3c81410510
-- 97faa5fdfa4cd5d7a74cd9332cddd8a7c1e67b89 by Abseil Team <absl-team@google.com>: Internal changes PiperOrigin-RevId: 295164378 -- 74990f100b3f4172c770ef8c76c05c8e99febdde by Xiaoyi Zhang <zhangxy@google.com>: Release `absl::Cord`. PiperOrigin-RevId: 295161959 -- 6018c57f43c45c31dc1a61c0cd75fa2aa9be8dab by Gennadiy Rozental <rogeeff@google.com>: Introduce independent notion of FlagStaticTypeID. This change separates static flag value type identification from the type specific "vtable" with all the operations specific to value type. This change allows us to do the following: * We can move most of "vtable" implementation from handle header, which will become public soon, into implementation details of Abseil Flag. * We can combine back marshalling ops and general ops into a single vtable routine. They were split previously to facilitate type identification without requiring marshalling routines to be exposed in header. * We do not need to store two vtable pointers. We can now store only one. The static type id can be deduced on request. Overall we are saving 24 bytes per flag according to size_tester run. PiperOrigin-RevId: 295149687 -- 986b78e9ba571aa85154e70bda4580edd45bb7bf by Abseil Team <absl-team@google.com>: Update internal comments. PiperOrigin-RevId: 295030681 -- 825412b29fd6015027bbc3e5f802706eee0d2837 by Matthew Brown <matthewbr@google.com>: Change str_format_internal::ConversionChar to an enum (from a struct-wrapped enum). PiperOrigin-RevId: 294987462 -- f9f88d91809d2cc33fc129df70fa93e7a2c35c69 by Derek Mauro <dmauro@google.com>: Use more precise wording in the question on live-at-head PiperOrigin-RevId: 294957679 GitOrigin-RevId: 97faa5fdfa4cd5d7a74cd9332cddd8a7c1e67b89 Change-Id: I081e70d148ffac7296d65e2a2f775f643eaf70bf
1808 lines
73 KiB
C++
1808 lines
73 KiB
C++
// Copyright 2017 The Abseil Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#if defined(_MSC_VER)
|
|
#include <winsock2.h> // for timeval
|
|
#endif
|
|
|
|
#include <chrono> // NOLINT(build/c++11)
|
|
#include <cmath>
|
|
#include <cstdint>
|
|
#include <ctime>
|
|
#include <iomanip>
|
|
#include <limits>
|
|
#include <random>
|
|
#include <string>
|
|
|
|
#include "gmock/gmock.h"
|
|
#include "gtest/gtest.h"
|
|
#include "absl/time/time.h"
|
|
|
|
namespace {
|
|
|
|
constexpr int64_t kint64max = std::numeric_limits<int64_t>::max();
|
|
constexpr int64_t kint64min = std::numeric_limits<int64_t>::min();
|
|
|
|
// Approximates the given number of years. This is only used to make some test
|
|
// code more readable.
|
|
absl::Duration ApproxYears(int64_t n) { return absl::Hours(n) * 365 * 24; }
|
|
|
|
// A gMock matcher to match timespec values. Use this matcher like:
|
|
// timespec ts1, ts2;
|
|
// EXPECT_THAT(ts1, TimespecMatcher(ts2));
|
|
MATCHER_P(TimespecMatcher, ts, "") {
|
|
if (ts.tv_sec == arg.tv_sec && ts.tv_nsec == arg.tv_nsec)
|
|
return true;
|
|
*result_listener << "expected: {" << ts.tv_sec << ", " << ts.tv_nsec << "} ";
|
|
*result_listener << "actual: {" << arg.tv_sec << ", " << arg.tv_nsec << "}";
|
|
return false;
|
|
}
|
|
|
|
// A gMock matcher to match timeval values. Use this matcher like:
|
|
// timeval tv1, tv2;
|
|
// EXPECT_THAT(tv1, TimevalMatcher(tv2));
|
|
MATCHER_P(TimevalMatcher, tv, "") {
|
|
if (tv.tv_sec == arg.tv_sec && tv.tv_usec == arg.tv_usec)
|
|
return true;
|
|
*result_listener << "expected: {" << tv.tv_sec << ", " << tv.tv_usec << "} ";
|
|
*result_listener << "actual: {" << arg.tv_sec << ", " << arg.tv_usec << "}";
|
|
return false;
|
|
}
|
|
|
|
TEST(Duration, ConstExpr) {
|
|
constexpr absl::Duration d0 = absl::ZeroDuration();
|
|
static_assert(d0 == absl::ZeroDuration(), "ZeroDuration()");
|
|
constexpr absl::Duration d1 = absl::Seconds(1);
|
|
static_assert(d1 == absl::Seconds(1), "Seconds(1)");
|
|
static_assert(d1 != absl::ZeroDuration(), "Seconds(1)");
|
|
constexpr absl::Duration d2 = absl::InfiniteDuration();
|
|
static_assert(d2 == absl::InfiniteDuration(), "InfiniteDuration()");
|
|
static_assert(d2 != absl::ZeroDuration(), "InfiniteDuration()");
|
|
}
|
|
|
|
TEST(Duration, ValueSemantics) {
|
|
// If this compiles, the test passes.
|
|
constexpr absl::Duration a; // Default construction
|
|
constexpr absl::Duration b = a; // Copy construction
|
|
constexpr absl::Duration c(b); // Copy construction (again)
|
|
|
|
absl::Duration d;
|
|
d = c; // Assignment
|
|
}
|
|
|
|
TEST(Duration, Factories) {
|
|
constexpr absl::Duration zero = absl::ZeroDuration();
|
|
constexpr absl::Duration nano = absl::Nanoseconds(1);
|
|
constexpr absl::Duration micro = absl::Microseconds(1);
|
|
constexpr absl::Duration milli = absl::Milliseconds(1);
|
|
constexpr absl::Duration sec = absl::Seconds(1);
|
|
constexpr absl::Duration min = absl::Minutes(1);
|
|
constexpr absl::Duration hour = absl::Hours(1);
|
|
|
|
EXPECT_EQ(zero, absl::Duration());
|
|
EXPECT_EQ(zero, absl::Seconds(0));
|
|
EXPECT_EQ(nano, absl::Nanoseconds(1));
|
|
EXPECT_EQ(micro, absl::Nanoseconds(1000));
|
|
EXPECT_EQ(milli, absl::Microseconds(1000));
|
|
EXPECT_EQ(sec, absl::Milliseconds(1000));
|
|
EXPECT_EQ(min, absl::Seconds(60));
|
|
EXPECT_EQ(hour, absl::Minutes(60));
|
|
|
|
// Tests factory limits
|
|
const absl::Duration inf = absl::InfiniteDuration();
|
|
|
|
EXPECT_GT(inf, absl::Seconds(kint64max));
|
|
EXPECT_LT(-inf, absl::Seconds(kint64min));
|
|
EXPECT_LT(-inf, absl::Seconds(-kint64max));
|
|
|
|
EXPECT_EQ(inf, absl::Minutes(kint64max));
|
|
EXPECT_EQ(-inf, absl::Minutes(kint64min));
|
|
EXPECT_EQ(-inf, absl::Minutes(-kint64max));
|
|
EXPECT_GT(inf, absl::Minutes(kint64max / 60));
|
|
EXPECT_LT(-inf, absl::Minutes(kint64min / 60));
|
|
EXPECT_LT(-inf, absl::Minutes(-kint64max / 60));
|
|
|
|
EXPECT_EQ(inf, absl::Hours(kint64max));
|
|
EXPECT_EQ(-inf, absl::Hours(kint64min));
|
|
EXPECT_EQ(-inf, absl::Hours(-kint64max));
|
|
EXPECT_GT(inf, absl::Hours(kint64max / 3600));
|
|
EXPECT_LT(-inf, absl::Hours(kint64min / 3600));
|
|
EXPECT_LT(-inf, absl::Hours(-kint64max / 3600));
|
|
}
|
|
|
|
TEST(Duration, ToConversion) {
|
|
#define TEST_DURATION_CONVERSION(UNIT) \
|
|
do { \
|
|
const absl::Duration d = absl::UNIT(1.5); \
|
|
constexpr absl::Duration z = absl::ZeroDuration(); \
|
|
constexpr absl::Duration inf = absl::InfiniteDuration(); \
|
|
constexpr double dbl_inf = std::numeric_limits<double>::infinity(); \
|
|
EXPECT_EQ(kint64min, absl::ToInt64##UNIT(-inf)); \
|
|
EXPECT_EQ(-1, absl::ToInt64##UNIT(-d)); \
|
|
EXPECT_EQ(0, absl::ToInt64##UNIT(z)); \
|
|
EXPECT_EQ(1, absl::ToInt64##UNIT(d)); \
|
|
EXPECT_EQ(kint64max, absl::ToInt64##UNIT(inf)); \
|
|
EXPECT_EQ(-dbl_inf, absl::ToDouble##UNIT(-inf)); \
|
|
EXPECT_EQ(-1.5, absl::ToDouble##UNIT(-d)); \
|
|
EXPECT_EQ(0, absl::ToDouble##UNIT(z)); \
|
|
EXPECT_EQ(1.5, absl::ToDouble##UNIT(d)); \
|
|
EXPECT_EQ(dbl_inf, absl::ToDouble##UNIT(inf)); \
|
|
} while (0)
|
|
|
|
TEST_DURATION_CONVERSION(Nanoseconds);
|
|
TEST_DURATION_CONVERSION(Microseconds);
|
|
TEST_DURATION_CONVERSION(Milliseconds);
|
|
TEST_DURATION_CONVERSION(Seconds);
|
|
TEST_DURATION_CONVERSION(Minutes);
|
|
TEST_DURATION_CONVERSION(Hours);
|
|
|
|
#undef TEST_DURATION_CONVERSION
|
|
}
|
|
|
|
template <int64_t N>
|
|
void TestToConversion() {
|
|
constexpr absl::Duration nano = absl::Nanoseconds(N);
|
|
EXPECT_EQ(N, absl::ToInt64Nanoseconds(nano));
|
|
EXPECT_EQ(0, absl::ToInt64Microseconds(nano));
|
|
EXPECT_EQ(0, absl::ToInt64Milliseconds(nano));
|
|
EXPECT_EQ(0, absl::ToInt64Seconds(nano));
|
|
EXPECT_EQ(0, absl::ToInt64Minutes(nano));
|
|
EXPECT_EQ(0, absl::ToInt64Hours(nano));
|
|
const absl::Duration micro = absl::Microseconds(N);
|
|
EXPECT_EQ(N * 1000, absl::ToInt64Nanoseconds(micro));
|
|
EXPECT_EQ(N, absl::ToInt64Microseconds(micro));
|
|
EXPECT_EQ(0, absl::ToInt64Milliseconds(micro));
|
|
EXPECT_EQ(0, absl::ToInt64Seconds(micro));
|
|
EXPECT_EQ(0, absl::ToInt64Minutes(micro));
|
|
EXPECT_EQ(0, absl::ToInt64Hours(micro));
|
|
const absl::Duration milli = absl::Milliseconds(N);
|
|
EXPECT_EQ(N * 1000 * 1000, absl::ToInt64Nanoseconds(milli));
|
|
EXPECT_EQ(N * 1000, absl::ToInt64Microseconds(milli));
|
|
EXPECT_EQ(N, absl::ToInt64Milliseconds(milli));
|
|
EXPECT_EQ(0, absl::ToInt64Seconds(milli));
|
|
EXPECT_EQ(0, absl::ToInt64Minutes(milli));
|
|
EXPECT_EQ(0, absl::ToInt64Hours(milli));
|
|
const absl::Duration sec = absl::Seconds(N);
|
|
EXPECT_EQ(N * 1000 * 1000 * 1000, absl::ToInt64Nanoseconds(sec));
|
|
EXPECT_EQ(N * 1000 * 1000, absl::ToInt64Microseconds(sec));
|
|
EXPECT_EQ(N * 1000, absl::ToInt64Milliseconds(sec));
|
|
EXPECT_EQ(N, absl::ToInt64Seconds(sec));
|
|
EXPECT_EQ(0, absl::ToInt64Minutes(sec));
|
|
EXPECT_EQ(0, absl::ToInt64Hours(sec));
|
|
const absl::Duration min = absl::Minutes(N);
|
|
EXPECT_EQ(N * 60 * 1000 * 1000 * 1000, absl::ToInt64Nanoseconds(min));
|
|
EXPECT_EQ(N * 60 * 1000 * 1000, absl::ToInt64Microseconds(min));
|
|
EXPECT_EQ(N * 60 * 1000, absl::ToInt64Milliseconds(min));
|
|
EXPECT_EQ(N * 60, absl::ToInt64Seconds(min));
|
|
EXPECT_EQ(N, absl::ToInt64Minutes(min));
|
|
EXPECT_EQ(0, absl::ToInt64Hours(min));
|
|
const absl::Duration hour = absl::Hours(N);
|
|
EXPECT_EQ(N * 60 * 60 * 1000 * 1000 * 1000, absl::ToInt64Nanoseconds(hour));
|
|
EXPECT_EQ(N * 60 * 60 * 1000 * 1000, absl::ToInt64Microseconds(hour));
|
|
EXPECT_EQ(N * 60 * 60 * 1000, absl::ToInt64Milliseconds(hour));
|
|
EXPECT_EQ(N * 60 * 60, absl::ToInt64Seconds(hour));
|
|
EXPECT_EQ(N * 60, absl::ToInt64Minutes(hour));
|
|
EXPECT_EQ(N, absl::ToInt64Hours(hour));
|
|
}
|
|
|
|
TEST(Duration, ToConversionDeprecated) {
|
|
TestToConversion<43>();
|
|
TestToConversion<1>();
|
|
TestToConversion<0>();
|
|
TestToConversion<-1>();
|
|
TestToConversion<-43>();
|
|
}
|
|
|
|
template <int64_t N>
|
|
void TestFromChronoBasicEquality() {
|
|
using std::chrono::nanoseconds;
|
|
using std::chrono::microseconds;
|
|
using std::chrono::milliseconds;
|
|
using std::chrono::seconds;
|
|
using std::chrono::minutes;
|
|
using std::chrono::hours;
|
|
|
|
static_assert(absl::Nanoseconds(N) == absl::FromChrono(nanoseconds(N)), "");
|
|
static_assert(absl::Microseconds(N) == absl::FromChrono(microseconds(N)), "");
|
|
static_assert(absl::Milliseconds(N) == absl::FromChrono(milliseconds(N)), "");
|
|
static_assert(absl::Seconds(N) == absl::FromChrono(seconds(N)), "");
|
|
static_assert(absl::Minutes(N) == absl::FromChrono(minutes(N)), "");
|
|
static_assert(absl::Hours(N) == absl::FromChrono(hours(N)), "");
|
|
}
|
|
|
|
TEST(Duration, FromChrono) {
|
|
TestFromChronoBasicEquality<-123>();
|
|
TestFromChronoBasicEquality<-1>();
|
|
TestFromChronoBasicEquality<0>();
|
|
TestFromChronoBasicEquality<1>();
|
|
TestFromChronoBasicEquality<123>();
|
|
|
|
// Minutes (might, depending on the platform) saturate at +inf.
|
|
const auto chrono_minutes_max = std::chrono::minutes::max();
|
|
const auto minutes_max = absl::FromChrono(chrono_minutes_max);
|
|
const int64_t minutes_max_count = chrono_minutes_max.count();
|
|
if (minutes_max_count > kint64max / 60) {
|
|
EXPECT_EQ(absl::InfiniteDuration(), minutes_max);
|
|
} else {
|
|
EXPECT_EQ(absl::Minutes(minutes_max_count), minutes_max);
|
|
}
|
|
|
|
// Minutes (might, depending on the platform) saturate at -inf.
|
|
const auto chrono_minutes_min = std::chrono::minutes::min();
|
|
const auto minutes_min = absl::FromChrono(chrono_minutes_min);
|
|
const int64_t minutes_min_count = chrono_minutes_min.count();
|
|
if (minutes_min_count < kint64min / 60) {
|
|
EXPECT_EQ(-absl::InfiniteDuration(), minutes_min);
|
|
} else {
|
|
EXPECT_EQ(absl::Minutes(minutes_min_count), minutes_min);
|
|
}
|
|
|
|
// Hours (might, depending on the platform) saturate at +inf.
|
|
const auto chrono_hours_max = std::chrono::hours::max();
|
|
const auto hours_max = absl::FromChrono(chrono_hours_max);
|
|
const int64_t hours_max_count = chrono_hours_max.count();
|
|
if (hours_max_count > kint64max / 3600) {
|
|
EXPECT_EQ(absl::InfiniteDuration(), hours_max);
|
|
} else {
|
|
EXPECT_EQ(absl::Hours(hours_max_count), hours_max);
|
|
}
|
|
|
|
// Hours (might, depending on the platform) saturate at -inf.
|
|
const auto chrono_hours_min = std::chrono::hours::min();
|
|
const auto hours_min = absl::FromChrono(chrono_hours_min);
|
|
const int64_t hours_min_count = chrono_hours_min.count();
|
|
if (hours_min_count < kint64min / 3600) {
|
|
EXPECT_EQ(-absl::InfiniteDuration(), hours_min);
|
|
} else {
|
|
EXPECT_EQ(absl::Hours(hours_min_count), hours_min);
|
|
}
|
|
}
|
|
|
|
template <int64_t N>
|
|
void TestToChrono() {
|
|
using std::chrono::nanoseconds;
|
|
using std::chrono::microseconds;
|
|
using std::chrono::milliseconds;
|
|
using std::chrono::seconds;
|
|
using std::chrono::minutes;
|
|
using std::chrono::hours;
|
|
|
|
EXPECT_EQ(nanoseconds(N), absl::ToChronoNanoseconds(absl::Nanoseconds(N)));
|
|
EXPECT_EQ(microseconds(N), absl::ToChronoMicroseconds(absl::Microseconds(N)));
|
|
EXPECT_EQ(milliseconds(N), absl::ToChronoMilliseconds(absl::Milliseconds(N)));
|
|
EXPECT_EQ(seconds(N), absl::ToChronoSeconds(absl::Seconds(N)));
|
|
|
|
constexpr auto absl_minutes = absl::Minutes(N);
|
|
auto chrono_minutes = minutes(N);
|
|
if (absl_minutes == -absl::InfiniteDuration()) {
|
|
chrono_minutes = minutes::min();
|
|
} else if (absl_minutes == absl::InfiniteDuration()) {
|
|
chrono_minutes = minutes::max();
|
|
}
|
|
EXPECT_EQ(chrono_minutes, absl::ToChronoMinutes(absl_minutes));
|
|
|
|
constexpr auto absl_hours = absl::Hours(N);
|
|
auto chrono_hours = hours(N);
|
|
if (absl_hours == -absl::InfiniteDuration()) {
|
|
chrono_hours = hours::min();
|
|
} else if (absl_hours == absl::InfiniteDuration()) {
|
|
chrono_hours = hours::max();
|
|
}
|
|
EXPECT_EQ(chrono_hours, absl::ToChronoHours(absl_hours));
|
|
}
|
|
|
|
TEST(Duration, ToChrono) {
|
|
using std::chrono::nanoseconds;
|
|
using std::chrono::microseconds;
|
|
using std::chrono::milliseconds;
|
|
using std::chrono::seconds;
|
|
using std::chrono::minutes;
|
|
using std::chrono::hours;
|
|
|
|
TestToChrono<kint64min>();
|
|
TestToChrono<-1>();
|
|
TestToChrono<0>();
|
|
TestToChrono<1>();
|
|
TestToChrono<kint64max>();
|
|
|
|
// Verify truncation toward zero.
|
|
const auto tick = absl::Nanoseconds(1) / 4;
|
|
EXPECT_EQ(nanoseconds(0), absl::ToChronoNanoseconds(tick));
|
|
EXPECT_EQ(nanoseconds(0), absl::ToChronoNanoseconds(-tick));
|
|
EXPECT_EQ(microseconds(0), absl::ToChronoMicroseconds(tick));
|
|
EXPECT_EQ(microseconds(0), absl::ToChronoMicroseconds(-tick));
|
|
EXPECT_EQ(milliseconds(0), absl::ToChronoMilliseconds(tick));
|
|
EXPECT_EQ(milliseconds(0), absl::ToChronoMilliseconds(-tick));
|
|
EXPECT_EQ(seconds(0), absl::ToChronoSeconds(tick));
|
|
EXPECT_EQ(seconds(0), absl::ToChronoSeconds(-tick));
|
|
EXPECT_EQ(minutes(0), absl::ToChronoMinutes(tick));
|
|
EXPECT_EQ(minutes(0), absl::ToChronoMinutes(-tick));
|
|
EXPECT_EQ(hours(0), absl::ToChronoHours(tick));
|
|
EXPECT_EQ(hours(0), absl::ToChronoHours(-tick));
|
|
|
|
// Verifies +/- infinity saturation at max/min.
|
|
constexpr auto inf = absl::InfiniteDuration();
|
|
EXPECT_EQ(nanoseconds::min(), absl::ToChronoNanoseconds(-inf));
|
|
EXPECT_EQ(nanoseconds::max(), absl::ToChronoNanoseconds(inf));
|
|
EXPECT_EQ(microseconds::min(), absl::ToChronoMicroseconds(-inf));
|
|
EXPECT_EQ(microseconds::max(), absl::ToChronoMicroseconds(inf));
|
|
EXPECT_EQ(milliseconds::min(), absl::ToChronoMilliseconds(-inf));
|
|
EXPECT_EQ(milliseconds::max(), absl::ToChronoMilliseconds(inf));
|
|
EXPECT_EQ(seconds::min(), absl::ToChronoSeconds(-inf));
|
|
EXPECT_EQ(seconds::max(), absl::ToChronoSeconds(inf));
|
|
EXPECT_EQ(minutes::min(), absl::ToChronoMinutes(-inf));
|
|
EXPECT_EQ(minutes::max(), absl::ToChronoMinutes(inf));
|
|
EXPECT_EQ(hours::min(), absl::ToChronoHours(-inf));
|
|
EXPECT_EQ(hours::max(), absl::ToChronoHours(inf));
|
|
}
|
|
|
|
TEST(Duration, FactoryOverloads) {
|
|
enum E { kOne = 1 };
|
|
#define TEST_FACTORY_OVERLOADS(NAME) \
|
|
EXPECT_EQ(1, NAME(kOne) / NAME(kOne)); \
|
|
EXPECT_EQ(1, NAME(static_cast<int8_t>(1)) / NAME(1)); \
|
|
EXPECT_EQ(1, NAME(static_cast<int16_t>(1)) / NAME(1)); \
|
|
EXPECT_EQ(1, NAME(static_cast<int32_t>(1)) / NAME(1)); \
|
|
EXPECT_EQ(1, NAME(static_cast<int64_t>(1)) / NAME(1)); \
|
|
EXPECT_EQ(1, NAME(static_cast<uint8_t>(1)) / NAME(1)); \
|
|
EXPECT_EQ(1, NAME(static_cast<uint16_t>(1)) / NAME(1)); \
|
|
EXPECT_EQ(1, NAME(static_cast<uint32_t>(1)) / NAME(1)); \
|
|
EXPECT_EQ(1, NAME(static_cast<uint64_t>(1)) / NAME(1)); \
|
|
EXPECT_EQ(NAME(1) / 2, NAME(static_cast<float>(0.5))); \
|
|
EXPECT_EQ(NAME(1) / 2, NAME(static_cast<double>(0.5))); \
|
|
EXPECT_EQ(1.5, absl::FDivDuration(NAME(static_cast<float>(1.5)), NAME(1))); \
|
|
EXPECT_EQ(1.5, absl::FDivDuration(NAME(static_cast<double>(1.5)), NAME(1)));
|
|
|
|
TEST_FACTORY_OVERLOADS(absl::Nanoseconds);
|
|
TEST_FACTORY_OVERLOADS(absl::Microseconds);
|
|
TEST_FACTORY_OVERLOADS(absl::Milliseconds);
|
|
TEST_FACTORY_OVERLOADS(absl::Seconds);
|
|
TEST_FACTORY_OVERLOADS(absl::Minutes);
|
|
TEST_FACTORY_OVERLOADS(absl::Hours);
|
|
|
|
#undef TEST_FACTORY_OVERLOADS
|
|
|
|
EXPECT_EQ(absl::Milliseconds(1500), absl::Seconds(1.5));
|
|
EXPECT_LT(absl::Nanoseconds(1), absl::Nanoseconds(1.5));
|
|
EXPECT_GT(absl::Nanoseconds(2), absl::Nanoseconds(1.5));
|
|
|
|
const double dbl_inf = std::numeric_limits<double>::infinity();
|
|
EXPECT_EQ(absl::InfiniteDuration(), absl::Nanoseconds(dbl_inf));
|
|
EXPECT_EQ(absl::InfiniteDuration(), absl::Microseconds(dbl_inf));
|
|
EXPECT_EQ(absl::InfiniteDuration(), absl::Milliseconds(dbl_inf));
|
|
EXPECT_EQ(absl::InfiniteDuration(), absl::Seconds(dbl_inf));
|
|
EXPECT_EQ(absl::InfiniteDuration(), absl::Minutes(dbl_inf));
|
|
EXPECT_EQ(absl::InfiniteDuration(), absl::Hours(dbl_inf));
|
|
EXPECT_EQ(-absl::InfiniteDuration(), absl::Nanoseconds(-dbl_inf));
|
|
EXPECT_EQ(-absl::InfiniteDuration(), absl::Microseconds(-dbl_inf));
|
|
EXPECT_EQ(-absl::InfiniteDuration(), absl::Milliseconds(-dbl_inf));
|
|
EXPECT_EQ(-absl::InfiniteDuration(), absl::Seconds(-dbl_inf));
|
|
EXPECT_EQ(-absl::InfiniteDuration(), absl::Minutes(-dbl_inf));
|
|
EXPECT_EQ(-absl::InfiniteDuration(), absl::Hours(-dbl_inf));
|
|
}
|
|
|
|
TEST(Duration, InfinityExamples) {
|
|
// These examples are used in the documentation in time.h. They are
|
|
// written so that they can be copy-n-pasted easily.
|
|
|
|
constexpr absl::Duration inf = absl::InfiniteDuration();
|
|
constexpr absl::Duration d = absl::Seconds(1); // Any finite duration
|
|
|
|
EXPECT_TRUE(inf == inf + inf);
|
|
EXPECT_TRUE(inf == inf + d);
|
|
EXPECT_TRUE(inf == inf - inf);
|
|
EXPECT_TRUE(-inf == d - inf);
|
|
|
|
EXPECT_TRUE(inf == d * 1e100);
|
|
EXPECT_TRUE(0 == d / inf); // NOLINT(readability/check)
|
|
|
|
// Division by zero returns infinity, or kint64min/MAX where necessary.
|
|
EXPECT_TRUE(inf == d / 0);
|
|
EXPECT_TRUE(kint64max == d / absl::ZeroDuration());
|
|
}
|
|
|
|
TEST(Duration, InfinityComparison) {
|
|
const absl::Duration inf = absl::InfiniteDuration();
|
|
const absl::Duration any_dur = absl::Seconds(1);
|
|
|
|
// Equality
|
|
EXPECT_EQ(inf, inf);
|
|
EXPECT_EQ(-inf, -inf);
|
|
EXPECT_NE(inf, -inf);
|
|
EXPECT_NE(any_dur, inf);
|
|
EXPECT_NE(any_dur, -inf);
|
|
|
|
// Relational
|
|
EXPECT_GT(inf, any_dur);
|
|
EXPECT_LT(-inf, any_dur);
|
|
EXPECT_LT(-inf, inf);
|
|
EXPECT_GT(inf, -inf);
|
|
}
|
|
|
|
TEST(Duration, InfinityAddition) {
|
|
const absl::Duration sec_max = absl::Seconds(kint64max);
|
|
const absl::Duration sec_min = absl::Seconds(kint64min);
|
|
const absl::Duration any_dur = absl::Seconds(1);
|
|
const absl::Duration inf = absl::InfiniteDuration();
|
|
|
|
// Addition
|
|
EXPECT_EQ(inf, inf + inf);
|
|
EXPECT_EQ(inf, inf + -inf);
|
|
EXPECT_EQ(-inf, -inf + inf);
|
|
EXPECT_EQ(-inf, -inf + -inf);
|
|
|
|
EXPECT_EQ(inf, inf + any_dur);
|
|
EXPECT_EQ(inf, any_dur + inf);
|
|
EXPECT_EQ(-inf, -inf + any_dur);
|
|
EXPECT_EQ(-inf, any_dur + -inf);
|
|
|
|
// Interesting case
|
|
absl::Duration almost_inf = sec_max + absl::Nanoseconds(999999999);
|
|
EXPECT_GT(inf, almost_inf);
|
|
almost_inf += -absl::Nanoseconds(999999999);
|
|
EXPECT_GT(inf, almost_inf);
|
|
|
|
// Addition overflow/underflow
|
|
EXPECT_EQ(inf, sec_max + absl::Seconds(1));
|
|
EXPECT_EQ(inf, sec_max + sec_max);
|
|
EXPECT_EQ(-inf, sec_min + -absl::Seconds(1));
|
|
EXPECT_EQ(-inf, sec_min + -sec_max);
|
|
|
|
// For reference: IEEE 754 behavior
|
|
const double dbl_inf = std::numeric_limits<double>::infinity();
|
|
EXPECT_TRUE(std::isinf(dbl_inf + dbl_inf));
|
|
EXPECT_TRUE(std::isnan(dbl_inf + -dbl_inf)); // We return inf
|
|
EXPECT_TRUE(std::isnan(-dbl_inf + dbl_inf)); // We return inf
|
|
EXPECT_TRUE(std::isinf(-dbl_inf + -dbl_inf));
|
|
}
|
|
|
|
TEST(Duration, InfinitySubtraction) {
|
|
const absl::Duration sec_max = absl::Seconds(kint64max);
|
|
const absl::Duration sec_min = absl::Seconds(kint64min);
|
|
const absl::Duration any_dur = absl::Seconds(1);
|
|
const absl::Duration inf = absl::InfiniteDuration();
|
|
|
|
// Subtraction
|
|
EXPECT_EQ(inf, inf - inf);
|
|
EXPECT_EQ(inf, inf - -inf);
|
|
EXPECT_EQ(-inf, -inf - inf);
|
|
EXPECT_EQ(-inf, -inf - -inf);
|
|
|
|
EXPECT_EQ(inf, inf - any_dur);
|
|
EXPECT_EQ(-inf, any_dur - inf);
|
|
EXPECT_EQ(-inf, -inf - any_dur);
|
|
EXPECT_EQ(inf, any_dur - -inf);
|
|
|
|
// Subtraction overflow/underflow
|
|
EXPECT_EQ(inf, sec_max - -absl::Seconds(1));
|
|
EXPECT_EQ(inf, sec_max - -sec_max);
|
|
EXPECT_EQ(-inf, sec_min - absl::Seconds(1));
|
|
EXPECT_EQ(-inf, sec_min - sec_max);
|
|
|
|
// Interesting case
|
|
absl::Duration almost_neg_inf = sec_min;
|
|
EXPECT_LT(-inf, almost_neg_inf);
|
|
almost_neg_inf -= -absl::Nanoseconds(1);
|
|
EXPECT_LT(-inf, almost_neg_inf);
|
|
|
|
// For reference: IEEE 754 behavior
|
|
const double dbl_inf = std::numeric_limits<double>::infinity();
|
|
EXPECT_TRUE(std::isnan(dbl_inf - dbl_inf)); // We return inf
|
|
EXPECT_TRUE(std::isinf(dbl_inf - -dbl_inf));
|
|
EXPECT_TRUE(std::isinf(-dbl_inf - dbl_inf));
|
|
EXPECT_TRUE(std::isnan(-dbl_inf - -dbl_inf)); // We return inf
|
|
}
|
|
|
|
TEST(Duration, InfinityMultiplication) {
|
|
const absl::Duration sec_max = absl::Seconds(kint64max);
|
|
const absl::Duration sec_min = absl::Seconds(kint64min);
|
|
const absl::Duration inf = absl::InfiniteDuration();
|
|
|
|
#define TEST_INF_MUL_WITH_TYPE(T) \
|
|
EXPECT_EQ(inf, inf * static_cast<T>(2)); \
|
|
EXPECT_EQ(-inf, inf * static_cast<T>(-2)); \
|
|
EXPECT_EQ(-inf, -inf * static_cast<T>(2)); \
|
|
EXPECT_EQ(inf, -inf * static_cast<T>(-2)); \
|
|
EXPECT_EQ(inf, inf * static_cast<T>(0)); \
|
|
EXPECT_EQ(-inf, -inf * static_cast<T>(0)); \
|
|
EXPECT_EQ(inf, sec_max * static_cast<T>(2)); \
|
|
EXPECT_EQ(inf, sec_min * static_cast<T>(-2)); \
|
|
EXPECT_EQ(inf, (sec_max / static_cast<T>(2)) * static_cast<T>(3)); \
|
|
EXPECT_EQ(-inf, sec_max * static_cast<T>(-2)); \
|
|
EXPECT_EQ(-inf, sec_min * static_cast<T>(2)); \
|
|
EXPECT_EQ(-inf, (sec_min / static_cast<T>(2)) * static_cast<T>(3));
|
|
|
|
TEST_INF_MUL_WITH_TYPE(int64_t); // NOLINT(readability/function)
|
|
TEST_INF_MUL_WITH_TYPE(double); // NOLINT(readability/function)
|
|
|
|
#undef TEST_INF_MUL_WITH_TYPE
|
|
|
|
const double dbl_inf = std::numeric_limits<double>::infinity();
|
|
EXPECT_EQ(inf, inf * dbl_inf);
|
|
EXPECT_EQ(-inf, -inf * dbl_inf);
|
|
EXPECT_EQ(-inf, inf * -dbl_inf);
|
|
EXPECT_EQ(inf, -inf * -dbl_inf);
|
|
|
|
const absl::Duration any_dur = absl::Seconds(1);
|
|
EXPECT_EQ(inf, any_dur * dbl_inf);
|
|
EXPECT_EQ(-inf, -any_dur * dbl_inf);
|
|
EXPECT_EQ(-inf, any_dur * -dbl_inf);
|
|
EXPECT_EQ(inf, -any_dur * -dbl_inf);
|
|
|
|
// Fixed-point multiplication will produce a finite value, whereas floating
|
|
// point fuzziness will overflow to inf.
|
|
EXPECT_NE(absl::InfiniteDuration(), absl::Seconds(1) * kint64max);
|
|
EXPECT_EQ(inf, absl::Seconds(1) * static_cast<double>(kint64max));
|
|
EXPECT_NE(-absl::InfiniteDuration(), absl::Seconds(1) * kint64min);
|
|
EXPECT_EQ(-inf, absl::Seconds(1) * static_cast<double>(kint64min));
|
|
|
|
// Note that sec_max * or / by 1.0 overflows to inf due to the 53-bit
|
|
// limitations of double.
|
|
EXPECT_NE(inf, sec_max);
|
|
EXPECT_NE(inf, sec_max / 1);
|
|
EXPECT_EQ(inf, sec_max / 1.0);
|
|
EXPECT_NE(inf, sec_max * 1);
|
|
EXPECT_EQ(inf, sec_max * 1.0);
|
|
}
|
|
|
|
TEST(Duration, InfinityDivision) {
|
|
const absl::Duration sec_max = absl::Seconds(kint64max);
|
|
const absl::Duration sec_min = absl::Seconds(kint64min);
|
|
const absl::Duration inf = absl::InfiniteDuration();
|
|
|
|
// Division of Duration by a double
|
|
#define TEST_INF_DIV_WITH_TYPE(T) \
|
|
EXPECT_EQ(inf, inf / static_cast<T>(2)); \
|
|
EXPECT_EQ(-inf, inf / static_cast<T>(-2)); \
|
|
EXPECT_EQ(-inf, -inf / static_cast<T>(2)); \
|
|
EXPECT_EQ(inf, -inf / static_cast<T>(-2));
|
|
|
|
TEST_INF_DIV_WITH_TYPE(int64_t); // NOLINT(readability/function)
|
|
TEST_INF_DIV_WITH_TYPE(double); // NOLINT(readability/function)
|
|
|
|
#undef TEST_INF_DIV_WITH_TYPE
|
|
|
|
// Division of Duration by a double overflow/underflow
|
|
EXPECT_EQ(inf, sec_max / 0.5);
|
|
EXPECT_EQ(inf, sec_min / -0.5);
|
|
EXPECT_EQ(inf, ((sec_max / 0.5) + absl::Seconds(1)) / 0.5);
|
|
EXPECT_EQ(-inf, sec_max / -0.5);
|
|
EXPECT_EQ(-inf, sec_min / 0.5);
|
|
EXPECT_EQ(-inf, ((sec_min / 0.5) - absl::Seconds(1)) / 0.5);
|
|
|
|
const double dbl_inf = std::numeric_limits<double>::infinity();
|
|
EXPECT_EQ(inf, inf / dbl_inf);
|
|
EXPECT_EQ(-inf, inf / -dbl_inf);
|
|
EXPECT_EQ(-inf, -inf / dbl_inf);
|
|
EXPECT_EQ(inf, -inf / -dbl_inf);
|
|
|
|
const absl::Duration any_dur = absl::Seconds(1);
|
|
EXPECT_EQ(absl::ZeroDuration(), any_dur / dbl_inf);
|
|
EXPECT_EQ(absl::ZeroDuration(), any_dur / -dbl_inf);
|
|
EXPECT_EQ(absl::ZeroDuration(), -any_dur / dbl_inf);
|
|
EXPECT_EQ(absl::ZeroDuration(), -any_dur / -dbl_inf);
|
|
}
|
|
|
|
TEST(Duration, InfinityModulus) {
|
|
const absl::Duration sec_max = absl::Seconds(kint64max);
|
|
const absl::Duration any_dur = absl::Seconds(1);
|
|
const absl::Duration inf = absl::InfiniteDuration();
|
|
|
|
EXPECT_EQ(inf, inf % inf);
|
|
EXPECT_EQ(inf, inf % -inf);
|
|
EXPECT_EQ(-inf, -inf % -inf);
|
|
EXPECT_EQ(-inf, -inf % inf);
|
|
|
|
EXPECT_EQ(any_dur, any_dur % inf);
|
|
EXPECT_EQ(any_dur, any_dur % -inf);
|
|
EXPECT_EQ(-any_dur, -any_dur % inf);
|
|
EXPECT_EQ(-any_dur, -any_dur % -inf);
|
|
|
|
EXPECT_EQ(inf, inf % -any_dur);
|
|
EXPECT_EQ(inf, inf % any_dur);
|
|
EXPECT_EQ(-inf, -inf % -any_dur);
|
|
EXPECT_EQ(-inf, -inf % any_dur);
|
|
|
|
// Remainder isn't affected by overflow.
|
|
EXPECT_EQ(absl::ZeroDuration(), sec_max % absl::Seconds(1));
|
|
EXPECT_EQ(absl::ZeroDuration(), sec_max % absl::Milliseconds(1));
|
|
EXPECT_EQ(absl::ZeroDuration(), sec_max % absl::Microseconds(1));
|
|
EXPECT_EQ(absl::ZeroDuration(), sec_max % absl::Nanoseconds(1));
|
|
EXPECT_EQ(absl::ZeroDuration(), sec_max % absl::Nanoseconds(1) / 4);
|
|
}
|
|
|
|
TEST(Duration, InfinityIDiv) {
|
|
const absl::Duration sec_max = absl::Seconds(kint64max);
|
|
const absl::Duration any_dur = absl::Seconds(1);
|
|
const absl::Duration inf = absl::InfiniteDuration();
|
|
const double dbl_inf = std::numeric_limits<double>::infinity();
|
|
|
|
// IDivDuration (int64_t return value + a remainer)
|
|
absl::Duration rem = absl::ZeroDuration();
|
|
EXPECT_EQ(kint64max, absl::IDivDuration(inf, inf, &rem));
|
|
EXPECT_EQ(inf, rem);
|
|
|
|
rem = absl::ZeroDuration();
|
|
EXPECT_EQ(kint64max, absl::IDivDuration(-inf, -inf, &rem));
|
|
EXPECT_EQ(-inf, rem);
|
|
|
|
rem = absl::ZeroDuration();
|
|
EXPECT_EQ(kint64max, absl::IDivDuration(inf, any_dur, &rem));
|
|
EXPECT_EQ(inf, rem);
|
|
|
|
rem = absl::ZeroDuration();
|
|
EXPECT_EQ(0, absl::IDivDuration(any_dur, inf, &rem));
|
|
EXPECT_EQ(any_dur, rem);
|
|
|
|
rem = absl::ZeroDuration();
|
|
EXPECT_EQ(kint64max, absl::IDivDuration(-inf, -any_dur, &rem));
|
|
EXPECT_EQ(-inf, rem);
|
|
|
|
rem = absl::ZeroDuration();
|
|
EXPECT_EQ(0, absl::IDivDuration(-any_dur, -inf, &rem));
|
|
EXPECT_EQ(-any_dur, rem);
|
|
|
|
rem = absl::ZeroDuration();
|
|
EXPECT_EQ(kint64min, absl::IDivDuration(-inf, inf, &rem));
|
|
EXPECT_EQ(-inf, rem);
|
|
|
|
rem = absl::ZeroDuration();
|
|
EXPECT_EQ(kint64min, absl::IDivDuration(inf, -inf, &rem));
|
|
EXPECT_EQ(inf, rem);
|
|
|
|
rem = absl::ZeroDuration();
|
|
EXPECT_EQ(kint64min, absl::IDivDuration(-inf, any_dur, &rem));
|
|
EXPECT_EQ(-inf, rem);
|
|
|
|
rem = absl::ZeroDuration();
|
|
EXPECT_EQ(0, absl::IDivDuration(-any_dur, inf, &rem));
|
|
EXPECT_EQ(-any_dur, rem);
|
|
|
|
rem = absl::ZeroDuration();
|
|
EXPECT_EQ(kint64min, absl::IDivDuration(inf, -any_dur, &rem));
|
|
EXPECT_EQ(inf, rem);
|
|
|
|
rem = absl::ZeroDuration();
|
|
EXPECT_EQ(0, absl::IDivDuration(any_dur, -inf, &rem));
|
|
EXPECT_EQ(any_dur, rem);
|
|
|
|
// IDivDuration overflow/underflow
|
|
rem = any_dur;
|
|
EXPECT_EQ(kint64max,
|
|
absl::IDivDuration(sec_max, absl::Nanoseconds(1) / 4, &rem));
|
|
EXPECT_EQ(sec_max - absl::Nanoseconds(kint64max) / 4, rem);
|
|
|
|
rem = any_dur;
|
|
EXPECT_EQ(kint64max,
|
|
absl::IDivDuration(sec_max, absl::Milliseconds(1), &rem));
|
|
EXPECT_EQ(sec_max - absl::Milliseconds(kint64max), rem);
|
|
|
|
rem = any_dur;
|
|
EXPECT_EQ(kint64max,
|
|
absl::IDivDuration(-sec_max, -absl::Milliseconds(1), &rem));
|
|
EXPECT_EQ(-sec_max + absl::Milliseconds(kint64max), rem);
|
|
|
|
rem = any_dur;
|
|
EXPECT_EQ(kint64min,
|
|
absl::IDivDuration(-sec_max, absl::Milliseconds(1), &rem));
|
|
EXPECT_EQ(-sec_max - absl::Milliseconds(kint64min), rem);
|
|
|
|
rem = any_dur;
|
|
EXPECT_EQ(kint64min,
|
|
absl::IDivDuration(sec_max, -absl::Milliseconds(1), &rem));
|
|
EXPECT_EQ(sec_max + absl::Milliseconds(kint64min), rem);
|
|
|
|
//
|
|
// operator/(Duration, Duration) is a wrapper for IDivDuration().
|
|
//
|
|
|
|
// IEEE 754 says inf / inf should be nan, but int64_t doesn't have
|
|
// nan so we'll return kint64max/kint64min instead.
|
|
EXPECT_TRUE(std::isnan(dbl_inf / dbl_inf));
|
|
EXPECT_EQ(kint64max, inf / inf);
|
|
EXPECT_EQ(kint64max, -inf / -inf);
|
|
EXPECT_EQ(kint64min, -inf / inf);
|
|
EXPECT_EQ(kint64min, inf / -inf);
|
|
|
|
EXPECT_TRUE(std::isinf(dbl_inf / 2.0));
|
|
EXPECT_EQ(kint64max, inf / any_dur);
|
|
EXPECT_EQ(kint64max, -inf / -any_dur);
|
|
EXPECT_EQ(kint64min, -inf / any_dur);
|
|
EXPECT_EQ(kint64min, inf / -any_dur);
|
|
|
|
EXPECT_EQ(0.0, 2.0 / dbl_inf);
|
|
EXPECT_EQ(0, any_dur / inf);
|
|
EXPECT_EQ(0, any_dur / -inf);
|
|
EXPECT_EQ(0, -any_dur / inf);
|
|
EXPECT_EQ(0, -any_dur / -inf);
|
|
EXPECT_EQ(0, absl::ZeroDuration() / inf);
|
|
|
|
// Division of Duration by a Duration overflow/underflow
|
|
EXPECT_EQ(kint64max, sec_max / absl::Milliseconds(1));
|
|
EXPECT_EQ(kint64max, -sec_max / -absl::Milliseconds(1));
|
|
EXPECT_EQ(kint64min, -sec_max / absl::Milliseconds(1));
|
|
EXPECT_EQ(kint64min, sec_max / -absl::Milliseconds(1));
|
|
}
|
|
|
|
TEST(Duration, InfinityFDiv) {
|
|
const absl::Duration any_dur = absl::Seconds(1);
|
|
const absl::Duration inf = absl::InfiniteDuration();
|
|
const double dbl_inf = std::numeric_limits<double>::infinity();
|
|
|
|
EXPECT_EQ(dbl_inf, absl::FDivDuration(inf, inf));
|
|
EXPECT_EQ(dbl_inf, absl::FDivDuration(-inf, -inf));
|
|
EXPECT_EQ(dbl_inf, absl::FDivDuration(inf, any_dur));
|
|
EXPECT_EQ(0.0, absl::FDivDuration(any_dur, inf));
|
|
EXPECT_EQ(dbl_inf, absl::FDivDuration(-inf, -any_dur));
|
|
EXPECT_EQ(0.0, absl::FDivDuration(-any_dur, -inf));
|
|
|
|
EXPECT_EQ(-dbl_inf, absl::FDivDuration(-inf, inf));
|
|
EXPECT_EQ(-dbl_inf, absl::FDivDuration(inf, -inf));
|
|
EXPECT_EQ(-dbl_inf, absl::FDivDuration(-inf, any_dur));
|
|
EXPECT_EQ(0.0, absl::FDivDuration(-any_dur, inf));
|
|
EXPECT_EQ(-dbl_inf, absl::FDivDuration(inf, -any_dur));
|
|
EXPECT_EQ(0.0, absl::FDivDuration(any_dur, -inf));
|
|
}
|
|
|
|
TEST(Duration, DivisionByZero) {
|
|
const absl::Duration zero = absl::ZeroDuration();
|
|
const absl::Duration inf = absl::InfiniteDuration();
|
|
const absl::Duration any_dur = absl::Seconds(1);
|
|
const double dbl_inf = std::numeric_limits<double>::infinity();
|
|
const double dbl_denorm = std::numeric_limits<double>::denorm_min();
|
|
|
|
// Operator/(Duration, double)
|
|
EXPECT_EQ(inf, zero / 0.0);
|
|
EXPECT_EQ(-inf, zero / -0.0);
|
|
EXPECT_EQ(inf, any_dur / 0.0);
|
|
EXPECT_EQ(-inf, any_dur / -0.0);
|
|
EXPECT_EQ(-inf, -any_dur / 0.0);
|
|
EXPECT_EQ(inf, -any_dur / -0.0);
|
|
|
|
// Tests dividing by a number very close to, but not quite zero.
|
|
EXPECT_EQ(zero, zero / dbl_denorm);
|
|
EXPECT_EQ(zero, zero / -dbl_denorm);
|
|
EXPECT_EQ(inf, any_dur / dbl_denorm);
|
|
EXPECT_EQ(-inf, any_dur / -dbl_denorm);
|
|
EXPECT_EQ(-inf, -any_dur / dbl_denorm);
|
|
EXPECT_EQ(inf, -any_dur / -dbl_denorm);
|
|
|
|
// IDiv
|
|
absl::Duration rem = zero;
|
|
EXPECT_EQ(kint64max, absl::IDivDuration(zero, zero, &rem));
|
|
EXPECT_EQ(inf, rem);
|
|
|
|
rem = zero;
|
|
EXPECT_EQ(kint64max, absl::IDivDuration(any_dur, zero, &rem));
|
|
EXPECT_EQ(inf, rem);
|
|
|
|
rem = zero;
|
|
EXPECT_EQ(kint64min, absl::IDivDuration(-any_dur, zero, &rem));
|
|
EXPECT_EQ(-inf, rem);
|
|
|
|
// Operator/(Duration, Duration)
|
|
EXPECT_EQ(kint64max, zero / zero);
|
|
EXPECT_EQ(kint64max, any_dur / zero);
|
|
EXPECT_EQ(kint64min, -any_dur / zero);
|
|
|
|
// FDiv
|
|
EXPECT_EQ(dbl_inf, absl::FDivDuration(zero, zero));
|
|
EXPECT_EQ(dbl_inf, absl::FDivDuration(any_dur, zero));
|
|
EXPECT_EQ(-dbl_inf, absl::FDivDuration(-any_dur, zero));
|
|
}
|
|
|
|
TEST(Duration, NaN) {
|
|
// Note that IEEE 754 does not define the behavior of a nan's sign when it is
|
|
// copied, so the code below allows for either + or - InfiniteDuration.
|
|
#define TEST_NAN_HANDLING(NAME, NAN) \
|
|
do { \
|
|
const auto inf = absl::InfiniteDuration(); \
|
|
auto x = NAME(NAN); \
|
|
EXPECT_TRUE(x == inf || x == -inf); \
|
|
auto y = NAME(42); \
|
|
y *= NAN; \
|
|
EXPECT_TRUE(y == inf || y == -inf); \
|
|
auto z = NAME(42); \
|
|
z /= NAN; \
|
|
EXPECT_TRUE(z == inf || z == -inf); \
|
|
} while (0)
|
|
|
|
const double nan = std::numeric_limits<double>::quiet_NaN();
|
|
TEST_NAN_HANDLING(absl::Nanoseconds, nan);
|
|
TEST_NAN_HANDLING(absl::Microseconds, nan);
|
|
TEST_NAN_HANDLING(absl::Milliseconds, nan);
|
|
TEST_NAN_HANDLING(absl::Seconds, nan);
|
|
TEST_NAN_HANDLING(absl::Minutes, nan);
|
|
TEST_NAN_HANDLING(absl::Hours, nan);
|
|
|
|
TEST_NAN_HANDLING(absl::Nanoseconds, -nan);
|
|
TEST_NAN_HANDLING(absl::Microseconds, -nan);
|
|
TEST_NAN_HANDLING(absl::Milliseconds, -nan);
|
|
TEST_NAN_HANDLING(absl::Seconds, -nan);
|
|
TEST_NAN_HANDLING(absl::Minutes, -nan);
|
|
TEST_NAN_HANDLING(absl::Hours, -nan);
|
|
|
|
#undef TEST_NAN_HANDLING
|
|
}
|
|
|
|
TEST(Duration, Range) {
|
|
const absl::Duration range = ApproxYears(100 * 1e9);
|
|
const absl::Duration range_future = range;
|
|
const absl::Duration range_past = -range;
|
|
|
|
EXPECT_LT(range_future, absl::InfiniteDuration());
|
|
EXPECT_GT(range_past, -absl::InfiniteDuration());
|
|
|
|
const absl::Duration full_range = range_future - range_past;
|
|
EXPECT_GT(full_range, absl::ZeroDuration());
|
|
EXPECT_LT(full_range, absl::InfiniteDuration());
|
|
|
|
const absl::Duration neg_full_range = range_past - range_future;
|
|
EXPECT_LT(neg_full_range, absl::ZeroDuration());
|
|
EXPECT_GT(neg_full_range, -absl::InfiniteDuration());
|
|
|
|
EXPECT_LT(neg_full_range, full_range);
|
|
EXPECT_EQ(neg_full_range, -full_range);
|
|
}
|
|
|
|
TEST(Duration, RelationalOperators) {
|
|
#define TEST_REL_OPS(UNIT) \
|
|
static_assert(UNIT(2) == UNIT(2), ""); \
|
|
static_assert(UNIT(1) != UNIT(2), ""); \
|
|
static_assert(UNIT(1) < UNIT(2), ""); \
|
|
static_assert(UNIT(3) > UNIT(2), ""); \
|
|
static_assert(UNIT(1) <= UNIT(2), ""); \
|
|
static_assert(UNIT(2) <= UNIT(2), ""); \
|
|
static_assert(UNIT(3) >= UNIT(2), ""); \
|
|
static_assert(UNIT(2) >= UNIT(2), "");
|
|
|
|
TEST_REL_OPS(absl::Nanoseconds);
|
|
TEST_REL_OPS(absl::Microseconds);
|
|
TEST_REL_OPS(absl::Milliseconds);
|
|
TEST_REL_OPS(absl::Seconds);
|
|
TEST_REL_OPS(absl::Minutes);
|
|
TEST_REL_OPS(absl::Hours);
|
|
|
|
#undef TEST_REL_OPS
|
|
}
|
|
|
|
TEST(Duration, Addition) {
|
|
#define TEST_ADD_OPS(UNIT) \
|
|
do { \
|
|
EXPECT_EQ(UNIT(2), UNIT(1) + UNIT(1)); \
|
|
EXPECT_EQ(UNIT(1), UNIT(2) - UNIT(1)); \
|
|
EXPECT_EQ(UNIT(0), UNIT(2) - UNIT(2)); \
|
|
EXPECT_EQ(UNIT(-1), UNIT(1) - UNIT(2)); \
|
|
EXPECT_EQ(UNIT(-2), UNIT(0) - UNIT(2)); \
|
|
EXPECT_EQ(UNIT(-2), UNIT(1) - UNIT(3)); \
|
|
absl::Duration a = UNIT(1); \
|
|
a += UNIT(1); \
|
|
EXPECT_EQ(UNIT(2), a); \
|
|
a -= UNIT(1); \
|
|
EXPECT_EQ(UNIT(1), a); \
|
|
} while (0)
|
|
|
|
TEST_ADD_OPS(absl::Nanoseconds);
|
|
TEST_ADD_OPS(absl::Microseconds);
|
|
TEST_ADD_OPS(absl::Milliseconds);
|
|
TEST_ADD_OPS(absl::Seconds);
|
|
TEST_ADD_OPS(absl::Minutes);
|
|
TEST_ADD_OPS(absl::Hours);
|
|
|
|
#undef TEST_ADD_OPS
|
|
|
|
EXPECT_EQ(absl::Seconds(2), absl::Seconds(3) - 2 * absl::Milliseconds(500));
|
|
EXPECT_EQ(absl::Seconds(2) + absl::Milliseconds(500),
|
|
absl::Seconds(3) - absl::Milliseconds(500));
|
|
|
|
EXPECT_EQ(absl::Seconds(1) + absl::Milliseconds(998),
|
|
absl::Milliseconds(999) + absl::Milliseconds(999));
|
|
|
|
EXPECT_EQ(absl::Milliseconds(-1),
|
|
absl::Milliseconds(998) - absl::Milliseconds(999));
|
|
|
|
// Tests fractions of a nanoseconds. These are implementation details only.
|
|
EXPECT_GT(absl::Nanoseconds(1), absl::Nanoseconds(1) / 2);
|
|
EXPECT_EQ(absl::Nanoseconds(1),
|
|
absl::Nanoseconds(1) / 2 + absl::Nanoseconds(1) / 2);
|
|
EXPECT_GT(absl::Nanoseconds(1) / 4, absl::Nanoseconds(0));
|
|
EXPECT_EQ(absl::Nanoseconds(1) / 8, absl::Nanoseconds(0));
|
|
|
|
// Tests subtraction that will cause wrap around of the rep_lo_ bits.
|
|
absl::Duration d_7_5 = absl::Seconds(7) + absl::Milliseconds(500);
|
|
absl::Duration d_3_7 = absl::Seconds(3) + absl::Milliseconds(700);
|
|
absl::Duration ans_3_8 = absl::Seconds(3) + absl::Milliseconds(800);
|
|
EXPECT_EQ(ans_3_8, d_7_5 - d_3_7);
|
|
|
|
// Subtracting min_duration
|
|
absl::Duration min_dur = absl::Seconds(kint64min);
|
|
EXPECT_EQ(absl::Seconds(0), min_dur - min_dur);
|
|
EXPECT_EQ(absl::Seconds(kint64max), absl::Seconds(-1) - min_dur);
|
|
}
|
|
|
|
TEST(Duration, Negation) {
|
|
// By storing negations of various values in constexpr variables we
|
|
// verify that the initializers are constant expressions.
|
|
constexpr absl::Duration negated_zero_duration = -absl::ZeroDuration();
|
|
EXPECT_EQ(negated_zero_duration, absl::ZeroDuration());
|
|
|
|
constexpr absl::Duration negated_infinite_duration =
|
|
-absl::InfiniteDuration();
|
|
EXPECT_NE(negated_infinite_duration, absl::InfiniteDuration());
|
|
EXPECT_EQ(-negated_infinite_duration, absl::InfiniteDuration());
|
|
|
|
// The public APIs to check if a duration is infinite depend on using
|
|
// -InfiniteDuration(), but we're trying to test operator- here, so we
|
|
// need to use the lower-level internal query IsInfiniteDuration.
|
|
EXPECT_TRUE(
|
|
absl::time_internal::IsInfiniteDuration(negated_infinite_duration));
|
|
|
|
// The largest Duration is kint64max seconds and kTicksPerSecond - 1 ticks.
|
|
// Using the absl::time_internal::MakeDuration API is the cleanest way to
|
|
// construct that Duration.
|
|
constexpr absl::Duration max_duration = absl::time_internal::MakeDuration(
|
|
kint64max, absl::time_internal::kTicksPerSecond - 1);
|
|
constexpr absl::Duration negated_max_duration = -max_duration;
|
|
// The largest negatable value is one tick above the minimum representable;
|
|
// it's the negation of max_duration.
|
|
constexpr absl::Duration nearly_min_duration =
|
|
absl::time_internal::MakeDuration(kint64min, int64_t{1});
|
|
constexpr absl::Duration negated_nearly_min_duration = -nearly_min_duration;
|
|
|
|
EXPECT_EQ(negated_max_duration, nearly_min_duration);
|
|
EXPECT_EQ(negated_nearly_min_duration, max_duration);
|
|
EXPECT_EQ(-(-max_duration), max_duration);
|
|
|
|
constexpr absl::Duration min_duration =
|
|
absl::time_internal::MakeDuration(kint64min);
|
|
constexpr absl::Duration negated_min_duration = -min_duration;
|
|
EXPECT_EQ(negated_min_duration, absl::InfiniteDuration());
|
|
}
|
|
|
|
TEST(Duration, AbsoluteValue) {
|
|
EXPECT_EQ(absl::ZeroDuration(), AbsDuration(absl::ZeroDuration()));
|
|
EXPECT_EQ(absl::Seconds(1), AbsDuration(absl::Seconds(1)));
|
|
EXPECT_EQ(absl::Seconds(1), AbsDuration(absl::Seconds(-1)));
|
|
|
|
EXPECT_EQ(absl::InfiniteDuration(), AbsDuration(absl::InfiniteDuration()));
|
|
EXPECT_EQ(absl::InfiniteDuration(), AbsDuration(-absl::InfiniteDuration()));
|
|
|
|
absl::Duration max_dur =
|
|
absl::Seconds(kint64max) + (absl::Seconds(1) - absl::Nanoseconds(1) / 4);
|
|
EXPECT_EQ(max_dur, AbsDuration(max_dur));
|
|
|
|
absl::Duration min_dur = absl::Seconds(kint64min);
|
|
EXPECT_EQ(absl::InfiniteDuration(), AbsDuration(min_dur));
|
|
EXPECT_EQ(max_dur, AbsDuration(min_dur + absl::Nanoseconds(1) / 4));
|
|
}
|
|
|
|
TEST(Duration, Multiplication) {
|
|
#define TEST_MUL_OPS(UNIT) \
|
|
do { \
|
|
EXPECT_EQ(UNIT(5), UNIT(2) * 2.5); \
|
|
EXPECT_EQ(UNIT(2), UNIT(5) / 2.5); \
|
|
EXPECT_EQ(UNIT(-5), UNIT(-2) * 2.5); \
|
|
EXPECT_EQ(UNIT(-5), -UNIT(2) * 2.5); \
|
|
EXPECT_EQ(UNIT(-5), UNIT(2) * -2.5); \
|
|
EXPECT_EQ(UNIT(-2), UNIT(-5) / 2.5); \
|
|
EXPECT_EQ(UNIT(-2), -UNIT(5) / 2.5); \
|
|
EXPECT_EQ(UNIT(-2), UNIT(5) / -2.5); \
|
|
EXPECT_EQ(UNIT(2), UNIT(11) % UNIT(3)); \
|
|
absl::Duration a = UNIT(2); \
|
|
a *= 2.5; \
|
|
EXPECT_EQ(UNIT(5), a); \
|
|
a /= 2.5; \
|
|
EXPECT_EQ(UNIT(2), a); \
|
|
a %= UNIT(1); \
|
|
EXPECT_EQ(UNIT(0), a); \
|
|
absl::Duration big = UNIT(1000000000); \
|
|
big *= 3; \
|
|
big /= 3; \
|
|
EXPECT_EQ(UNIT(1000000000), big); \
|
|
EXPECT_EQ(-UNIT(2), -UNIT(2)); \
|
|
EXPECT_EQ(-UNIT(2), UNIT(2) * -1); \
|
|
EXPECT_EQ(-UNIT(2), -1 * UNIT(2)); \
|
|
EXPECT_EQ(-UNIT(-2), UNIT(2)); \
|
|
EXPECT_EQ(2, UNIT(2) / UNIT(1)); \
|
|
absl::Duration rem; \
|
|
EXPECT_EQ(2, absl::IDivDuration(UNIT(2), UNIT(1), &rem)); \
|
|
EXPECT_EQ(2.0, absl::FDivDuration(UNIT(2), UNIT(1))); \
|
|
} while (0)
|
|
|
|
TEST_MUL_OPS(absl::Nanoseconds);
|
|
TEST_MUL_OPS(absl::Microseconds);
|
|
TEST_MUL_OPS(absl::Milliseconds);
|
|
TEST_MUL_OPS(absl::Seconds);
|
|
TEST_MUL_OPS(absl::Minutes);
|
|
TEST_MUL_OPS(absl::Hours);
|
|
|
|
#undef TEST_MUL_OPS
|
|
|
|
// Ensures that multiplication and division by 1 with a maxed-out durations
|
|
// doesn't lose precision.
|
|
absl::Duration max_dur =
|
|
absl::Seconds(kint64max) + (absl::Seconds(1) - absl::Nanoseconds(1) / 4);
|
|
absl::Duration min_dur = absl::Seconds(kint64min);
|
|
EXPECT_EQ(max_dur, max_dur * 1);
|
|
EXPECT_EQ(max_dur, max_dur / 1);
|
|
EXPECT_EQ(min_dur, min_dur * 1);
|
|
EXPECT_EQ(min_dur, min_dur / 1);
|
|
|
|
// Tests division on a Duration with a large number of significant digits.
|
|
// Tests when the digits span hi and lo as well as only in hi.
|
|
absl::Duration sigfigs = absl::Seconds(2000000000) + absl::Nanoseconds(3);
|
|
EXPECT_EQ(absl::Seconds(666666666) + absl::Nanoseconds(666666667) +
|
|
absl::Nanoseconds(1) / 2,
|
|
sigfigs / 3);
|
|
sigfigs = absl::Seconds(int64_t{7000000000});
|
|
EXPECT_EQ(absl::Seconds(2333333333) + absl::Nanoseconds(333333333) +
|
|
absl::Nanoseconds(1) / 4,
|
|
sigfigs / 3);
|
|
|
|
EXPECT_EQ(absl::Seconds(7) + absl::Milliseconds(500), absl::Seconds(3) * 2.5);
|
|
EXPECT_EQ(absl::Seconds(8) * -1 + absl::Milliseconds(300),
|
|
(absl::Seconds(2) + absl::Milliseconds(200)) * -3.5);
|
|
EXPECT_EQ(-absl::Seconds(8) + absl::Milliseconds(300),
|
|
(absl::Seconds(2) + absl::Milliseconds(200)) * -3.5);
|
|
EXPECT_EQ(absl::Seconds(1) + absl::Milliseconds(875),
|
|
(absl::Seconds(7) + absl::Milliseconds(500)) / 4);
|
|
EXPECT_EQ(absl::Seconds(30),
|
|
(absl::Seconds(7) + absl::Milliseconds(500)) / 0.25);
|
|
EXPECT_EQ(absl::Seconds(3),
|
|
(absl::Seconds(7) + absl::Milliseconds(500)) / 2.5);
|
|
|
|
// Tests division remainder.
|
|
EXPECT_EQ(absl::Nanoseconds(0), absl::Nanoseconds(7) % absl::Nanoseconds(1));
|
|
EXPECT_EQ(absl::Nanoseconds(0), absl::Nanoseconds(0) % absl::Nanoseconds(10));
|
|
EXPECT_EQ(absl::Nanoseconds(2), absl::Nanoseconds(7) % absl::Nanoseconds(5));
|
|
EXPECT_EQ(absl::Nanoseconds(2), absl::Nanoseconds(2) % absl::Nanoseconds(5));
|
|
|
|
EXPECT_EQ(absl::Nanoseconds(1), absl::Nanoseconds(10) % absl::Nanoseconds(3));
|
|
EXPECT_EQ(absl::Nanoseconds(1),
|
|
absl::Nanoseconds(10) % absl::Nanoseconds(-3));
|
|
EXPECT_EQ(absl::Nanoseconds(-1),
|
|
absl::Nanoseconds(-10) % absl::Nanoseconds(3));
|
|
EXPECT_EQ(absl::Nanoseconds(-1),
|
|
absl::Nanoseconds(-10) % absl::Nanoseconds(-3));
|
|
|
|
EXPECT_EQ(absl::Milliseconds(100),
|
|
absl::Seconds(1) % absl::Milliseconds(300));
|
|
EXPECT_EQ(
|
|
absl::Milliseconds(300),
|
|
(absl::Seconds(3) + absl::Milliseconds(800)) % absl::Milliseconds(500));
|
|
|
|
EXPECT_EQ(absl::Nanoseconds(1), absl::Nanoseconds(1) % absl::Seconds(1));
|
|
EXPECT_EQ(absl::Nanoseconds(-1), absl::Nanoseconds(-1) % absl::Seconds(1));
|
|
EXPECT_EQ(0, absl::Nanoseconds(-1) / absl::Seconds(1)); // Actual -1e-9
|
|
|
|
// Tests identity a = (a/b)*b + a%b
|
|
#define TEST_MOD_IDENTITY(a, b) \
|
|
EXPECT_EQ((a), ((a) / (b))*(b) + ((a)%(b)))
|
|
|
|
TEST_MOD_IDENTITY(absl::Seconds(0), absl::Seconds(2));
|
|
TEST_MOD_IDENTITY(absl::Seconds(1), absl::Seconds(1));
|
|
TEST_MOD_IDENTITY(absl::Seconds(1), absl::Seconds(2));
|
|
TEST_MOD_IDENTITY(absl::Seconds(2), absl::Seconds(1));
|
|
|
|
TEST_MOD_IDENTITY(absl::Seconds(-2), absl::Seconds(1));
|
|
TEST_MOD_IDENTITY(absl::Seconds(2), absl::Seconds(-1));
|
|
TEST_MOD_IDENTITY(absl::Seconds(-2), absl::Seconds(-1));
|
|
|
|
TEST_MOD_IDENTITY(absl::Nanoseconds(0), absl::Nanoseconds(2));
|
|
TEST_MOD_IDENTITY(absl::Nanoseconds(1), absl::Nanoseconds(1));
|
|
TEST_MOD_IDENTITY(absl::Nanoseconds(1), absl::Nanoseconds(2));
|
|
TEST_MOD_IDENTITY(absl::Nanoseconds(2), absl::Nanoseconds(1));
|
|
|
|
TEST_MOD_IDENTITY(absl::Nanoseconds(-2), absl::Nanoseconds(1));
|
|
TEST_MOD_IDENTITY(absl::Nanoseconds(2), absl::Nanoseconds(-1));
|
|
TEST_MOD_IDENTITY(absl::Nanoseconds(-2), absl::Nanoseconds(-1));
|
|
|
|
// Mixed seconds + subseconds
|
|
absl::Duration mixed_a = absl::Seconds(1) + absl::Nanoseconds(2);
|
|
absl::Duration mixed_b = absl::Seconds(1) + absl::Nanoseconds(3);
|
|
|
|
TEST_MOD_IDENTITY(absl::Seconds(0), mixed_a);
|
|
TEST_MOD_IDENTITY(mixed_a, mixed_a);
|
|
TEST_MOD_IDENTITY(mixed_a, mixed_b);
|
|
TEST_MOD_IDENTITY(mixed_b, mixed_a);
|
|
|
|
TEST_MOD_IDENTITY(-mixed_a, mixed_b);
|
|
TEST_MOD_IDENTITY(mixed_a, -mixed_b);
|
|
TEST_MOD_IDENTITY(-mixed_a, -mixed_b);
|
|
|
|
#undef TEST_MOD_IDENTITY
|
|
}
|
|
|
|
TEST(Duration, Truncation) {
|
|
const absl::Duration d = absl::Nanoseconds(1234567890);
|
|
const absl::Duration inf = absl::InfiniteDuration();
|
|
for (int unit_sign : {1, -1}) { // sign shouldn't matter
|
|
EXPECT_EQ(absl::Nanoseconds(1234567890),
|
|
Trunc(d, unit_sign * absl::Nanoseconds(1)));
|
|
EXPECT_EQ(absl::Microseconds(1234567),
|
|
Trunc(d, unit_sign * absl::Microseconds(1)));
|
|
EXPECT_EQ(absl::Milliseconds(1234),
|
|
Trunc(d, unit_sign * absl::Milliseconds(1)));
|
|
EXPECT_EQ(absl::Seconds(1), Trunc(d, unit_sign * absl::Seconds(1)));
|
|
EXPECT_EQ(inf, Trunc(inf, unit_sign * absl::Seconds(1)));
|
|
|
|
EXPECT_EQ(absl::Nanoseconds(-1234567890),
|
|
Trunc(-d, unit_sign * absl::Nanoseconds(1)));
|
|
EXPECT_EQ(absl::Microseconds(-1234567),
|
|
Trunc(-d, unit_sign * absl::Microseconds(1)));
|
|
EXPECT_EQ(absl::Milliseconds(-1234),
|
|
Trunc(-d, unit_sign * absl::Milliseconds(1)));
|
|
EXPECT_EQ(absl::Seconds(-1), Trunc(-d, unit_sign * absl::Seconds(1)));
|
|
EXPECT_EQ(-inf, Trunc(-inf, unit_sign * absl::Seconds(1)));
|
|
}
|
|
}
|
|
|
|
TEST(Duration, Flooring) {
|
|
const absl::Duration d = absl::Nanoseconds(1234567890);
|
|
const absl::Duration inf = absl::InfiniteDuration();
|
|
for (int unit_sign : {1, -1}) { // sign shouldn't matter
|
|
EXPECT_EQ(absl::Nanoseconds(1234567890),
|
|
absl::Floor(d, unit_sign * absl::Nanoseconds(1)));
|
|
EXPECT_EQ(absl::Microseconds(1234567),
|
|
absl::Floor(d, unit_sign * absl::Microseconds(1)));
|
|
EXPECT_EQ(absl::Milliseconds(1234),
|
|
absl::Floor(d, unit_sign * absl::Milliseconds(1)));
|
|
EXPECT_EQ(absl::Seconds(1), absl::Floor(d, unit_sign * absl::Seconds(1)));
|
|
EXPECT_EQ(inf, absl::Floor(inf, unit_sign * absl::Seconds(1)));
|
|
|
|
EXPECT_EQ(absl::Nanoseconds(-1234567890),
|
|
absl::Floor(-d, unit_sign * absl::Nanoseconds(1)));
|
|
EXPECT_EQ(absl::Microseconds(-1234568),
|
|
absl::Floor(-d, unit_sign * absl::Microseconds(1)));
|
|
EXPECT_EQ(absl::Milliseconds(-1235),
|
|
absl::Floor(-d, unit_sign * absl::Milliseconds(1)));
|
|
EXPECT_EQ(absl::Seconds(-2), absl::Floor(-d, unit_sign * absl::Seconds(1)));
|
|
EXPECT_EQ(-inf, absl::Floor(-inf, unit_sign * absl::Seconds(1)));
|
|
}
|
|
}
|
|
|
|
TEST(Duration, Ceiling) {
|
|
const absl::Duration d = absl::Nanoseconds(1234567890);
|
|
const absl::Duration inf = absl::InfiniteDuration();
|
|
for (int unit_sign : {1, -1}) { // // sign shouldn't matter
|
|
EXPECT_EQ(absl::Nanoseconds(1234567890),
|
|
absl::Ceil(d, unit_sign * absl::Nanoseconds(1)));
|
|
EXPECT_EQ(absl::Microseconds(1234568),
|
|
absl::Ceil(d, unit_sign * absl::Microseconds(1)));
|
|
EXPECT_EQ(absl::Milliseconds(1235),
|
|
absl::Ceil(d, unit_sign * absl::Milliseconds(1)));
|
|
EXPECT_EQ(absl::Seconds(2), absl::Ceil(d, unit_sign * absl::Seconds(1)));
|
|
EXPECT_EQ(inf, absl::Ceil(inf, unit_sign * absl::Seconds(1)));
|
|
|
|
EXPECT_EQ(absl::Nanoseconds(-1234567890),
|
|
absl::Ceil(-d, unit_sign * absl::Nanoseconds(1)));
|
|
EXPECT_EQ(absl::Microseconds(-1234567),
|
|
absl::Ceil(-d, unit_sign * absl::Microseconds(1)));
|
|
EXPECT_EQ(absl::Milliseconds(-1234),
|
|
absl::Ceil(-d, unit_sign * absl::Milliseconds(1)));
|
|
EXPECT_EQ(absl::Seconds(-1), absl::Ceil(-d, unit_sign * absl::Seconds(1)));
|
|
EXPECT_EQ(-inf, absl::Ceil(-inf, unit_sign * absl::Seconds(1)));
|
|
}
|
|
}
|
|
|
|
TEST(Duration, RoundTripUnits) {
|
|
const int kRange = 100000;
|
|
|
|
#define ROUND_TRIP_UNIT(U, LOW, HIGH) \
|
|
do { \
|
|
for (int64_t i = LOW; i < HIGH; ++i) { \
|
|
absl::Duration d = absl::U(i); \
|
|
if (d == absl::InfiniteDuration()) \
|
|
EXPECT_EQ(kint64max, d / absl::U(1)); \
|
|
else if (d == -absl::InfiniteDuration()) \
|
|
EXPECT_EQ(kint64min, d / absl::U(1)); \
|
|
else \
|
|
EXPECT_EQ(i, absl::U(i) / absl::U(1)); \
|
|
} \
|
|
} while (0)
|
|
|
|
ROUND_TRIP_UNIT(Nanoseconds, kint64min, kint64min + kRange);
|
|
ROUND_TRIP_UNIT(Nanoseconds, -kRange, kRange);
|
|
ROUND_TRIP_UNIT(Nanoseconds, kint64max - kRange, kint64max);
|
|
|
|
ROUND_TRIP_UNIT(Microseconds, kint64min, kint64min + kRange);
|
|
ROUND_TRIP_UNIT(Microseconds, -kRange, kRange);
|
|
ROUND_TRIP_UNIT(Microseconds, kint64max - kRange, kint64max);
|
|
|
|
ROUND_TRIP_UNIT(Milliseconds, kint64min, kint64min + kRange);
|
|
ROUND_TRIP_UNIT(Milliseconds, -kRange, kRange);
|
|
ROUND_TRIP_UNIT(Milliseconds, kint64max - kRange, kint64max);
|
|
|
|
ROUND_TRIP_UNIT(Seconds, kint64min, kint64min + kRange);
|
|
ROUND_TRIP_UNIT(Seconds, -kRange, kRange);
|
|
ROUND_TRIP_UNIT(Seconds, kint64max - kRange, kint64max);
|
|
|
|
ROUND_TRIP_UNIT(Minutes, kint64min / 60, kint64min / 60 + kRange);
|
|
ROUND_TRIP_UNIT(Minutes, -kRange, kRange);
|
|
ROUND_TRIP_UNIT(Minutes, kint64max / 60 - kRange, kint64max / 60);
|
|
|
|
ROUND_TRIP_UNIT(Hours, kint64min / 3600, kint64min / 3600 + kRange);
|
|
ROUND_TRIP_UNIT(Hours, -kRange, kRange);
|
|
ROUND_TRIP_UNIT(Hours, kint64max / 3600 - kRange, kint64max / 3600);
|
|
|
|
#undef ROUND_TRIP_UNIT
|
|
}
|
|
|
|
TEST(Duration, TruncConversions) {
|
|
// Tests ToTimespec()/DurationFromTimespec()
|
|
const struct {
|
|
absl::Duration d;
|
|
timespec ts;
|
|
} to_ts[] = {
|
|
{absl::Seconds(1) + absl::Nanoseconds(1), {1, 1}},
|
|
{absl::Seconds(1) + absl::Nanoseconds(1) / 2, {1, 0}},
|
|
{absl::Seconds(1) + absl::Nanoseconds(0), {1, 0}},
|
|
{absl::Seconds(0) + absl::Nanoseconds(0), {0, 0}},
|
|
{absl::Seconds(0) - absl::Nanoseconds(1) / 2, {0, 0}},
|
|
{absl::Seconds(0) - absl::Nanoseconds(1), {-1, 999999999}},
|
|
{absl::Seconds(-1) + absl::Nanoseconds(1), {-1, 1}},
|
|
{absl::Seconds(-1) + absl::Nanoseconds(1) / 2, {-1, 1}},
|
|
{absl::Seconds(-1) + absl::Nanoseconds(0), {-1, 0}},
|
|
{absl::Seconds(-1) - absl::Nanoseconds(1) / 2, {-1, 0}},
|
|
};
|
|
for (const auto& test : to_ts) {
|
|
EXPECT_THAT(absl::ToTimespec(test.d), TimespecMatcher(test.ts));
|
|
}
|
|
const struct {
|
|
timespec ts;
|
|
absl::Duration d;
|
|
} from_ts[] = {
|
|
{{1, 1}, absl::Seconds(1) + absl::Nanoseconds(1)},
|
|
{{1, 0}, absl::Seconds(1) + absl::Nanoseconds(0)},
|
|
{{0, 0}, absl::Seconds(0) + absl::Nanoseconds(0)},
|
|
{{0, -1}, absl::Seconds(0) - absl::Nanoseconds(1)},
|
|
{{-1, 999999999}, absl::Seconds(0) - absl::Nanoseconds(1)},
|
|
{{-1, 1}, absl::Seconds(-1) + absl::Nanoseconds(1)},
|
|
{{-1, 0}, absl::Seconds(-1) + absl::Nanoseconds(0)},
|
|
{{-1, -1}, absl::Seconds(-1) - absl::Nanoseconds(1)},
|
|
{{-2, 999999999}, absl::Seconds(-1) - absl::Nanoseconds(1)},
|
|
};
|
|
for (const auto& test : from_ts) {
|
|
EXPECT_EQ(test.d, absl::DurationFromTimespec(test.ts));
|
|
}
|
|
|
|
// Tests ToTimeval()/DurationFromTimeval() (same as timespec above)
|
|
const struct {
|
|
absl::Duration d;
|
|
timeval tv;
|
|
} to_tv[] = {
|
|
{absl::Seconds(1) + absl::Microseconds(1), {1, 1}},
|
|
{absl::Seconds(1) + absl::Microseconds(1) / 2, {1, 0}},
|
|
{absl::Seconds(1) + absl::Microseconds(0), {1, 0}},
|
|
{absl::Seconds(0) + absl::Microseconds(0), {0, 0}},
|
|
{absl::Seconds(0) - absl::Microseconds(1) / 2, {0, 0}},
|
|
{absl::Seconds(0) - absl::Microseconds(1), {-1, 999999}},
|
|
{absl::Seconds(-1) + absl::Microseconds(1), {-1, 1}},
|
|
{absl::Seconds(-1) + absl::Microseconds(1) / 2, {-1, 1}},
|
|
{absl::Seconds(-1) + absl::Microseconds(0), {-1, 0}},
|
|
{absl::Seconds(-1) - absl::Microseconds(1) / 2, {-1, 0}},
|
|
};
|
|
for (const auto& test : to_tv) {
|
|
EXPECT_THAT(absl::ToTimeval(test.d), TimevalMatcher(test.tv));
|
|
}
|
|
const struct {
|
|
timeval tv;
|
|
absl::Duration d;
|
|
} from_tv[] = {
|
|
{{1, 1}, absl::Seconds(1) + absl::Microseconds(1)},
|
|
{{1, 0}, absl::Seconds(1) + absl::Microseconds(0)},
|
|
{{0, 0}, absl::Seconds(0) + absl::Microseconds(0)},
|
|
{{0, -1}, absl::Seconds(0) - absl::Microseconds(1)},
|
|
{{-1, 999999}, absl::Seconds(0) - absl::Microseconds(1)},
|
|
{{-1, 1}, absl::Seconds(-1) + absl::Microseconds(1)},
|
|
{{-1, 0}, absl::Seconds(-1) + absl::Microseconds(0)},
|
|
{{-1, -1}, absl::Seconds(-1) - absl::Microseconds(1)},
|
|
{{-2, 999999}, absl::Seconds(-1) - absl::Microseconds(1)},
|
|
};
|
|
for (const auto& test : from_tv) {
|
|
EXPECT_EQ(test.d, absl::DurationFromTimeval(test.tv));
|
|
}
|
|
}
|
|
|
|
TEST(Duration, SmallConversions) {
|
|
// Special tests for conversions of small durations.
|
|
|
|
EXPECT_EQ(absl::ZeroDuration(), absl::Seconds(0));
|
|
// TODO(bww): Is the next one OK?
|
|
EXPECT_EQ(absl::ZeroDuration(), absl::Seconds(0.124999999e-9));
|
|
EXPECT_EQ(absl::Nanoseconds(1) / 4, absl::Seconds(0.125e-9));
|
|
EXPECT_EQ(absl::Nanoseconds(1) / 4, absl::Seconds(0.250e-9));
|
|
EXPECT_EQ(absl::Nanoseconds(1) / 2, absl::Seconds(0.375e-9));
|
|
EXPECT_EQ(absl::Nanoseconds(1) / 2, absl::Seconds(0.500e-9));
|
|
EXPECT_EQ(absl::Nanoseconds(3) / 4, absl::Seconds(0.625e-9));
|
|
EXPECT_EQ(absl::Nanoseconds(3) / 4, absl::Seconds(0.750e-9));
|
|
EXPECT_EQ(absl::Nanoseconds(1), absl::Seconds(0.875e-9));
|
|
EXPECT_EQ(absl::Nanoseconds(1), absl::Seconds(1.000e-9));
|
|
|
|
EXPECT_EQ(absl::ZeroDuration(), absl::Seconds(-0.124999999e-9));
|
|
EXPECT_EQ(-absl::Nanoseconds(1) / 4, absl::Seconds(-0.125e-9));
|
|
EXPECT_EQ(-absl::Nanoseconds(1) / 4, absl::Seconds(-0.250e-9));
|
|
EXPECT_EQ(-absl::Nanoseconds(1) / 2, absl::Seconds(-0.375e-9));
|
|
EXPECT_EQ(-absl::Nanoseconds(1) / 2, absl::Seconds(-0.500e-9));
|
|
EXPECT_EQ(-absl::Nanoseconds(3) / 4, absl::Seconds(-0.625e-9));
|
|
EXPECT_EQ(-absl::Nanoseconds(3) / 4, absl::Seconds(-0.750e-9));
|
|
EXPECT_EQ(-absl::Nanoseconds(1), absl::Seconds(-0.875e-9));
|
|
EXPECT_EQ(-absl::Nanoseconds(1), absl::Seconds(-1.000e-9));
|
|
|
|
timespec ts;
|
|
ts.tv_sec = 0;
|
|
ts.tv_nsec = 0;
|
|
EXPECT_THAT(ToTimespec(absl::Nanoseconds(0)), TimespecMatcher(ts));
|
|
// TODO(bww): Are the next three OK?
|
|
EXPECT_THAT(ToTimespec(absl::Nanoseconds(1) / 4), TimespecMatcher(ts));
|
|
EXPECT_THAT(ToTimespec(absl::Nanoseconds(2) / 4), TimespecMatcher(ts));
|
|
EXPECT_THAT(ToTimespec(absl::Nanoseconds(3) / 4), TimespecMatcher(ts));
|
|
ts.tv_nsec = 1;
|
|
EXPECT_THAT(ToTimespec(absl::Nanoseconds(4) / 4), TimespecMatcher(ts));
|
|
EXPECT_THAT(ToTimespec(absl::Nanoseconds(5) / 4), TimespecMatcher(ts));
|
|
EXPECT_THAT(ToTimespec(absl::Nanoseconds(6) / 4), TimespecMatcher(ts));
|
|
EXPECT_THAT(ToTimespec(absl::Nanoseconds(7) / 4), TimespecMatcher(ts));
|
|
ts.tv_nsec = 2;
|
|
EXPECT_THAT(ToTimespec(absl::Nanoseconds(8) / 4), TimespecMatcher(ts));
|
|
|
|
timeval tv;
|
|
tv.tv_sec = 0;
|
|
tv.tv_usec = 0;
|
|
EXPECT_THAT(ToTimeval(absl::Nanoseconds(0)), TimevalMatcher(tv));
|
|
// TODO(bww): Is the next one OK?
|
|
EXPECT_THAT(ToTimeval(absl::Nanoseconds(999)), TimevalMatcher(tv));
|
|
tv.tv_usec = 1;
|
|
EXPECT_THAT(ToTimeval(absl::Nanoseconds(1000)), TimevalMatcher(tv));
|
|
EXPECT_THAT(ToTimeval(absl::Nanoseconds(1999)), TimevalMatcher(tv));
|
|
tv.tv_usec = 2;
|
|
EXPECT_THAT(ToTimeval(absl::Nanoseconds(2000)), TimevalMatcher(tv));
|
|
}
|
|
|
|
void VerifySameAsMul(double time_as_seconds, int* const misses) {
|
|
auto direct_seconds = absl::Seconds(time_as_seconds);
|
|
auto mul_by_one_second = time_as_seconds * absl::Seconds(1);
|
|
if (direct_seconds != mul_by_one_second) {
|
|
if (*misses > 10) return;
|
|
ASSERT_LE(++(*misses), 10) << "Too many errors, not reporting more.";
|
|
EXPECT_EQ(direct_seconds, mul_by_one_second)
|
|
<< "given double time_as_seconds = " << std::setprecision(17)
|
|
<< time_as_seconds;
|
|
}
|
|
}
|
|
|
|
// For a variety of interesting durations, we find the exact point
|
|
// where one double converts to that duration, and the very next double
|
|
// converts to the next duration. For both of those points, verify that
|
|
// Seconds(point) returns the same duration as point * Seconds(1.0)
|
|
TEST(Duration, ToDoubleSecondsCheckEdgeCases) {
|
|
constexpr uint32_t kTicksPerSecond = absl::time_internal::kTicksPerSecond;
|
|
constexpr auto duration_tick = absl::time_internal::MakeDuration(0, 1u);
|
|
int misses = 0;
|
|
for (int64_t seconds = 0; seconds < 99; ++seconds) {
|
|
uint32_t tick_vals[] = {0, +999, +999999, +999999999, kTicksPerSecond - 1,
|
|
0, 1000, 1000000, 1000000000, kTicksPerSecond,
|
|
1, 1001, 1000001, 1000000001, kTicksPerSecond + 1,
|
|
2, 1002, 1000002, 1000000002, kTicksPerSecond + 2,
|
|
3, 1003, 1000003, 1000000003, kTicksPerSecond + 3,
|
|
4, 1004, 1000004, 1000000004, kTicksPerSecond + 4,
|
|
5, 6, 7, 8, 9};
|
|
for (uint32_t ticks : tick_vals) {
|
|
absl::Duration s_plus_t = absl::Seconds(seconds) + ticks * duration_tick;
|
|
for (absl::Duration d : {s_plus_t, -s_plus_t}) {
|
|
absl::Duration after_d = d + duration_tick;
|
|
EXPECT_NE(d, after_d);
|
|
EXPECT_EQ(after_d - d, duration_tick);
|
|
|
|
double low_edge = ToDoubleSeconds(d);
|
|
EXPECT_EQ(d, absl::Seconds(low_edge));
|
|
|
|
double high_edge = ToDoubleSeconds(after_d);
|
|
EXPECT_EQ(after_d, absl::Seconds(high_edge));
|
|
|
|
for (;;) {
|
|
double midpoint = low_edge + (high_edge - low_edge) / 2;
|
|
if (midpoint == low_edge || midpoint == high_edge) break;
|
|
absl::Duration mid_duration = absl::Seconds(midpoint);
|
|
if (mid_duration == d) {
|
|
low_edge = midpoint;
|
|
} else {
|
|
EXPECT_EQ(mid_duration, after_d);
|
|
high_edge = midpoint;
|
|
}
|
|
}
|
|
// Now low_edge is the highest double that converts to Duration d,
|
|
// and high_edge is the lowest double that converts to Duration after_d.
|
|
VerifySameAsMul(low_edge, &misses);
|
|
VerifySameAsMul(high_edge, &misses);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(Duration, ToDoubleSecondsCheckRandom) {
|
|
std::random_device rd;
|
|
std::seed_seq seed({rd(), rd(), rd(), rd(), rd(), rd(), rd(), rd()});
|
|
std::mt19937_64 gen(seed);
|
|
// We want doubles distributed from 1/8ns up to 2^63, where
|
|
// as many values are tested from 1ns to 2ns as from 1sec to 2sec,
|
|
// so even distribute along a log-scale of those values, and
|
|
// exponentiate before using them. (9.223377e+18 is just slightly
|
|
// out of bounds for absl::Duration.)
|
|
std::uniform_real_distribution<double> uniform(std::log(0.125e-9),
|
|
std::log(9.223377e+18));
|
|
int misses = 0;
|
|
for (int i = 0; i < 1000000; ++i) {
|
|
double d = std::exp(uniform(gen));
|
|
VerifySameAsMul(d, &misses);
|
|
VerifySameAsMul(-d, &misses);
|
|
}
|
|
}
|
|
|
|
TEST(Duration, ConversionSaturation) {
|
|
absl::Duration d;
|
|
|
|
const auto max_timeval_sec =
|
|
std::numeric_limits<decltype(timeval::tv_sec)>::max();
|
|
const auto min_timeval_sec =
|
|
std::numeric_limits<decltype(timeval::tv_sec)>::min();
|
|
timeval tv;
|
|
tv.tv_sec = max_timeval_sec;
|
|
tv.tv_usec = 999998;
|
|
d = absl::DurationFromTimeval(tv);
|
|
tv = ToTimeval(d);
|
|
EXPECT_EQ(max_timeval_sec, tv.tv_sec);
|
|
EXPECT_EQ(999998, tv.tv_usec);
|
|
d += absl::Microseconds(1);
|
|
tv = ToTimeval(d);
|
|
EXPECT_EQ(max_timeval_sec, tv.tv_sec);
|
|
EXPECT_EQ(999999, tv.tv_usec);
|
|
d += absl::Microseconds(1); // no effect
|
|
tv = ToTimeval(d);
|
|
EXPECT_EQ(max_timeval_sec, tv.tv_sec);
|
|
EXPECT_EQ(999999, tv.tv_usec);
|
|
|
|
tv.tv_sec = min_timeval_sec;
|
|
tv.tv_usec = 1;
|
|
d = absl::DurationFromTimeval(tv);
|
|
tv = ToTimeval(d);
|
|
EXPECT_EQ(min_timeval_sec, tv.tv_sec);
|
|
EXPECT_EQ(1, tv.tv_usec);
|
|
d -= absl::Microseconds(1);
|
|
tv = ToTimeval(d);
|
|
EXPECT_EQ(min_timeval_sec, tv.tv_sec);
|
|
EXPECT_EQ(0, tv.tv_usec);
|
|
d -= absl::Microseconds(1); // no effect
|
|
tv = ToTimeval(d);
|
|
EXPECT_EQ(min_timeval_sec, tv.tv_sec);
|
|
EXPECT_EQ(0, tv.tv_usec);
|
|
|
|
const auto max_timespec_sec =
|
|
std::numeric_limits<decltype(timespec::tv_sec)>::max();
|
|
const auto min_timespec_sec =
|
|
std::numeric_limits<decltype(timespec::tv_sec)>::min();
|
|
timespec ts;
|
|
ts.tv_sec = max_timespec_sec;
|
|
ts.tv_nsec = 999999998;
|
|
d = absl::DurationFromTimespec(ts);
|
|
ts = absl::ToTimespec(d);
|
|
EXPECT_EQ(max_timespec_sec, ts.tv_sec);
|
|
EXPECT_EQ(999999998, ts.tv_nsec);
|
|
d += absl::Nanoseconds(1);
|
|
ts = absl::ToTimespec(d);
|
|
EXPECT_EQ(max_timespec_sec, ts.tv_sec);
|
|
EXPECT_EQ(999999999, ts.tv_nsec);
|
|
d += absl::Nanoseconds(1); // no effect
|
|
ts = absl::ToTimespec(d);
|
|
EXPECT_EQ(max_timespec_sec, ts.tv_sec);
|
|
EXPECT_EQ(999999999, ts.tv_nsec);
|
|
|
|
ts.tv_sec = min_timespec_sec;
|
|
ts.tv_nsec = 1;
|
|
d = absl::DurationFromTimespec(ts);
|
|
ts = absl::ToTimespec(d);
|
|
EXPECT_EQ(min_timespec_sec, ts.tv_sec);
|
|
EXPECT_EQ(1, ts.tv_nsec);
|
|
d -= absl::Nanoseconds(1);
|
|
ts = absl::ToTimespec(d);
|
|
EXPECT_EQ(min_timespec_sec, ts.tv_sec);
|
|
EXPECT_EQ(0, ts.tv_nsec);
|
|
d -= absl::Nanoseconds(1); // no effect
|
|
ts = absl::ToTimespec(d);
|
|
EXPECT_EQ(min_timespec_sec, ts.tv_sec);
|
|
EXPECT_EQ(0, ts.tv_nsec);
|
|
}
|
|
|
|
TEST(Duration, FormatDuration) {
|
|
// Example from Go's docs.
|
|
EXPECT_EQ("72h3m0.5s",
|
|
absl::FormatDuration(absl::Hours(72) + absl::Minutes(3) +
|
|
absl::Milliseconds(500)));
|
|
// Go's largest time: 2540400h10m10.000000000s
|
|
EXPECT_EQ("2540400h10m10s",
|
|
absl::FormatDuration(absl::Hours(2540400) + absl::Minutes(10) +
|
|
absl::Seconds(10)));
|
|
|
|
EXPECT_EQ("0", absl::FormatDuration(absl::ZeroDuration()));
|
|
EXPECT_EQ("0", absl::FormatDuration(absl::Seconds(0)));
|
|
EXPECT_EQ("0", absl::FormatDuration(absl::Nanoseconds(0)));
|
|
|
|
EXPECT_EQ("1ns", absl::FormatDuration(absl::Nanoseconds(1)));
|
|
EXPECT_EQ("1us", absl::FormatDuration(absl::Microseconds(1)));
|
|
EXPECT_EQ("1ms", absl::FormatDuration(absl::Milliseconds(1)));
|
|
EXPECT_EQ("1s", absl::FormatDuration(absl::Seconds(1)));
|
|
EXPECT_EQ("1m", absl::FormatDuration(absl::Minutes(1)));
|
|
EXPECT_EQ("1h", absl::FormatDuration(absl::Hours(1)));
|
|
|
|
EXPECT_EQ("1h1m", absl::FormatDuration(absl::Hours(1) + absl::Minutes(1)));
|
|
EXPECT_EQ("1h1s", absl::FormatDuration(absl::Hours(1) + absl::Seconds(1)));
|
|
EXPECT_EQ("1m1s", absl::FormatDuration(absl::Minutes(1) + absl::Seconds(1)));
|
|
|
|
EXPECT_EQ("1h0.25s",
|
|
absl::FormatDuration(absl::Hours(1) + absl::Milliseconds(250)));
|
|
EXPECT_EQ("1m0.25s",
|
|
absl::FormatDuration(absl::Minutes(1) + absl::Milliseconds(250)));
|
|
EXPECT_EQ("1h1m0.25s",
|
|
absl::FormatDuration(absl::Hours(1) + absl::Minutes(1) +
|
|
absl::Milliseconds(250)));
|
|
EXPECT_EQ("1h0.0005s",
|
|
absl::FormatDuration(absl::Hours(1) + absl::Microseconds(500)));
|
|
EXPECT_EQ("1h0.0000005s",
|
|
absl::FormatDuration(absl::Hours(1) + absl::Nanoseconds(500)));
|
|
|
|
// Subsecond special case.
|
|
EXPECT_EQ("1.5ns", absl::FormatDuration(absl::Nanoseconds(1) +
|
|
absl::Nanoseconds(1) / 2));
|
|
EXPECT_EQ("1.25ns", absl::FormatDuration(absl::Nanoseconds(1) +
|
|
absl::Nanoseconds(1) / 4));
|
|
EXPECT_EQ("1ns", absl::FormatDuration(absl::Nanoseconds(1) +
|
|
absl::Nanoseconds(1) / 9));
|
|
EXPECT_EQ("1.2us", absl::FormatDuration(absl::Microseconds(1) +
|
|
absl::Nanoseconds(200)));
|
|
EXPECT_EQ("1.2ms", absl::FormatDuration(absl::Milliseconds(1) +
|
|
absl::Microseconds(200)));
|
|
EXPECT_EQ("1.0002ms", absl::FormatDuration(absl::Milliseconds(1) +
|
|
absl::Nanoseconds(200)));
|
|
EXPECT_EQ("1.00001ms", absl::FormatDuration(absl::Milliseconds(1) +
|
|
absl::Nanoseconds(10)));
|
|
EXPECT_EQ("1.000001ms",
|
|
absl::FormatDuration(absl::Milliseconds(1) + absl::Nanoseconds(1)));
|
|
|
|
// Negative durations.
|
|
EXPECT_EQ("-1ns", absl::FormatDuration(absl::Nanoseconds(-1)));
|
|
EXPECT_EQ("-1us", absl::FormatDuration(absl::Microseconds(-1)));
|
|
EXPECT_EQ("-1ms", absl::FormatDuration(absl::Milliseconds(-1)));
|
|
EXPECT_EQ("-1s", absl::FormatDuration(absl::Seconds(-1)));
|
|
EXPECT_EQ("-1m", absl::FormatDuration(absl::Minutes(-1)));
|
|
EXPECT_EQ("-1h", absl::FormatDuration(absl::Hours(-1)));
|
|
|
|
EXPECT_EQ("-1h1m",
|
|
absl::FormatDuration(-(absl::Hours(1) + absl::Minutes(1))));
|
|
EXPECT_EQ("-1h1s",
|
|
absl::FormatDuration(-(absl::Hours(1) + absl::Seconds(1))));
|
|
EXPECT_EQ("-1m1s",
|
|
absl::FormatDuration(-(absl::Minutes(1) + absl::Seconds(1))));
|
|
|
|
EXPECT_EQ("-1ns", absl::FormatDuration(absl::Nanoseconds(-1)));
|
|
EXPECT_EQ("-1.2us", absl::FormatDuration(
|
|
-(absl::Microseconds(1) + absl::Nanoseconds(200))));
|
|
EXPECT_EQ("-1.2ms", absl::FormatDuration(
|
|
-(absl::Milliseconds(1) + absl::Microseconds(200))));
|
|
EXPECT_EQ("-1.0002ms", absl::FormatDuration(-(absl::Milliseconds(1) +
|
|
absl::Nanoseconds(200))));
|
|
EXPECT_EQ("-1.00001ms", absl::FormatDuration(-(absl::Milliseconds(1) +
|
|
absl::Nanoseconds(10))));
|
|
EXPECT_EQ("-1.000001ms", absl::FormatDuration(-(absl::Milliseconds(1) +
|
|
absl::Nanoseconds(1))));
|
|
|
|
//
|
|
// Interesting corner cases.
|
|
//
|
|
|
|
const absl::Duration qns = absl::Nanoseconds(1) / 4;
|
|
const absl::Duration max_dur =
|
|
absl::Seconds(kint64max) + (absl::Seconds(1) - qns);
|
|
const absl::Duration min_dur = absl::Seconds(kint64min);
|
|
|
|
EXPECT_EQ("0.25ns", absl::FormatDuration(qns));
|
|
EXPECT_EQ("-0.25ns", absl::FormatDuration(-qns));
|
|
EXPECT_EQ("2562047788015215h30m7.99999999975s",
|
|
absl::FormatDuration(max_dur));
|
|
EXPECT_EQ("-2562047788015215h30m8s", absl::FormatDuration(min_dur));
|
|
|
|
// Tests printing full precision from units that print using FDivDuration
|
|
EXPECT_EQ("55.00000000025s", absl::FormatDuration(absl::Seconds(55) + qns));
|
|
EXPECT_EQ("55.00000025ms",
|
|
absl::FormatDuration(absl::Milliseconds(55) + qns));
|
|
EXPECT_EQ("55.00025us", absl::FormatDuration(absl::Microseconds(55) + qns));
|
|
EXPECT_EQ("55.25ns", absl::FormatDuration(absl::Nanoseconds(55) + qns));
|
|
|
|
// Formatting infinity
|
|
EXPECT_EQ("inf", absl::FormatDuration(absl::InfiniteDuration()));
|
|
EXPECT_EQ("-inf", absl::FormatDuration(-absl::InfiniteDuration()));
|
|
|
|
// Formatting approximately +/- 100 billion years
|
|
const absl::Duration huge_range = ApproxYears(100000000000);
|
|
EXPECT_EQ("876000000000000h", absl::FormatDuration(huge_range));
|
|
EXPECT_EQ("-876000000000000h", absl::FormatDuration(-huge_range));
|
|
|
|
EXPECT_EQ("876000000000000h0.999999999s",
|
|
absl::FormatDuration(huge_range +
|
|
(absl::Seconds(1) - absl::Nanoseconds(1))));
|
|
EXPECT_EQ("876000000000000h0.9999999995s",
|
|
absl::FormatDuration(
|
|
huge_range + (absl::Seconds(1) - absl::Nanoseconds(1) / 2)));
|
|
EXPECT_EQ("876000000000000h0.99999999975s",
|
|
absl::FormatDuration(
|
|
huge_range + (absl::Seconds(1) - absl::Nanoseconds(1) / 4)));
|
|
|
|
EXPECT_EQ("-876000000000000h0.999999999s",
|
|
absl::FormatDuration(-huge_range -
|
|
(absl::Seconds(1) - absl::Nanoseconds(1))));
|
|
EXPECT_EQ("-876000000000000h0.9999999995s",
|
|
absl::FormatDuration(
|
|
-huge_range - (absl::Seconds(1) - absl::Nanoseconds(1) / 2)));
|
|
EXPECT_EQ("-876000000000000h0.99999999975s",
|
|
absl::FormatDuration(
|
|
-huge_range - (absl::Seconds(1) - absl::Nanoseconds(1) / 4)));
|
|
}
|
|
|
|
TEST(Duration, ParseDuration) {
|
|
absl::Duration d;
|
|
|
|
// No specified unit. Should only work for zero and infinity.
|
|
EXPECT_TRUE(absl::ParseDuration("0", &d));
|
|
EXPECT_EQ(absl::ZeroDuration(), d);
|
|
EXPECT_TRUE(absl::ParseDuration("+0", &d));
|
|
EXPECT_EQ(absl::ZeroDuration(), d);
|
|
EXPECT_TRUE(absl::ParseDuration("-0", &d));
|
|
EXPECT_EQ(absl::ZeroDuration(), d);
|
|
|
|
EXPECT_TRUE(absl::ParseDuration("inf", &d));
|
|
EXPECT_EQ(absl::InfiniteDuration(), d);
|
|
EXPECT_TRUE(absl::ParseDuration("+inf", &d));
|
|
EXPECT_EQ(absl::InfiniteDuration(), d);
|
|
EXPECT_TRUE(absl::ParseDuration("-inf", &d));
|
|
EXPECT_EQ(-absl::InfiniteDuration(), d);
|
|
EXPECT_FALSE(absl::ParseDuration("infBlah", &d));
|
|
|
|
// Illegal input forms.
|
|
EXPECT_FALSE(absl::ParseDuration("", &d));
|
|
EXPECT_FALSE(absl::ParseDuration("0.0", &d));
|
|
EXPECT_FALSE(absl::ParseDuration(".0", &d));
|
|
EXPECT_FALSE(absl::ParseDuration(".", &d));
|
|
EXPECT_FALSE(absl::ParseDuration("01", &d));
|
|
EXPECT_FALSE(absl::ParseDuration("1", &d));
|
|
EXPECT_FALSE(absl::ParseDuration("-1", &d));
|
|
EXPECT_FALSE(absl::ParseDuration("2", &d));
|
|
EXPECT_FALSE(absl::ParseDuration("2 s", &d));
|
|
EXPECT_FALSE(absl::ParseDuration(".s", &d));
|
|
EXPECT_FALSE(absl::ParseDuration("-.s", &d));
|
|
EXPECT_FALSE(absl::ParseDuration("s", &d));
|
|
EXPECT_FALSE(absl::ParseDuration(" 2s", &d));
|
|
EXPECT_FALSE(absl::ParseDuration("2s ", &d));
|
|
EXPECT_FALSE(absl::ParseDuration(" 2s ", &d));
|
|
EXPECT_FALSE(absl::ParseDuration("2mt", &d));
|
|
EXPECT_FALSE(absl::ParseDuration("1e3s", &d));
|
|
|
|
// One unit type.
|
|
EXPECT_TRUE(absl::ParseDuration("1ns", &d));
|
|
EXPECT_EQ(absl::Nanoseconds(1), d);
|
|
EXPECT_TRUE(absl::ParseDuration("1us", &d));
|
|
EXPECT_EQ(absl::Microseconds(1), d);
|
|
EXPECT_TRUE(absl::ParseDuration("1ms", &d));
|
|
EXPECT_EQ(absl::Milliseconds(1), d);
|
|
EXPECT_TRUE(absl::ParseDuration("1s", &d));
|
|
EXPECT_EQ(absl::Seconds(1), d);
|
|
EXPECT_TRUE(absl::ParseDuration("2m", &d));
|
|
EXPECT_EQ(absl::Minutes(2), d);
|
|
EXPECT_TRUE(absl::ParseDuration("2h", &d));
|
|
EXPECT_EQ(absl::Hours(2), d);
|
|
|
|
// Huge counts of a unit.
|
|
EXPECT_TRUE(absl::ParseDuration("9223372036854775807us", &d));
|
|
EXPECT_EQ(absl::Microseconds(9223372036854775807), d);
|
|
EXPECT_TRUE(absl::ParseDuration("-9223372036854775807us", &d));
|
|
EXPECT_EQ(absl::Microseconds(-9223372036854775807), d);
|
|
|
|
// Multiple units.
|
|
EXPECT_TRUE(absl::ParseDuration("2h3m4s", &d));
|
|
EXPECT_EQ(absl::Hours(2) + absl::Minutes(3) + absl::Seconds(4), d);
|
|
EXPECT_TRUE(absl::ParseDuration("3m4s5us", &d));
|
|
EXPECT_EQ(absl::Minutes(3) + absl::Seconds(4) + absl::Microseconds(5), d);
|
|
EXPECT_TRUE(absl::ParseDuration("2h3m4s5ms6us7ns", &d));
|
|
EXPECT_EQ(absl::Hours(2) + absl::Minutes(3) + absl::Seconds(4) +
|
|
absl::Milliseconds(5) + absl::Microseconds(6) +
|
|
absl::Nanoseconds(7),
|
|
d);
|
|
|
|
// Multiple units out of order.
|
|
EXPECT_TRUE(absl::ParseDuration("2us3m4s5h", &d));
|
|
EXPECT_EQ(absl::Hours(5) + absl::Minutes(3) + absl::Seconds(4) +
|
|
absl::Microseconds(2),
|
|
d);
|
|
|
|
// Fractional values of units.
|
|
EXPECT_TRUE(absl::ParseDuration("1.5ns", &d));
|
|
EXPECT_EQ(1.5 * absl::Nanoseconds(1), d);
|
|
EXPECT_TRUE(absl::ParseDuration("1.5us", &d));
|
|
EXPECT_EQ(1.5 * absl::Microseconds(1), d);
|
|
EXPECT_TRUE(absl::ParseDuration("1.5ms", &d));
|
|
EXPECT_EQ(1.5 * absl::Milliseconds(1), d);
|
|
EXPECT_TRUE(absl::ParseDuration("1.5s", &d));
|
|
EXPECT_EQ(1.5 * absl::Seconds(1), d);
|
|
EXPECT_TRUE(absl::ParseDuration("1.5m", &d));
|
|
EXPECT_EQ(1.5 * absl::Minutes(1), d);
|
|
EXPECT_TRUE(absl::ParseDuration("1.5h", &d));
|
|
EXPECT_EQ(1.5 * absl::Hours(1), d);
|
|
|
|
// Huge fractional counts of a unit.
|
|
EXPECT_TRUE(absl::ParseDuration("0.4294967295s", &d));
|
|
EXPECT_EQ(absl::Nanoseconds(429496729) + absl::Nanoseconds(1) / 2, d);
|
|
EXPECT_TRUE(absl::ParseDuration("0.429496729501234567890123456789s", &d));
|
|
EXPECT_EQ(absl::Nanoseconds(429496729) + absl::Nanoseconds(1) / 2, d);
|
|
|
|
// Negative durations.
|
|
EXPECT_TRUE(absl::ParseDuration("-1s", &d));
|
|
EXPECT_EQ(absl::Seconds(-1), d);
|
|
EXPECT_TRUE(absl::ParseDuration("-1m", &d));
|
|
EXPECT_EQ(absl::Minutes(-1), d);
|
|
EXPECT_TRUE(absl::ParseDuration("-1h", &d));
|
|
EXPECT_EQ(absl::Hours(-1), d);
|
|
|
|
EXPECT_TRUE(absl::ParseDuration("-1h2s", &d));
|
|
EXPECT_EQ(-(absl::Hours(1) + absl::Seconds(2)), d);
|
|
EXPECT_FALSE(absl::ParseDuration("1h-2s", &d));
|
|
EXPECT_FALSE(absl::ParseDuration("-1h-2s", &d));
|
|
EXPECT_FALSE(absl::ParseDuration("-1h -2s", &d));
|
|
}
|
|
|
|
TEST(Duration, FormatParseRoundTrip) {
|
|
#define TEST_PARSE_ROUNDTRIP(d) \
|
|
do { \
|
|
std::string s = absl::FormatDuration(d); \
|
|
absl::Duration dur; \
|
|
EXPECT_TRUE(absl::ParseDuration(s, &dur)); \
|
|
EXPECT_EQ(d, dur); \
|
|
} while (0)
|
|
|
|
TEST_PARSE_ROUNDTRIP(absl::Nanoseconds(1));
|
|
TEST_PARSE_ROUNDTRIP(absl::Microseconds(1));
|
|
TEST_PARSE_ROUNDTRIP(absl::Milliseconds(1));
|
|
TEST_PARSE_ROUNDTRIP(absl::Seconds(1));
|
|
TEST_PARSE_ROUNDTRIP(absl::Minutes(1));
|
|
TEST_PARSE_ROUNDTRIP(absl::Hours(1));
|
|
TEST_PARSE_ROUNDTRIP(absl::Hours(1) + absl::Nanoseconds(2));
|
|
|
|
TEST_PARSE_ROUNDTRIP(absl::Nanoseconds(-1));
|
|
TEST_PARSE_ROUNDTRIP(absl::Microseconds(-1));
|
|
TEST_PARSE_ROUNDTRIP(absl::Milliseconds(-1));
|
|
TEST_PARSE_ROUNDTRIP(absl::Seconds(-1));
|
|
TEST_PARSE_ROUNDTRIP(absl::Minutes(-1));
|
|
TEST_PARSE_ROUNDTRIP(absl::Hours(-1));
|
|
|
|
TEST_PARSE_ROUNDTRIP(absl::Hours(-1) + absl::Nanoseconds(2));
|
|
TEST_PARSE_ROUNDTRIP(absl::Hours(1) + absl::Nanoseconds(-2));
|
|
TEST_PARSE_ROUNDTRIP(absl::Hours(-1) + absl::Nanoseconds(-2));
|
|
|
|
TEST_PARSE_ROUNDTRIP(absl::Nanoseconds(1) +
|
|
absl::Nanoseconds(1) / 4); // 1.25ns
|
|
|
|
const absl::Duration huge_range = ApproxYears(100000000000);
|
|
TEST_PARSE_ROUNDTRIP(huge_range);
|
|
TEST_PARSE_ROUNDTRIP(huge_range + (absl::Seconds(1) - absl::Nanoseconds(1)));
|
|
|
|
#undef TEST_PARSE_ROUNDTRIP
|
|
}
|
|
|
|
} // namespace
|