// Collect total ProbeStats on num_iters iterations of the following algorithm:
// 1. Create new table
// 2. Select 10% of keys and insert 10 elements key * 17 + j * 13
// 3. Collect ProbeStats from final table
ProbeStats CollectProbeStatsOnLinearlyTransformedKeys(
const std::vector<int64_t>& keys, size_t num_iters) {
ProbeStats stats;
std::random_device rd;
std::mt19937 rng(rd());
auto linear_transform = [](size_t x, size_t y) { return x * 17 + y * 13; };
std::uniform_int_distribution<size_t> dist(0, keys.size()-1);
while (num_iters--) {
IntTable t1;
size_t num_keys = keys.size() / 10;
size_t start = dist(rng);
for (size_t i = 0; i != num_keys; ++i) {
for (size_t j = 0; j != 10; ++j) {
t1.emplace(linear_transform(keys[(i + start) % keys.size()], j));
}
}
auto probe_histogram = GetHashtableDebugNumProbesHistogram(t1);
stats.all_probes_histogram.resize(
std::max(stats.all_probes_histogram.size(), probe_histogram.size()));
std::transform(probe_histogram.begin(), probe_histogram.end(),
stats.all_probes_histogram.begin(),
stats.all_probes_histogram.begin(), std::plus<size_t>());
size_t total_probe_seq_length = 0;
for (size_t i = 0; i < probe_histogram.size(); ++i) {
total_probe_seq_length += i * probe_histogram[i];
}
stats.single_table_ratios.push_back(total_probe_seq_length * 1.0 /
t1.size());
t1.erase(t1.begin(), t1.end());
}
return stats;
}
ExpectedStats LinearTransformExpectedStats() {
constexpr bool kRandomizesInserts =
#if NDEBUG
false;
#else // NDEBUG
true;
#endif // NDEBUG
// The effective load factor is larger in non-opt mode because we insert
// elements out of order.
switch (container_internal::Group::kWidth) {
case 8:
if (kRandomizesInserts) {
return {0.1,
0.5,
{{0.95, 0.3}},
{{0.95, 0}, {0.99, 1}, {0.999, 8}, {0.9999, 15}}};
} else {
return {0.15,
0.5,
{{0.95, 0.3}},
{{0.95, 0}, {0.99, 3}, {0.999, 15}, {0.9999, 25}}};
}
case 16:
if (kRandomizesInserts) {
return {0.1,
0.4,
{{0.95, 0.3}},
{{0.95, 0}, {0.99, 1}, {0.999, 8}, {0.9999, 15}}};
} else {
return {0.05,
0.2,
{{0.95, 0.1}},
{{0.95, 0}, {0.99, 1}, {0.999, 6}, {0.9999, 10}}};
}
}
ABSL_RAW_LOG(FATAL, "%s", "Unknown Group width");
return {};
}
TEST(Table, DISABLED_EnsureNonQuadraticTopNLinearTransformByProbeSeqLength) {
ProbeStatsPerSize stats;
std::vector<size_t> sizes = {Group::kWidth << 5, Group::kWidth << 10};
for (size_t size : sizes) {
stats[size] = CollectProbeStatsOnLinearlyTransformedKeys(
CollectBadMergeKeys(size), 300);
}
auto expected = LinearTransformExpectedStats();
for (size_t size : sizes) {
auto& stat = stats[size];
VerifyStats(size, expected, stat);
}
}
TEST(Table, EraseCollision) {
BadTable t;
// 1 2 3
t.emplace(1);
t.emplace(2);
t.emplace(3);
EXPECT_THAT(*t.find(1), 1);
EXPECT_THAT(*t.find(2), 2);
EXPECT_THAT(*t.find(3), 3);
EXPECT_EQ(3, t.size());
// 1 DELETED 3
t.erase(t.find(2));
EXPECT_THAT(*t.find(1), 1);
EXPECT_TRUE(t.find(2) == t.end());
EXPECT_THAT(*t.find(3), 3);
EXPECT_EQ(2, t.size());
// DELETED DELETED 3
t.erase(t.find(1));
EXPECT_TRUE(t.find(1) == t.end());
EXPECT_TRUE(t.find(2) == t.end());
EXPECT_THAT(*t.find(3), 3);
EXPECT_EQ(1, t.size());
// DELETED DELETED DELETED
t.erase(t.find(3));
EXPECT_TRUE(t.find(1) == t.end());
EXPECT_TRUE(t.find(2) == t.end());
EXPECT_TRUE(t.find(3) == t.end());
EXPECT_EQ(0, t.size());
}
TEST(Table, EraseInsertProbing) {
BadTable t(100);
// 1 2 3 4
t.emplace(1);
t.emplace(2);
t.emplace(3);
t.emplace(4);
// 1 DELETED 3 DELETED
t.erase(t.find(2));
t.erase(t.find(4));
// 1 10 3 11 12
t.emplace(10);
t.emplace(11);
t.emplace(12);
EXPECT_EQ(5, t.size());
EXPECT_THAT(t, UnorderedElementsAre(1, 10, 3, 11, 12));
}
TEST(Table, Clear) {
IntTable t;
EXPECT_TRUE(t.find(0) == t.end());
t.clear();
EXPECT_TRUE(t.find(0) == t.end());
auto res = t.emplace(0);
EXPECT_TRUE(res.second);
EXPECT_EQ(1, t.size());
t.clear();
EXPECT_EQ(0, t.size());
EXPECT_TRUE(t.find(0) == t.end());
}
TEST(Table, Swap) {
IntTable t;
EXPECT_TRUE(t.find(0) == t.end());
auto res = t.emplace(0);
EXPECT_TRUE(res.second);
EXPECT_EQ(1, t.size());
IntTable u;
t.swap(u);
EXPECT_EQ(0, t.size());
EXPECT_EQ(1, u.size());
EXPECT_TRUE(t.find(0) == t.end());
EXPECT_THAT(*u.find(0), 0);
}
TEST(Table, Rehash) {
IntTable t;
EXPECT_TRUE(t.find(0) == t.end());
t.emplace(0);
t.emplace(1);
EXPECT_EQ(2, t.size());
t.rehash(128);
EXPECT_EQ(2, t.size());
EXPECT_THAT(*t.find(0), 0);
EXPECT_THAT(*t.find(1), 1);
}
TEST(Table, RehashDoesNotRehashWhenNotNecessary) {
IntTable t;
t.emplace(0);
t.emplace(1);
auto* p = &*t.find(0);
t.rehash(1);
EXPECT_EQ(p, &*t.find(0));
}
TEST(Table, RehashZeroDoesNotAllocateOnEmptyTable) {
IntTable t;
t.rehash(0);
EXPECT_EQ(0, t.bucket_count());
}
TEST(Table, RehashZeroDeallocatesEmptyTable) {
IntTable t;
t.emplace(0);
t.clear();
EXPECT_NE(0, t.bucket_count());
t.rehash(0);
EXPECT_EQ(0, t.bucket_count());
}
TEST(Table, RehashZeroForcesRehash) {
IntTable t;
t.emplace(0);
t.emplace(1);
auto* p = &*t.find(0);
t.rehash(0);
EXPECT_NE(p, &*t.find(0));
}
TEST(Table, ConstructFromInitList) {
using P = std::pair<std::string, std::string>;
struct Q {
operator P() const { return {}; }
};
StringTable t = {P(), Q(), {}, {{}, {}}};
}
TEST(Table, CopyConstruct) {
IntTable t;
t.max_load_factor(.321f);
t.emplace(0);
EXPECT_EQ(1, t.size());
{
IntTable u(t);
EXPECT_EQ(1, u.size());
EXPECT_EQ(t.max_load_factor(), u.max_load_factor());
EXPECT_THAT(*u.find(0), 0);
}
{
IntTable u{t};
EXPECT_EQ(1, u.size());
EXPECT_EQ(t.max_load_factor(), u.max_load_factor());
EXPECT_THAT(*u.find(0), 0);
}
{
IntTable u = t;
EXPECT_EQ(1, u.size());
EXPECT_EQ(t.max_load_factor(), u.max_load_factor());
EXPECT_THAT(*u.find(0), 0);
}
}
TEST(Table, CopyConstructWithAlloc) {
StringTable t;
t.max_load_factor(.321f);
t.emplace("a", "b");
EXPECT_EQ(1, t.size());
StringTable u(t, Alloc<std::pair<std::string, std::string>>());
EXPECT_EQ(1, u.size());
EXPECT_EQ(t.max_load_factor(), u.max_load_factor());
EXPECT_THAT(*u.find("a"), Pair("a", "b"));
}
struct ExplicitAllocIntTable
: raw_hash_set<IntPolicy, container_internal::hash_default_hash<int64_t>,
std::equal_to<int64_t>, Alloc<int64_t>> {
ExplicitAllocIntTable() {}
};
TEST(Table, AllocWithExplicitCtor) {
ExplicitAllocIntTable t;
EXPECT_EQ(0, t.size());
}
TEST(Table, MoveConstruct) {
{
StringTable t;
t.max_load_factor(.321f);
const float lf = t.max_load_factor();
t.emplace("a", "b");
EXPECT_EQ(1, t.size());
StringTable u(std::move(t));
EXPECT_EQ(1, u.size());
EXPECT_EQ(lf, u.max_load_factor());
EXPECT_THAT(*u.find("a"), Pair("a", "b"));
}
{
StringTable t;
t.max_load_factor(.321f);
const float lf = t.max_load_factor();
t.emplace("a", "b");
EXPECT_EQ(1, t.size());
StringTable u{std::move(t)};
EXPECT_EQ(1, u.size());
EXPECT_EQ(lf, u.max_load_factor());
EXPECT_THAT(*u.find("a"), Pair("a", "b"));
}
{
StringTable t;
t.max_load_factor(.321f);
const float lf = t.max_load_factor();
t.emplace("a", "b");
EXPECT_EQ(1, t.size());
StringTable u = std::move(t);
EXPECT_EQ(1, u.size());
EXPECT_EQ(lf, u.max_load_factor());
EXPECT_THAT(*u.find("a"), Pair("a", "b"));
}
}
TEST(Table, MoveConstructWithAlloc) {
StringTable t;
t.max_load_factor(.321f);
const float lf = t.max_load_factor();
t.emplace("a", "b");
EXPECT_EQ(1, t.size());
StringTable u(std::move(t), Alloc<std::pair<std::string, std::string>>());
EXPECT_EQ(1, u.size());
EXPECT_EQ(lf, u.max_load_factor());
EXPECT_THAT(*u.find("a"), Pair("a", "b"));
}
TEST(Table, CopyAssign) {
StringTable t;
t.max_load_factor(.321f);
t.emplace("a", "b");
EXPECT_EQ(1, t.size());
StringTable u;
u = t;
EXPECT_EQ(1, u.size());
EXPECT_EQ(t.max_load_factor(), u.max_load_factor());
EXPECT_THAT(*u.find("a"), Pair("a", "b"));
}
TEST(Table, CopySelfAssign) {
StringTable t;
t.max_load_factor(.321f);
const float lf = t.max_load_factor();
t.emplace("a", "b");
EXPECT_EQ(1, t.size());
t = *&t;
EXPECT_EQ(1, t.size());
EXPECT_EQ(lf, t.max_load_factor());
EXPECT_THAT(*t.find("a"), Pair("a", "b"));
}
TEST(Table, MoveAssign) {
StringTable t;
t.max_load_factor(.321f);
const float lf = t.max_load_factor();
t.emplace("a", "b");
EXPECT_EQ(1, t.size());
StringTable u;
u = std::move(t);
EXPECT_EQ(1, u.size());
EXPECT_EQ(lf, u.max_load_factor());
EXPECT_THAT(*u.find("a"), Pair("a", "b"));
}
TEST(Table, Equality) {
StringTable t;
std::vector<std::pair<std::string, std::string>> v = {{"a", "b"},
{"aa", "bb"}};
t.insert(std::begin(v), std::end(v));
StringTable u = t;
EXPECT_EQ(u, t);
}
TEST(Table, Equality2) {
StringTable t;
std::vector<std::pair<std::string, std::string>> v1 = {{"a", "b"},
{"aa", "bb"}};
t.insert(std::begin(v1), std::end(v1));
StringTable u;
std::vector<std::pair<std::string, std::string>> v2 = {{"a", "a"},
{"aa", "aa"}};
u.insert(std::begin(v2), std::end(v2));
EXPECT_NE(u, t);
}
TEST(Table, Equality3) {
StringTable t;
std::vector<std::pair<std::string, std::string>> v1 = {{"b", "b"},
{"bb", "bb"}};
t.insert(std::begin(v1), std::end(v1));
StringTable u;
std::vector<std::pair<std::string, std::string>> v2 = {{"a", "a"},
{"aa", "aa"}};
u.insert(std::begin(v2), std::end(v2));
EXPECT_NE(u, t);
}
TEST(Table, NumDeletedRegression) {
IntTable t;
t.emplace(0);
t.erase(t.find(0));
// construct over a deleted slot.
t.emplace(0);
t.clear();
}
TEST(Table, FindFullDeletedRegression) {
IntTable t;
for (int i = 0; i < 1000; ++i) {
t.emplace(i);
t.erase(t.find(i));
}
EXPECT_EQ(0, t.size());
}
TEST(Table, ReplacingDeletedSlotDoesNotRehash) {
size_t n;
{
// Compute n such that n is the maximum number of elements before rehash.
IntTable t;
t.emplace(0);
size_t c = t.bucket_count();
for (n = 1; c == t.bucket_count(); ++n) t.emplace(n);
--n;
}
IntTable t;
t.rehash(n);
const size_t c = t.bucket_count();
for (size_t i = 0; i != n; ++i) t.emplace(i);
EXPECT_EQ(c, t.bucket_count()) << "rehashing threshold = " << n;
t.erase(0);
t.emplace(0);
EXPECT_EQ(c, t.bucket_count()) << "rehashing threshold = " << n;
}
TEST(Table, NoThrowMoveConstruct) {
ASSERT_TRUE(
std::is_nothrow_copy_constructible<absl::Hash<absl::string_view>>::value);
ASSERT_TRUE(std::is_nothrow_copy_constructible<
std::equal_to<absl::string_view>>::value);
ASSERT_TRUE(std::is_nothrow_copy_constructible<std::allocator<int>>::value);
EXPECT_TRUE(std::is_nothrow_move_constructible<StringTable>::value);
}
TEST(Table, NoThrowMoveAssign) {
ASSERT_TRUE(
std::is_nothrow_move_assignable<absl::Hash<absl::string_view>>::value);
ASSERT_TRUE(
std::is_nothrow_move_assignable<std::equal_to<absl::string_view>>::value);
ASSERT_TRUE(std::is_nothrow_move_assignable<std::allocator<int>>::value);
ASSERT_TRUE(
absl::allocator_traits<std::allocator<int>>::is_always_equal::value);
EXPECT_TRUE(std::is_nothrow_move_assignable<StringTable>::value);
}
TEST(Table, NoThrowSwappable) {
ASSERT_TRUE(
container_internal::IsNoThrowSwappable<absl::Hash<absl::string_view>>());
ASSERT_TRUE(container_internal::IsNoThrowSwappable<
std::equal_to<absl::string_view>>());
ASSERT_TRUE(container_internal::IsNoThrowSwappable<std::allocator<int>>());
EXPECT_TRUE(container_internal::IsNoThrowSwappable<StringTable>());
}
TEST(Table, HeterogeneousLookup) {
struct Hash {
size_t operator()(int64_t i) const { return i; }
size_t operator()(double i) const {
ADD_FAILURE();
return i;
}
};
struct Eq {
bool operator()(int64_t a, int64_t b) const { return a == b; }
bool operator()(double a, int64_t b) const {
ADD_FAILURE();
return a == b;
}
bool operator()(int64_t a, double b) const {
ADD_FAILURE();
return a == b;
}
bool operator()(double a, double b) const {
ADD_FAILURE();
return a == b;
}
};
struct THash {
using is_transparent = void;
size_t operator()(int64_t i) const { return i; }
size_t operator()(double i) const { return i; }
};
struct TEq {
using is_transparent = void;
bool operator()(int64_t a, int64_t b) const { return a == b; }
bool operator()(double a, int64_t b) const { return a == b; }
bool operator()(int64_t a, double b) const { return a == b; }
bool operator()(double a, double b) const { return a == b; }
};
raw_hash_set<IntPolicy, Hash, Eq, Alloc<int64_t>> s{0, 1, 2};
// It will convert to int64_t before the query.
EXPECT_EQ(1, *s.find(double{1.1}));
raw_hash_set<IntPolicy, THash, TEq, Alloc<int64_t>> ts{0, 1, 2};
// It will try to use the double, and fail to find the object.
EXPECT_TRUE(ts.find(1.1) == ts.end());
}
template <class Table>
using CallFind = decltype(std::declval<Table&>().find(17));
template <class Table>
using CallErase = decltype(std::declval<Table&>().erase(17));
template <class Table>
using CallExtract = decltype(std::declval<Table&>().extract(17));
template <class Table>
using CallPrefetch = decltype(std::declval<Table&>().prefetch(17));
template <class Table>
using CallCount = decltype(std::declval<Table&>().count(17));
template <template <typename> class C, class Table, class = void>
struct VerifyResultOf : std::false_type {};
template <template <typename> class C, class Table>
struct VerifyResultOf<C, Table, absl::void_t<C<Table>>> : std::true_type {};
TEST(Table, HeterogeneousLookupOverloads) {
using NonTransparentTable =
raw_hash_set<StringPolicy, absl::Hash<absl::string_view>,
std::equal_to<absl::string_view>, std::allocator<int>>;
EXPECT_FALSE((VerifyResultOf<CallFind, NonTransparentTable>()));
EXPECT_FALSE((VerifyResultOf<CallErase, NonTransparentTable>()));
EXPECT_FALSE((VerifyResultOf<CallExtract, NonTransparentTable>()));
EXPECT_FALSE((VerifyResultOf<CallPrefetch, NonTransparentTable>()));
EXPECT_FALSE((VerifyResultOf<CallCount, NonTransparentTable>()));
using TransparentTable = raw_hash_set<
StringPolicy,
absl::container_internal::hash_default_hash<absl::string_view>,
absl::container_internal::hash_default_eq<absl::string_view>,
std::allocator<int>>;
EXPECT_TRUE((VerifyResultOf<CallFind, TransparentTable>()));
EXPECT_TRUE((VerifyResultOf<CallErase, TransparentTable>()));
EXPECT_TRUE((VerifyResultOf<CallExtract, TransparentTable>()));
EXPECT_TRUE((VerifyResultOf<CallPrefetch, TransparentTable>()));
EXPECT_TRUE((VerifyResultOf<CallCount, TransparentTable>()));
}
// TODO(alkis): Expand iterator tests.
TEST(Iterator, IsDefaultConstructible) {
StringTable::iterator i;
EXPECT_TRUE(i == StringTable::iterator());
}
TEST(ConstIterator, IsDefaultConstructible) {
StringTable::const_iterator i;
EXPECT_TRUE(i == StringTable::const_iterator());
}
TEST(Iterator, ConvertsToConstIterator) {
StringTable::iterator i;
EXPECT_TRUE(i == StringTable::const_iterator());
}
TEST(Iterator, Iterates) {
IntTable t;
for (size_t i = 3; i != 6; ++i) EXPECT_TRUE(t.emplace(i).second);
EXPECT_THAT(t, UnorderedElementsAre(3, 4, 5));
}
TEST(Table, Merge) {
StringTable t1, t2;
t1.emplace("0", "-0");
t1.emplace("1", "-1");
t2.emplace("0", "~0");
t2.emplace("2", "~2");
EXPECT_THAT(t1, UnorderedElementsAre(Pair("0", "-0"), Pair("1", "-1")));
EXPECT_THAT(t2, UnorderedElementsAre(Pair("0", "~0"), Pair("2", "~2")));
t1.merge(t2);
EXPECT_THAT(t1, UnorderedElementsAre(Pair("0", "-0"), Pair("1", "-1"),
Pair("2", "~2")));
EXPECT_THAT(t2, UnorderedElementsAre(Pair("0", "~0")));
}
TEST(Nodes, EmptyNodeType) {
using node_type = StringTable::node_type;
node_type n;
EXPECT_FALSE(n);
EXPECT_TRUE(n.empty());
EXPECT_TRUE((std::is_same<node_type::allocator_type,
StringTable::allocator_type>::value));
}
TEST(Nodes, ExtractInsert) {
constexpr char k0[] = "Very long std::string zero.";
constexpr char k1[] = "Very long std::string one.";
constexpr char k2[] = "Very long std::string two.";
StringTable t = {{k0, ""}, {k1, ""}, {k2, ""}};
EXPECT_THAT(t,
UnorderedElementsAre(Pair(k0, ""), Pair(k1, ""), Pair(k2, "")));
auto node = t.extract(k0);
EXPECT_THAT(t, UnorderedElementsAre(Pair(k1, ""), Pair(k2, "")));
EXPECT_TRUE(node);
EXPECT_FALSE(node.empty());
StringTable t2;
StringTable::insert_return_type res = t2.insert(std::move(node));
EXPECT_TRUE(res.inserted);
EXPECT_THAT(*res.position, Pair(k0, ""));
EXPECT_FALSE(res.node);
EXPECT_THAT(t2, UnorderedElementsAre(Pair(k0, "")));
// Not there.
EXPECT_THAT(t, UnorderedElementsAre(Pair(k1, ""), Pair(k2, "")));
node = t.extract("Not there!");
EXPECT_THAT(t, UnorderedElementsAre(Pair(k1, ""), Pair(k2, "")));
EXPECT_FALSE(node);
// Inserting nothing.
res = t2.insert(std::move(node));
EXPECT_FALSE(res.inserted);
EXPECT_EQ(res.position, t2.end());
EXPECT_FALSE(res.node);
EXPECT_THAT(t2, UnorderedElementsAre(Pair(k0, "")));
t.emplace(k0, "1");
node = t.extract(k0);
// Insert duplicate.
res = t2.insert(std::move(node));
EXPECT_FALSE(res.inserted);
EXPECT_THAT(*res.position, Pair(k0, ""));
EXPECT_TRUE(res.node);
EXPECT_FALSE(node);
}
IntTable MakeSimpleTable(size_t size) {
IntTable t;
while (t.size() < size) t.insert(t.size());
return t;
}
std::vector<int> OrderOfIteration(const IntTable& t) {
return {t.begin(), t.end()};
}
// These IterationOrderChanges tests depend on non-deterministic behavior.
// We are injecting non-determinism from the pointer of the table, but do so in
// a way that only the page matters. We have to retry enough times to make sure
// we are touching different memory pages to cause the ordering to change.
// We also need to keep the old tables around to avoid getting the same memory
// blocks over and over.
TEST(Table, IterationOrderChangesByInstance) {
for (size_t size : {2, 6, 12, 20}) {
const auto reference_table = MakeSimpleTable(size);
const auto reference = OrderOfIteration(reference_table);
std::vector<IntTable> tables;
bool found_difference = false;
for (int i = 0; !found_difference && i < 500; ++i) {
tables.push_back(MakeSimpleTable(size));
found_difference = OrderOfIteration(tables.back()) != reference;
}
if (!found_difference) {
FAIL()
<< "Iteration order remained the same across many attempts with size "
<< size;
}
}
}
TEST(Table, IterationOrderChangesOnRehash) {
std::vector<IntTable> garbage;
for (int i = 0; i < 500; ++i) {
auto t = MakeSimpleTable(20);
const auto reference = OrderOfIteration(t);
// Force rehash to the same size.
t.rehash(0);
auto trial = OrderOfIteration(t);
if (trial != reference) {
// We are done.
return;
}
garbage.push_back(std::move(t));
}
FAIL() << "Iteration order remained the same across many attempts.";
}
// Verify that pointers are invalidated as soon as a second element is inserted.
// This prevents dependency on pointer stability on small tables.
TEST(Table, UnstablePointers) {
IntTable table;
const auto addr = [&](int i) {
return reinterpret_cast<uintptr_t>(&*table.find(i));
};
table.insert(0);
const uintptr_t old_ptr = addr(0);
// This causes a rehash.
table.insert(1);
EXPECT_NE(old_ptr, addr(0));
}
// Confirm that we assert if we try to erase() end().
TEST(TableDeathTest, EraseOfEndAsserts) {
// Use an assert with side-effects to figure out if they are actually enabled.
bool assert_enabled = false;
assert([&]() {
assert_enabled = true;
return true;
}());
if (!assert_enabled) return;
IntTable t;
// Extra simple "regexp" as regexp support is highly varied across platforms.
constexpr char kDeathMsg[] = "it != end";
EXPECT_DEATH_IF_SUPPORTED(t.erase(t.end()), kDeathMsg);
}
TEST(RawHashSamplerTest, Sample) {
// Enable the feature even if the prod default is off.
SetHashtablezEnabled(true);
SetHashtablezSampleParameter(100);
auto& sampler = HashtablezSampler::Global();
size_t start_size = 0;
start_size += sampler.Iterate([&](const HashtablezInfo&) { ++start_size; });
std::vector<IntTable> tables;
for (int i = 0; i < 1000000; ++i) {
tables.emplace_back();
tables.back().insert(1);
}
size_t end_size = 0;
end_size += sampler.Iterate([&](const HashtablezInfo&) { ++end_size; });
EXPECT_NEAR((end_size - start_size) / static_cast<double>(tables.size()),
0.01, 0.005);
}
#ifdef ADDRESS_SANITIZER
TEST(Sanitizer, PoisoningUnused) {
IntTable t;
t.reserve(5);
// Insert something to force an allocation.
int64_t& v1 = *t.insert(0).first;
// Make sure there is something to test.
ASSERT_GT(t.capacity(), 1);
int64_t* slots = RawHashSetTestOnlyAccess::GetSlots(t);
for (size_t i = 0; i < t.capacity(); ++i) {
EXPECT_EQ(slots + i != &v1, __asan_address_is_poisoned(slots + i));
}
}
TEST(Sanitizer, PoisoningOnErase) {
IntTable t;
int64_t& v = *t.insert(0).first;
EXPECT_FALSE(__asan_address_is_poisoned(&v));
t.erase(0);
EXPECT_TRUE(__asan_address_is_poisoned(&v));
}
#endif // ADDRESS_SANITIZER
} // namespace
} // namespace container_internal
} // namespace absl