5b65c4af51
-- f6c627ce4470a814adc377947b58346eef69a4c9 by Jon Cohen <cohenjon@google.com>: Don't create install rules when Abseil is used as a subdirectory. Fix #287 PiperOrigin-RevId: 240559825 -- a5d9b06fe736143068997988b654b5f66ec3266a by Matt Calabrese <calabrese@google.com>: Make absl::nullopt an inline constexpr variable, as specified in the standard (with a workaround for pre-c++17 compilers). PiperOrigin-RevId: 240552286 -- d7bee50cff745fbb8d1cdf56a200d9073d311c80 by Abseil Team <absl-team@google.com>: Internal Change PiperOrigin-RevId: 240425622 -- 828dd49d392d83dbeecd9d3e9cb14551ab265905 by Jon Cohen <cohenjon@google.com>: Add default link options to absl builds. Currently all this does is add -ignore:4221 to Abseil msvc builds, but the structure is all in place to add more link options when necessary Fix #277 Note: This CL changes tact for us in that it puts the default options in the helper function as opposed to the invocations of absl_cc_blah. The original intent of keeping these out of the helper functions was to make generating the CMakeLists.txt files have a smaller diff, but looking now that is a problem for the future, and small compared to making maintenance and use of our CMake buildsystem easier PiperOrigin-RevId: 240409463 -- 4aa120e9dcf76d29e9ca0008d0f6d4d9fa8abe8c by Matt Kulukundis <kfm@google.com>: Reduce flake rate for non-determistic test to < 1/10,000 PiperOrigin-RevId: 240370938 -- bc30e219531827bfbf90915b2067c7fb8160bb6d by Derek Mauro <dmauro@google.com>: Add Bazel caching on Kokoro for new linux targets. PiperOrigin-RevId: 240356556 -- c4e06d79a50d7bb211312b7845c4bd92c0761747 by Jon Cohen <cohenjon@google.com>: include AbseilInstallDirs instead of GNUInstallDirs. It worked before because global_CMakeLists.txt also included AbseilInstallDirs PiperOrigin-RevId: 240206409 -- c254dc6cade8a263f3f97fb1417d92fe5235ff32 by Jon Cohen <cohenjon@google.com>: Fix logic for when we create the variant_exception_safety_test in CMake. Currently we are only running in on gcc > 4.9, when we want it run on every compiler except gcc <= 4.8 PiperOrigin-RevId: 240194174 -- 01518006b351d3670ba1d349cfbcb7dd6f3a8b84 by CJ Johnson <johnsoncj@google.com>: Removes old implementation warning comment now that InlinedVector has an implementation detail file PiperOrigin-RevId: 240167265 -- eb05355ae8c7397752ab7a65afc9e0a99472ba9d by Jon Cohen <cohenjon@google.com>: Remove the forward declaration of Span PiperOrigin-RevId: 240156660 -- b7e75aa3933d6e79dd086821cf58d15e72f476f4 by Jon Cohen <cohenjon@google.com>: Prepare CMake install rule for LTS releases: * Remove the warning against installing in system install locations * Insert versioning to keep different LTS installs from colliding. Headers are installed in <prefix>/absl_$version/include, .a files in <prefix>/absl_$version/lib, and config files in <prefix>/absl_$version/lib/cmake PiperOrigin-RevId: 240153986 -- de63488ab6236e041f08260794b0b634a2b8ed16 by CJ Johnson <johnsoncj@google.com>: Reduce reader confusion by using std::addressof(...) even when the type is known to not overload operator&(...) PiperOrigin-RevId: 240131902 GitOrigin-RevId: f6c627ce4470a814adc377947b58346eef69a4c9 Change-Id: I95dbbacaaf65aceeeca9e9bee5fd9ea456225f62
1309 lines
48 KiB
C++
1309 lines
48 KiB
C++
// Copyright 2019 The Abseil Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
// -----------------------------------------------------------------------------
|
|
// File: inlined_vector.h
|
|
// -----------------------------------------------------------------------------
|
|
//
|
|
// This header file contains the declaration and definition of an "inlined
|
|
// vector" which behaves in an equivalent fashion to a `std::vector`, except
|
|
// that storage for small sequences of the vector are provided inline without
|
|
// requiring any heap allocation.
|
|
//
|
|
// An `absl::InlinedVector<T, N>` specifies the default capacity `N` as one of
|
|
// its template parameters. Instances where `size() <= N` hold contained
|
|
// elements in inline space. Typically `N` is very small so that sequences that
|
|
// are expected to be short do not require allocations.
|
|
//
|
|
// An `absl::InlinedVector` does not usually require a specific allocator. If
|
|
// the inlined vector grows beyond its initial constraints, it will need to
|
|
// allocate (as any normal `std::vector` would). This is usually performed with
|
|
// the default allocator (defined as `std::allocator<T>`). Optionally, a custom
|
|
// allocator type may be specified as `A` in `absl::InlinedVector<T, N, A>`.
|
|
|
|
#ifndef ABSL_CONTAINER_INLINED_VECTOR_H_
|
|
#define ABSL_CONTAINER_INLINED_VECTOR_H_
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <initializer_list>
|
|
#include <iterator>
|
|
#include <memory>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
|
|
#include "absl/algorithm/algorithm.h"
|
|
#include "absl/base/internal/throw_delegate.h"
|
|
#include "absl/base/optimization.h"
|
|
#include "absl/base/port.h"
|
|
#include "absl/container/internal/inlined_vector.h"
|
|
#include "absl/memory/memory.h"
|
|
|
|
namespace absl {
|
|
// -----------------------------------------------------------------------------
|
|
// InlinedVector
|
|
// -----------------------------------------------------------------------------
|
|
//
|
|
// An `absl::InlinedVector` is designed to be a drop-in replacement for
|
|
// `std::vector` for use cases where the vector's size is sufficiently small
|
|
// that it can be inlined. If the inlined vector does grow beyond its estimated
|
|
// capacity, it will trigger an initial allocation on the heap, and will behave
|
|
// as a `std:vector`. The API of the `absl::InlinedVector` within this file is
|
|
// designed to cover the same API footprint as covered by `std::vector`.
|
|
template <typename T, size_t N, typename A = std::allocator<T>>
|
|
class InlinedVector {
|
|
static_assert(
|
|
N > 0, "InlinedVector cannot be instantiated with `0` inlined elements.");
|
|
|
|
using Storage = inlined_vector_internal::Storage<InlinedVector>;
|
|
using Tag = typename Storage::Tag;
|
|
using AllocatorAndTag = typename Storage::AllocatorAndTag;
|
|
using Allocation = typename Storage::Allocation;
|
|
|
|
template <typename Iterator>
|
|
using IsAtLeastForwardIterator = std::is_convertible<
|
|
typename std::iterator_traits<Iterator>::iterator_category,
|
|
std::forward_iterator_tag>;
|
|
|
|
template <typename Iterator>
|
|
using EnableIfAtLeastForwardIterator =
|
|
absl::enable_if_t<IsAtLeastForwardIterator<Iterator>::value>;
|
|
|
|
template <typename Iterator>
|
|
using DisableIfAtLeastForwardIterator =
|
|
absl::enable_if_t<!IsAtLeastForwardIterator<Iterator>::value>;
|
|
|
|
using rvalue_reference = typename Storage::rvalue_reference;
|
|
|
|
public:
|
|
using allocator_type = typename Storage::allocator_type;
|
|
using value_type = typename Storage::value_type;
|
|
using pointer = typename Storage::pointer;
|
|
using const_pointer = typename Storage::const_pointer;
|
|
using reference = typename Storage::reference;
|
|
using const_reference = typename Storage::const_reference;
|
|
using size_type = typename Storage::size_type;
|
|
using difference_type = typename Storage::difference_type;
|
|
using iterator = typename Storage::iterator;
|
|
using const_iterator = typename Storage::const_iterator;
|
|
using reverse_iterator = typename Storage::reverse_iterator;
|
|
using const_reverse_iterator = typename Storage::const_reverse_iterator;
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// InlinedVector Constructors and Destructor
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// Creates an empty inlined vector with a default initialized allocator.
|
|
InlinedVector() noexcept(noexcept(allocator_type()))
|
|
: storage_(allocator_type()) {}
|
|
|
|
// Creates an empty inlined vector with a specified allocator.
|
|
explicit InlinedVector(const allocator_type& alloc) noexcept
|
|
: storage_(alloc) {}
|
|
|
|
// Creates an inlined vector with `n` copies of `value_type()`.
|
|
explicit InlinedVector(size_type n,
|
|
const allocator_type& alloc = allocator_type())
|
|
: storage_(alloc) {
|
|
InitAssign(n);
|
|
}
|
|
|
|
// Creates an inlined vector with `n` copies of `v`.
|
|
InlinedVector(size_type n, const_reference v,
|
|
const allocator_type& alloc = allocator_type())
|
|
: storage_(alloc) {
|
|
InitAssign(n, v);
|
|
}
|
|
|
|
// Creates an inlined vector of copies of the values in `list`.
|
|
InlinedVector(std::initializer_list<value_type> list,
|
|
const allocator_type& alloc = allocator_type())
|
|
: storage_(alloc) {
|
|
AppendForwardRange(list.begin(), list.end());
|
|
}
|
|
|
|
// Creates an inlined vector with elements constructed from the provided
|
|
// forward iterator range [`first`, `last`).
|
|
//
|
|
// NOTE: The `enable_if` prevents ambiguous interpretation between a call to
|
|
// this constructor with two integral arguments and a call to the above
|
|
// `InlinedVector(size_type, const_reference)` constructor.
|
|
template <typename ForwardIterator,
|
|
EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr>
|
|
InlinedVector(ForwardIterator first, ForwardIterator last,
|
|
const allocator_type& alloc = allocator_type())
|
|
: storage_(alloc) {
|
|
AppendForwardRange(first, last);
|
|
}
|
|
|
|
// Creates an inlined vector with elements constructed from the provided input
|
|
// iterator range [`first`, `last`).
|
|
template <typename InputIterator,
|
|
DisableIfAtLeastForwardIterator<InputIterator>* = nullptr>
|
|
InlinedVector(InputIterator first, InputIterator last,
|
|
const allocator_type& alloc = allocator_type())
|
|
: storage_(alloc) {
|
|
std::copy(first, last, std::back_inserter(*this));
|
|
}
|
|
|
|
// Creates a copy of an `other` inlined vector using `other`'s allocator.
|
|
InlinedVector(const InlinedVector& other)
|
|
: InlinedVector(other, other.allocator()) {}
|
|
|
|
// Creates a copy of an `other` inlined vector using a specified allocator.
|
|
InlinedVector(const InlinedVector& other, const allocator_type& alloc)
|
|
: storage_(alloc) {
|
|
reserve(other.size());
|
|
if (allocated()) {
|
|
UninitializedCopy(other.begin(), other.end(), allocated_space());
|
|
tag().set_allocated_size(other.size());
|
|
} else {
|
|
UninitializedCopy(other.begin(), other.end(), inlined_space());
|
|
tag().set_inline_size(other.size());
|
|
}
|
|
}
|
|
|
|
// Creates an inlined vector by moving in the contents of an `other` inlined
|
|
// vector without performing any allocations. If `other` contains allocated
|
|
// memory, the newly-created instance will take ownership of that memory
|
|
// (leaving `other` itself empty). However, if `other` does not contain any
|
|
// allocated memory, the new inlined vector will will perform element-wise
|
|
// move construction of `other`s elements.
|
|
//
|
|
// NOTE: since no allocation is performed for the inlined vector in either
|
|
// case, the `noexcept(...)` specification depends on whether moving the
|
|
// underlying objects can throw. We assume:
|
|
// a) Move constructors should only throw due to allocation failure.
|
|
// b) If `value_type`'s move constructor allocates, it uses the same
|
|
// allocation function as the `InlinedVector`'s allocator. Thus, the move
|
|
// constructor is non-throwing if the allocator is non-throwing or
|
|
// `value_type`'s move constructor is specified as `noexcept`.
|
|
InlinedVector(InlinedVector&& other) noexcept(
|
|
absl::allocator_is_nothrow<allocator_type>::value ||
|
|
std::is_nothrow_move_constructible<value_type>::value)
|
|
: storage_(other.allocator()) {
|
|
if (other.allocated()) {
|
|
// We can just steal the underlying buffer from the source.
|
|
// That leaves the source empty, so we clear its size.
|
|
init_allocation(other.allocation());
|
|
tag().set_allocated_size(other.size());
|
|
other.tag() = Tag();
|
|
} else {
|
|
UninitializedCopy(
|
|
std::make_move_iterator(other.inlined_space()),
|
|
std::make_move_iterator(other.inlined_space() + other.size()),
|
|
inlined_space());
|
|
tag().set_inline_size(other.size());
|
|
}
|
|
}
|
|
|
|
// Creates an inlined vector by moving in the contents of an `other` inlined
|
|
// vector, performing allocations with the specified `alloc` allocator. If
|
|
// `other`'s allocator is not equal to `alloc` and `other` contains allocated
|
|
// memory, this move constructor will create a new allocation.
|
|
//
|
|
// NOTE: since allocation is performed in this case, this constructor can
|
|
// only be `noexcept` if the specified allocator is also `noexcept`. If this
|
|
// is the case, or if `other` contains allocated memory, this constructor
|
|
// performs element-wise move construction of its contents.
|
|
//
|
|
// Only in the case where `other`'s allocator is equal to `alloc` and `other`
|
|
// contains allocated memory will the newly created inlined vector take
|
|
// ownership of `other`'s allocated memory.
|
|
InlinedVector(InlinedVector&& other, const allocator_type& alloc) noexcept(
|
|
absl::allocator_is_nothrow<allocator_type>::value)
|
|
: storage_(alloc) {
|
|
if (other.allocated()) {
|
|
if (alloc == other.allocator()) {
|
|
// We can just steal the allocation from the source.
|
|
tag() = other.tag();
|
|
init_allocation(other.allocation());
|
|
other.tag() = Tag();
|
|
} else {
|
|
// We need to use our own allocator
|
|
reserve(other.size());
|
|
UninitializedCopy(std::make_move_iterator(other.begin()),
|
|
std::make_move_iterator(other.end()),
|
|
allocated_space());
|
|
tag().set_allocated_size(other.size());
|
|
}
|
|
} else {
|
|
UninitializedCopy(
|
|
std::make_move_iterator(other.inlined_space()),
|
|
std::make_move_iterator(other.inlined_space() + other.size()),
|
|
inlined_space());
|
|
tag().set_inline_size(other.size());
|
|
}
|
|
}
|
|
|
|
~InlinedVector() { clear(); }
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// InlinedVector Member Accessors
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// `InlinedVector::empty()`
|
|
//
|
|
// Checks if the inlined vector has no elements.
|
|
bool empty() const noexcept { return !size(); }
|
|
|
|
// `InlinedVector::size()`
|
|
//
|
|
// Returns the number of elements in the inlined vector.
|
|
size_type size() const noexcept { return tag().size(); }
|
|
|
|
// `InlinedVector::max_size()`
|
|
//
|
|
// Returns the maximum number of elements the vector can hold.
|
|
size_type max_size() const noexcept {
|
|
// One bit of the size storage is used to indicate whether the inlined
|
|
// vector is allocated. As a result, the maximum size of the container that
|
|
// we can express is half of the max for `size_type`.
|
|
return (std::numeric_limits<size_type>::max)() / 2;
|
|
}
|
|
|
|
// `InlinedVector::capacity()`
|
|
//
|
|
// Returns the number of elements that can be stored in the inlined vector
|
|
// without requiring a reallocation of underlying memory.
|
|
//
|
|
// NOTE: For most inlined vectors, `capacity()` should equal the template
|
|
// parameter `N`. For inlined vectors which exceed this capacity, they
|
|
// will no longer be inlined and `capacity()` will equal its capacity on the
|
|
// allocated heap.
|
|
size_type capacity() const noexcept {
|
|
return allocated() ? allocation().capacity() : static_cast<size_type>(N);
|
|
}
|
|
|
|
// `InlinedVector::data()`
|
|
//
|
|
// Returns a `pointer` to elements of the inlined vector. This pointer can be
|
|
// used to access and modify the contained elements.
|
|
// Only results within the range [`0`, `size()`) are defined.
|
|
pointer data() noexcept {
|
|
return allocated() ? allocated_space() : inlined_space();
|
|
}
|
|
|
|
// Overload of `InlinedVector::data()` to return a `const_pointer` to elements
|
|
// of the inlined vector. This pointer can be used to access (but not modify)
|
|
// the contained elements.
|
|
const_pointer data() const noexcept {
|
|
return allocated() ? allocated_space() : inlined_space();
|
|
}
|
|
|
|
// `InlinedVector::operator[]()`
|
|
//
|
|
// Returns a `reference` to the `i`th element of the inlined vector using the
|
|
// array operator.
|
|
reference operator[](size_type i) {
|
|
assert(i < size());
|
|
return data()[i];
|
|
}
|
|
|
|
// Overload of `InlinedVector::operator[]()` to return a `const_reference` to
|
|
// the `i`th element of the inlined vector.
|
|
const_reference operator[](size_type i) const {
|
|
assert(i < size());
|
|
return data()[i];
|
|
}
|
|
|
|
// `InlinedVector::at()`
|
|
//
|
|
// Returns a `reference` to the `i`th element of the inlined vector.
|
|
reference at(size_type i) {
|
|
if (ABSL_PREDICT_FALSE(i >= size())) {
|
|
base_internal::ThrowStdOutOfRange(
|
|
"`InlinedVector::at(size_type)` failed bounds check");
|
|
}
|
|
return data()[i];
|
|
}
|
|
|
|
// Overload of `InlinedVector::at()` to return a `const_reference` to the
|
|
// `i`th element of the inlined vector.
|
|
const_reference at(size_type i) const {
|
|
if (ABSL_PREDICT_FALSE(i >= size())) {
|
|
base_internal::ThrowStdOutOfRange(
|
|
"`InlinedVector::at(size_type) const` failed bounds check");
|
|
}
|
|
return data()[i];
|
|
}
|
|
|
|
// `InlinedVector::front()`
|
|
//
|
|
// Returns a `reference` to the first element of the inlined vector.
|
|
reference front() {
|
|
assert(!empty());
|
|
return at(0);
|
|
}
|
|
|
|
// Overload of `InlinedVector::front()` returns a `const_reference` to the
|
|
// first element of the inlined vector.
|
|
const_reference front() const {
|
|
assert(!empty());
|
|
return at(0);
|
|
}
|
|
|
|
// `InlinedVector::back()`
|
|
//
|
|
// Returns a `reference` to the last element of the inlined vector.
|
|
reference back() {
|
|
assert(!empty());
|
|
return at(size() - 1);
|
|
}
|
|
|
|
// Overload of `InlinedVector::back()` to return a `const_reference` to the
|
|
// last element of the inlined vector.
|
|
const_reference back() const {
|
|
assert(!empty());
|
|
return at(size() - 1);
|
|
}
|
|
|
|
// `InlinedVector::begin()`
|
|
//
|
|
// Returns an `iterator` to the beginning of the inlined vector.
|
|
iterator begin() noexcept { return data(); }
|
|
|
|
// Overload of `InlinedVector::begin()` to return a `const_iterator` to
|
|
// the beginning of the inlined vector.
|
|
const_iterator begin() const noexcept { return data(); }
|
|
|
|
// `InlinedVector::end()`
|
|
//
|
|
// Returns an `iterator` to the end of the inlined vector.
|
|
iterator end() noexcept { return data() + size(); }
|
|
|
|
// Overload of `InlinedVector::end()` to return a `const_iterator` to the
|
|
// end of the inlined vector.
|
|
const_iterator end() const noexcept { return data() + size(); }
|
|
|
|
// `InlinedVector::cbegin()`
|
|
//
|
|
// Returns a `const_iterator` to the beginning of the inlined vector.
|
|
const_iterator cbegin() const noexcept { return begin(); }
|
|
|
|
// `InlinedVector::cend()`
|
|
//
|
|
// Returns a `const_iterator` to the end of the inlined vector.
|
|
const_iterator cend() const noexcept { return end(); }
|
|
|
|
// `InlinedVector::rbegin()`
|
|
//
|
|
// Returns a `reverse_iterator` from the end of the inlined vector.
|
|
reverse_iterator rbegin() noexcept { return reverse_iterator(end()); }
|
|
|
|
// Overload of `InlinedVector::rbegin()` to return a
|
|
// `const_reverse_iterator` from the end of the inlined vector.
|
|
const_reverse_iterator rbegin() const noexcept {
|
|
return const_reverse_iterator(end());
|
|
}
|
|
|
|
// `InlinedVector::rend()`
|
|
//
|
|
// Returns a `reverse_iterator` from the beginning of the inlined vector.
|
|
reverse_iterator rend() noexcept { return reverse_iterator(begin()); }
|
|
|
|
// Overload of `InlinedVector::rend()` to return a `const_reverse_iterator`
|
|
// from the beginning of the inlined vector.
|
|
const_reverse_iterator rend() const noexcept {
|
|
return const_reverse_iterator(begin());
|
|
}
|
|
|
|
// `InlinedVector::crbegin()`
|
|
//
|
|
// Returns a `const_reverse_iterator` from the end of the inlined vector.
|
|
const_reverse_iterator crbegin() const noexcept { return rbegin(); }
|
|
|
|
// `InlinedVector::crend()`
|
|
//
|
|
// Returns a `const_reverse_iterator` from the beginning of the inlined
|
|
// vector.
|
|
const_reverse_iterator crend() const noexcept { return rend(); }
|
|
|
|
// `InlinedVector::get_allocator()`
|
|
//
|
|
// Returns a copy of the allocator of the inlined vector.
|
|
allocator_type get_allocator() const { return allocator(); }
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// InlinedVector Member Mutators
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// `InlinedVector::operator=()`
|
|
//
|
|
// Replaces the contents of the inlined vector with copies of the elements in
|
|
// the provided `std::initializer_list`.
|
|
InlinedVector& operator=(std::initializer_list<value_type> list) {
|
|
AssignForwardRange(list.begin(), list.end());
|
|
return *this;
|
|
}
|
|
|
|
// Overload of `InlinedVector::operator=()` to replace the contents of the
|
|
// inlined vector with the contents of `other`.
|
|
InlinedVector& operator=(const InlinedVector& other) {
|
|
if (ABSL_PREDICT_FALSE(this == std::addressof(other))) return *this;
|
|
|
|
// Optimized to avoid reallocation.
|
|
// Prefer reassignment to copy construction for elements.
|
|
if (size() < other.size()) { // grow
|
|
reserve(other.size());
|
|
std::copy(other.begin(), other.begin() + size(), begin());
|
|
std::copy(other.begin() + size(), other.end(), std::back_inserter(*this));
|
|
} else { // maybe shrink
|
|
erase(begin() + other.size(), end());
|
|
std::copy(other.begin(), other.end(), begin());
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
// Overload of `InlinedVector::operator=()` to replace the contents of the
|
|
// inlined vector with the contents of `other`.
|
|
//
|
|
// NOTE: As a result of calling this overload, `other` may be empty or it's
|
|
// contents may be left in a moved-from state.
|
|
InlinedVector& operator=(InlinedVector&& other) {
|
|
if (ABSL_PREDICT_FALSE(this == std::addressof(other))) return *this;
|
|
|
|
if (other.allocated()) {
|
|
clear();
|
|
tag().set_allocated_size(other.size());
|
|
init_allocation(other.allocation());
|
|
other.tag() = Tag();
|
|
} else {
|
|
if (allocated()) clear();
|
|
// Both are inlined now.
|
|
if (size() < other.size()) {
|
|
auto mid = std::make_move_iterator(other.begin() + size());
|
|
std::copy(std::make_move_iterator(other.begin()), mid, begin());
|
|
UninitializedCopy(mid, std::make_move_iterator(other.end()), end());
|
|
} else {
|
|
auto new_end = std::copy(std::make_move_iterator(other.begin()),
|
|
std::make_move_iterator(other.end()), begin());
|
|
Destroy(new_end, end());
|
|
}
|
|
tag().set_inline_size(other.size());
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
// `InlinedVector::assign()`
|
|
//
|
|
// Replaces the contents of the inlined vector with `n` copies of `v`.
|
|
void assign(size_type n, const_reference v) {
|
|
if (n <= size()) { // Possibly shrink
|
|
std::fill_n(begin(), n, v);
|
|
erase(begin() + n, end());
|
|
return;
|
|
}
|
|
// Grow
|
|
reserve(n);
|
|
std::fill_n(begin(), size(), v);
|
|
if (allocated()) {
|
|
UninitializedFill(allocated_space() + size(), allocated_space() + n, v);
|
|
tag().set_allocated_size(n);
|
|
} else {
|
|
UninitializedFill(inlined_space() + size(), inlined_space() + n, v);
|
|
tag().set_inline_size(n);
|
|
}
|
|
}
|
|
|
|
// Overload of `InlinedVector::assign()` to replace the contents of the
|
|
// inlined vector with copies of the values in the provided
|
|
// `std::initializer_list`.
|
|
void assign(std::initializer_list<value_type> list) {
|
|
AssignForwardRange(list.begin(), list.end());
|
|
}
|
|
|
|
// Overload of `InlinedVector::assign()` to replace the contents of the
|
|
// inlined vector with the forward iterator range [`first`, `last`).
|
|
template <typename ForwardIterator,
|
|
EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr>
|
|
void assign(ForwardIterator first, ForwardIterator last) {
|
|
AssignForwardRange(first, last);
|
|
}
|
|
|
|
// Overload of `InlinedVector::assign()` to replace the contents of the
|
|
// inlined vector with the input iterator range [`first`, `last`).
|
|
template <typename InputIterator,
|
|
DisableIfAtLeastForwardIterator<InputIterator>* = nullptr>
|
|
void assign(InputIterator first, InputIterator last) {
|
|
size_type assign_index = 0;
|
|
for (; (assign_index < size()) && (first != last);
|
|
static_cast<void>(++assign_index), static_cast<void>(++first)) {
|
|
*(data() + assign_index) = *first;
|
|
}
|
|
erase(data() + assign_index, data() + size());
|
|
std::copy(first, last, std::back_inserter(*this));
|
|
}
|
|
|
|
// `InlinedVector::resize()`
|
|
//
|
|
// Resizes the inlined vector to contain `n` elements. If `n` is smaller than
|
|
// the inlined vector's current size, extra elements are destroyed. If `n` is
|
|
// larger than the initial size, new elements are value-initialized.
|
|
void resize(size_type n) {
|
|
size_type s = size();
|
|
if (n < s) {
|
|
erase(begin() + n, end());
|
|
return;
|
|
}
|
|
reserve(n);
|
|
assert(capacity() >= n);
|
|
|
|
// Fill new space with elements constructed in-place.
|
|
if (allocated()) {
|
|
UninitializedFill(allocated_space() + s, allocated_space() + n);
|
|
tag().set_allocated_size(n);
|
|
} else {
|
|
UninitializedFill(inlined_space() + s, inlined_space() + n);
|
|
tag().set_inline_size(n);
|
|
}
|
|
}
|
|
|
|
// Overload of `InlinedVector::resize()` to resize the inlined vector to
|
|
// contain `n` elements where, if `n` is larger than `size()`, the new values
|
|
// will be copy-constructed from `v`.
|
|
void resize(size_type n, const_reference v) {
|
|
size_type s = size();
|
|
if (n < s) {
|
|
erase(begin() + n, end());
|
|
return;
|
|
}
|
|
reserve(n);
|
|
assert(capacity() >= n);
|
|
|
|
// Fill new space with copies of `v`.
|
|
if (allocated()) {
|
|
UninitializedFill(allocated_space() + s, allocated_space() + n, v);
|
|
tag().set_allocated_size(n);
|
|
} else {
|
|
UninitializedFill(inlined_space() + s, inlined_space() + n, v);
|
|
tag().set_inline_size(n);
|
|
}
|
|
}
|
|
|
|
// `InlinedVector::insert()`
|
|
//
|
|
// Copies `v` into `pos`, returning an `iterator` pointing to the newly
|
|
// inserted element.
|
|
iterator insert(const_iterator pos, const_reference v) {
|
|
return emplace(pos, v);
|
|
}
|
|
|
|
// Overload of `InlinedVector::insert()` for moving `v` into `pos`, returning
|
|
// an iterator pointing to the newly inserted element.
|
|
iterator insert(const_iterator pos, rvalue_reference v) {
|
|
return emplace(pos, std::move(v));
|
|
}
|
|
|
|
// Overload of `InlinedVector::insert()` for inserting `n` contiguous copies
|
|
// of `v` starting at `pos`. Returns an `iterator` pointing to the first of
|
|
// the newly inserted elements.
|
|
iterator insert(const_iterator pos, size_type n, const_reference v) {
|
|
return InsertWithCount(pos, n, v);
|
|
}
|
|
|
|
// Overload of `InlinedVector::insert()` for copying the contents of the
|
|
// `std::initializer_list` into the vector starting at `pos`. Returns an
|
|
// `iterator` pointing to the first of the newly inserted elements.
|
|
iterator insert(const_iterator pos, std::initializer_list<value_type> list) {
|
|
return insert(pos, list.begin(), list.end());
|
|
}
|
|
|
|
// Overload of `InlinedVector::insert()` for inserting elements constructed
|
|
// from the forward iterator range [`first`, `last`). Returns an `iterator`
|
|
// pointing to the first of the newly inserted elements.
|
|
//
|
|
// NOTE: The `enable_if` is intended to disambiguate the two three-argument
|
|
// overloads of `insert()`.
|
|
template <typename ForwardIterator,
|
|
EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr>
|
|
iterator insert(const_iterator pos, ForwardIterator first,
|
|
ForwardIterator last) {
|
|
return InsertWithForwardRange(pos, first, last);
|
|
}
|
|
|
|
// Overload of `InlinedVector::insert()` for inserting elements constructed
|
|
// from the input iterator range [`first`, `last`). Returns an `iterator`
|
|
// pointing to the first of the newly inserted elements.
|
|
template <typename InputIterator,
|
|
DisableIfAtLeastForwardIterator<InputIterator>* = nullptr>
|
|
iterator insert(const_iterator pos, InputIterator first, InputIterator last) {
|
|
size_type initial_insert_index = std::distance(cbegin(), pos);
|
|
for (size_type insert_index = initial_insert_index; first != last;
|
|
static_cast<void>(++insert_index), static_cast<void>(++first)) {
|
|
insert(data() + insert_index, *first);
|
|
}
|
|
return iterator(data() + initial_insert_index);
|
|
}
|
|
|
|
// `InlinedVector::emplace()`
|
|
//
|
|
// Constructs and inserts an object in the inlined vector at the given `pos`,
|
|
// returning an `iterator` pointing to the newly emplaced element.
|
|
template <typename... Args>
|
|
iterator emplace(const_iterator pos, Args&&... args) {
|
|
assert(pos >= begin());
|
|
assert(pos <= end());
|
|
if (ABSL_PREDICT_FALSE(pos == end())) {
|
|
emplace_back(std::forward<Args>(args)...);
|
|
return end() - 1;
|
|
}
|
|
|
|
T new_t = T(std::forward<Args>(args)...);
|
|
|
|
auto range = ShiftRight(pos, 1);
|
|
if (range.first == range.second) {
|
|
// constructing into uninitialized memory
|
|
Construct(range.first, std::move(new_t));
|
|
} else {
|
|
// assigning into moved-from object
|
|
*range.first = T(std::move(new_t));
|
|
}
|
|
|
|
return range.first;
|
|
}
|
|
|
|
// `InlinedVector::emplace_back()`
|
|
//
|
|
// Constructs and appends a new element to the end of the inlined vector,
|
|
// returning a `reference` to the emplaced element.
|
|
template <typename... Args>
|
|
reference emplace_back(Args&&... args) {
|
|
size_type s = size();
|
|
if (ABSL_PREDICT_FALSE(s == capacity())) {
|
|
return GrowAndEmplaceBack(std::forward<Args>(args)...);
|
|
}
|
|
pointer space;
|
|
if (allocated()) {
|
|
tag().set_allocated_size(s + 1);
|
|
space = allocated_space();
|
|
} else {
|
|
tag().set_inline_size(s + 1);
|
|
space = inlined_space();
|
|
}
|
|
return Construct(space + s, std::forward<Args>(args)...);
|
|
}
|
|
|
|
// `InlinedVector::push_back()`
|
|
//
|
|
// Appends a copy of `v` to the end of the inlined vector.
|
|
void push_back(const_reference v) { static_cast<void>(emplace_back(v)); }
|
|
|
|
// Overload of `InlinedVector::push_back()` for moving `v` into a newly
|
|
// appended element.
|
|
void push_back(rvalue_reference v) {
|
|
static_cast<void>(emplace_back(std::move(v)));
|
|
}
|
|
|
|
// `InlinedVector::pop_back()`
|
|
//
|
|
// Destroys the element at the end of the inlined vector and shrinks the size
|
|
// by `1` (unless the inlined vector is empty, in which case this is a no-op).
|
|
void pop_back() noexcept {
|
|
assert(!empty());
|
|
size_type s = size();
|
|
if (allocated()) {
|
|
Destroy(allocated_space() + s - 1, allocated_space() + s);
|
|
tag().set_allocated_size(s - 1);
|
|
} else {
|
|
Destroy(inlined_space() + s - 1, inlined_space() + s);
|
|
tag().set_inline_size(s - 1);
|
|
}
|
|
}
|
|
|
|
// `InlinedVector::erase()`
|
|
//
|
|
// Erases the element at `pos` of the inlined vector, returning an `iterator`
|
|
// pointing to the first element following the erased element.
|
|
//
|
|
// NOTE: May return the end iterator, which is not dereferencable.
|
|
iterator erase(const_iterator pos) {
|
|
assert(pos >= begin());
|
|
assert(pos < end());
|
|
|
|
iterator position = const_cast<iterator>(pos);
|
|
std::move(position + 1, end(), position);
|
|
pop_back();
|
|
return position;
|
|
}
|
|
|
|
// Overload of `InlinedVector::erase()` for erasing all elements in the
|
|
// range [`from`, `to`) in the inlined vector. Returns an `iterator` pointing
|
|
// to the first element following the range erased or the end iterator if `to`
|
|
// was the end iterator.
|
|
iterator erase(const_iterator from, const_iterator to) {
|
|
assert(begin() <= from);
|
|
assert(from <= to);
|
|
assert(to <= end());
|
|
|
|
iterator range_start = const_cast<iterator>(from);
|
|
iterator range_end = const_cast<iterator>(to);
|
|
|
|
size_type s = size();
|
|
ptrdiff_t erase_gap = std::distance(range_start, range_end);
|
|
if (erase_gap > 0) {
|
|
pointer space;
|
|
if (allocated()) {
|
|
space = allocated_space();
|
|
tag().set_allocated_size(s - erase_gap);
|
|
} else {
|
|
space = inlined_space();
|
|
tag().set_inline_size(s - erase_gap);
|
|
}
|
|
std::move(range_end, space + s, range_start);
|
|
Destroy(space + s - erase_gap, space + s);
|
|
}
|
|
return range_start;
|
|
}
|
|
|
|
// `InlinedVector::clear()`
|
|
//
|
|
// Destroys all elements in the inlined vector, sets the size of `0` and
|
|
// deallocates the heap allocation if the inlined vector was allocated.
|
|
void clear() noexcept {
|
|
size_type s = size();
|
|
if (allocated()) {
|
|
Destroy(allocated_space(), allocated_space() + s);
|
|
allocation().Dealloc(allocator());
|
|
} else if (s != 0) { // do nothing for empty vectors
|
|
Destroy(inlined_space(), inlined_space() + s);
|
|
}
|
|
tag() = Tag();
|
|
}
|
|
|
|
// `InlinedVector::reserve()`
|
|
//
|
|
// Enlarges the underlying representation of the inlined vector so it can hold
|
|
// at least `n` elements. This method does not change `size()` or the actual
|
|
// contents of the vector.
|
|
//
|
|
// NOTE: If `n` does not exceed `capacity()`, `reserve()` will have no
|
|
// effects. Otherwise, `reserve()` will reallocate, performing an n-time
|
|
// element-wise move of everything contained.
|
|
void reserve(size_type n) {
|
|
if (n > capacity()) {
|
|
// Make room for new elements
|
|
EnlargeBy(n - size());
|
|
}
|
|
}
|
|
|
|
// `InlinedVector::shrink_to_fit()`
|
|
//
|
|
// Reduces memory usage by freeing unused memory. After this call, calls to
|
|
// `capacity()` will be equal to `max(N, size())`.
|
|
//
|
|
// If `size() <= N` and the elements are currently stored on the heap, they
|
|
// will be moved to the inlined storage and the heap memory will be
|
|
// deallocated.
|
|
//
|
|
// If `size() > N` and `size() < capacity()` the elements will be moved to a
|
|
// smaller heap allocation.
|
|
void shrink_to_fit() {
|
|
const auto s = size();
|
|
if (ABSL_PREDICT_FALSE(!allocated() || s == capacity())) return;
|
|
|
|
if (s <= N) {
|
|
// Move the elements to the inlined storage.
|
|
// We have to do this using a temporary, because `inlined_storage` and
|
|
// `allocation_storage` are in a union field.
|
|
auto temp = std::move(*this);
|
|
assign(std::make_move_iterator(temp.begin()),
|
|
std::make_move_iterator(temp.end()));
|
|
return;
|
|
}
|
|
|
|
// Reallocate storage and move elements.
|
|
// We can't simply use the same approach as above, because `assign()` would
|
|
// call into `reserve()` internally and reserve larger capacity than we need
|
|
Allocation new_allocation(allocator(), s);
|
|
UninitializedCopy(std::make_move_iterator(allocated_space()),
|
|
std::make_move_iterator(allocated_space() + s),
|
|
new_allocation.buffer());
|
|
ResetAllocation(new_allocation, s);
|
|
}
|
|
|
|
// `InlinedVector::swap()`
|
|
//
|
|
// Swaps the contents of this inlined vector with the contents of `other`.
|
|
void swap(InlinedVector& other) {
|
|
if (ABSL_PREDICT_FALSE(this == std::addressof(other))) return;
|
|
|
|
SwapImpl(other);
|
|
}
|
|
|
|
private:
|
|
template <typename H, typename TheT, size_t TheN, typename TheA>
|
|
friend auto AbslHashValue(H h, const InlinedVector<TheT, TheN, TheA>& v) -> H;
|
|
|
|
const Tag& tag() const { return storage_.allocator_and_tag_.tag(); }
|
|
|
|
Tag& tag() { return storage_.allocator_and_tag_.tag(); }
|
|
|
|
Allocation& allocation() {
|
|
return reinterpret_cast<Allocation&>(
|
|
storage_.rep_.allocation_storage.allocation);
|
|
}
|
|
|
|
const Allocation& allocation() const {
|
|
return reinterpret_cast<const Allocation&>(
|
|
storage_.rep_.allocation_storage.allocation);
|
|
}
|
|
|
|
void init_allocation(const Allocation& allocation) {
|
|
new (static_cast<void*>(std::addressof(
|
|
storage_.rep_.allocation_storage.allocation))) Allocation(allocation);
|
|
}
|
|
|
|
// TODO(absl-team): investigate whether the reinterpret_cast is appropriate.
|
|
pointer inlined_space() {
|
|
return reinterpret_cast<pointer>(
|
|
std::addressof(storage_.rep_.inlined_storage.inlined[0]));
|
|
}
|
|
|
|
const_pointer inlined_space() const {
|
|
return reinterpret_cast<const_pointer>(
|
|
std::addressof(storage_.rep_.inlined_storage.inlined[0]));
|
|
}
|
|
|
|
pointer allocated_space() { return allocation().buffer(); }
|
|
|
|
const_pointer allocated_space() const { return allocation().buffer(); }
|
|
|
|
const allocator_type& allocator() const {
|
|
return storage_.allocator_and_tag_.allocator();
|
|
}
|
|
|
|
allocator_type& allocator() {
|
|
return storage_.allocator_and_tag_.allocator();
|
|
}
|
|
|
|
bool allocated() const { return tag().allocated(); }
|
|
|
|
void ResetAllocation(Allocation new_allocation, size_type new_size) {
|
|
if (allocated()) {
|
|
Destroy(allocated_space(), allocated_space() + size());
|
|
assert(begin() == allocated_space());
|
|
allocation().Dealloc(allocator());
|
|
allocation() = new_allocation;
|
|
} else {
|
|
Destroy(inlined_space(), inlined_space() + size());
|
|
init_allocation(new_allocation); // bug: only init once
|
|
}
|
|
tag().set_allocated_size(new_size);
|
|
}
|
|
|
|
template <typename... Args>
|
|
reference Construct(pointer p, Args&&... args) {
|
|
std::allocator_traits<allocator_type>::construct(
|
|
allocator(), p, std::forward<Args>(args)...);
|
|
return *p;
|
|
}
|
|
|
|
template <typename Iterator>
|
|
void UninitializedCopy(Iterator src, Iterator src_last, pointer dst) {
|
|
for (; src != src_last; ++dst, ++src) Construct(dst, *src);
|
|
}
|
|
|
|
template <typename... Args>
|
|
void UninitializedFill(pointer dst, pointer dst_last, const Args&... args) {
|
|
for (; dst != dst_last; ++dst) Construct(dst, args...);
|
|
}
|
|
|
|
// Destroy [`from`, `to`) in place.
|
|
void Destroy(pointer from, pointer to) {
|
|
for (pointer cur = from; cur != to; ++cur) {
|
|
std::allocator_traits<allocator_type>::destroy(allocator(), cur);
|
|
}
|
|
#if !defined(NDEBUG)
|
|
// Overwrite unused memory with `0xab` so we can catch uninitialized usage.
|
|
// Cast to `void*` to tell the compiler that we don't care that we might be
|
|
// scribbling on a vtable pointer.
|
|
if (from != to) {
|
|
auto len = sizeof(value_type) * std::distance(from, to);
|
|
std::memset(reinterpret_cast<void*>(from), 0xab, len);
|
|
}
|
|
#endif // !defined(NDEBUG)
|
|
}
|
|
|
|
// Enlarge the underlying representation so we can store `size_ + delta` elems
|
|
// in allocated space. The size is not changed, and any newly added memory is
|
|
// not initialized.
|
|
void EnlargeBy(size_type delta) {
|
|
const size_type s = size();
|
|
assert(s <= capacity());
|
|
|
|
size_type target = (std::max)(N, s + delta);
|
|
|
|
// Compute new capacity by repeatedly doubling current capacity
|
|
// TODO(psrc): Check and avoid overflow?
|
|
size_type new_capacity = capacity();
|
|
while (new_capacity < target) {
|
|
new_capacity <<= 1;
|
|
}
|
|
|
|
Allocation new_allocation(allocator(), new_capacity);
|
|
|
|
UninitializedCopy(std::make_move_iterator(data()),
|
|
std::make_move_iterator(data() + s),
|
|
new_allocation.buffer());
|
|
|
|
ResetAllocation(new_allocation, s);
|
|
}
|
|
|
|
// Shift all elements from `position` to `end()` by `n` places to the right.
|
|
// If the vector needs to be enlarged, memory will be allocated.
|
|
// Returns `iterator`s pointing to the start of the previously-initialized
|
|
// portion and the start of the uninitialized portion of the created gap.
|
|
// The number of initialized spots is `pair.second - pair.first`. The number
|
|
// of raw spots is `n - (pair.second - pair.first)`.
|
|
//
|
|
// Updates the size of the InlinedVector internally.
|
|
std::pair<iterator, iterator> ShiftRight(const_iterator position,
|
|
size_type n) {
|
|
iterator start_used = const_cast<iterator>(position);
|
|
iterator start_raw = const_cast<iterator>(position);
|
|
size_type s = size();
|
|
size_type required_size = s + n;
|
|
|
|
if (required_size > capacity()) {
|
|
// Compute new capacity by repeatedly doubling current capacity
|
|
size_type new_capacity = capacity();
|
|
while (new_capacity < required_size) {
|
|
new_capacity <<= 1;
|
|
}
|
|
// Move everyone into the new allocation, leaving a gap of `n` for the
|
|
// requested shift.
|
|
Allocation new_allocation(allocator(), new_capacity);
|
|
size_type index = position - begin();
|
|
UninitializedCopy(std::make_move_iterator(data()),
|
|
std::make_move_iterator(data() + index),
|
|
new_allocation.buffer());
|
|
UninitializedCopy(std::make_move_iterator(data() + index),
|
|
std::make_move_iterator(data() + s),
|
|
new_allocation.buffer() + index + n);
|
|
ResetAllocation(new_allocation, s);
|
|
|
|
// New allocation means our iterator is invalid, so we'll recalculate.
|
|
// Since the entire gap is in new space, there's no used space to reuse.
|
|
start_raw = begin() + index;
|
|
start_used = start_raw;
|
|
} else {
|
|
// If we had enough space, it's a two-part move. Elements going into
|
|
// previously-unoccupied space need an `UninitializedCopy()`. Elements
|
|
// going into a previously-occupied space are just a `std::move()`.
|
|
iterator pos = const_cast<iterator>(position);
|
|
iterator raw_space = end();
|
|
size_type slots_in_used_space = raw_space - pos;
|
|
size_type new_elements_in_used_space = (std::min)(n, slots_in_used_space);
|
|
size_type new_elements_in_raw_space = n - new_elements_in_used_space;
|
|
size_type old_elements_in_used_space =
|
|
slots_in_used_space - new_elements_in_used_space;
|
|
|
|
UninitializedCopy(
|
|
std::make_move_iterator(pos + old_elements_in_used_space),
|
|
std::make_move_iterator(raw_space),
|
|
raw_space + new_elements_in_raw_space);
|
|
std::move_backward(pos, pos + old_elements_in_used_space, raw_space);
|
|
|
|
// If the gap is entirely in raw space, the used space starts where the
|
|
// raw space starts, leaving no elements in used space. If the gap is
|
|
// entirely in used space, the raw space starts at the end of the gap,
|
|
// leaving all elements accounted for within the used space.
|
|
start_used = pos;
|
|
start_raw = pos + new_elements_in_used_space;
|
|
}
|
|
tag().add_size(n);
|
|
return std::make_pair(start_used, start_raw);
|
|
}
|
|
|
|
template <typename... Args>
|
|
reference GrowAndEmplaceBack(Args&&... args) {
|
|
assert(size() == capacity());
|
|
const size_type s = size();
|
|
|
|
Allocation new_allocation(allocator(), 2 * capacity());
|
|
|
|
reference new_element =
|
|
Construct(new_allocation.buffer() + s, std::forward<Args>(args)...);
|
|
UninitializedCopy(std::make_move_iterator(data()),
|
|
std::make_move_iterator(data() + s),
|
|
new_allocation.buffer());
|
|
|
|
ResetAllocation(new_allocation, s + 1);
|
|
|
|
return new_element;
|
|
}
|
|
|
|
void InitAssign(size_type n) {
|
|
if (n > N) {
|
|
Allocation new_allocation(allocator(), n);
|
|
init_allocation(new_allocation);
|
|
UninitializedFill(allocated_space(), allocated_space() + n);
|
|
tag().set_allocated_size(n);
|
|
} else {
|
|
UninitializedFill(inlined_space(), inlined_space() + n);
|
|
tag().set_inline_size(n);
|
|
}
|
|
}
|
|
|
|
void InitAssign(size_type n, const_reference v) {
|
|
if (n > N) {
|
|
Allocation new_allocation(allocator(), n);
|
|
init_allocation(new_allocation);
|
|
UninitializedFill(allocated_space(), allocated_space() + n, v);
|
|
tag().set_allocated_size(n);
|
|
} else {
|
|
UninitializedFill(inlined_space(), inlined_space() + n, v);
|
|
tag().set_inline_size(n);
|
|
}
|
|
}
|
|
|
|
template <typename ForwardIt>
|
|
void AssignForwardRange(ForwardIt first, ForwardIt last) {
|
|
static_assert(IsAtLeastForwardIterator<ForwardIt>::value, "");
|
|
|
|
auto length = std::distance(first, last);
|
|
|
|
// Prefer reassignment to copy construction for elements.
|
|
if (static_cast<size_type>(length) <= size()) {
|
|
erase(std::copy(first, last, begin()), end());
|
|
return;
|
|
}
|
|
|
|
reserve(length);
|
|
iterator out = begin();
|
|
for (; out != end(); ++first, ++out) *out = *first;
|
|
if (allocated()) {
|
|
UninitializedCopy(first, last, out);
|
|
tag().set_allocated_size(length);
|
|
} else {
|
|
UninitializedCopy(first, last, out);
|
|
tag().set_inline_size(length);
|
|
}
|
|
}
|
|
|
|
template <typename ForwardIt>
|
|
void AppendForwardRange(ForwardIt first, ForwardIt last) {
|
|
static_assert(IsAtLeastForwardIterator<ForwardIt>::value, "");
|
|
|
|
auto length = std::distance(first, last);
|
|
reserve(size() + length);
|
|
if (allocated()) {
|
|
UninitializedCopy(first, last, allocated_space() + size());
|
|
tag().set_allocated_size(size() + length);
|
|
} else {
|
|
UninitializedCopy(first, last, inlined_space() + size());
|
|
tag().set_inline_size(size() + length);
|
|
}
|
|
}
|
|
|
|
iterator InsertWithCount(const_iterator position, size_type n,
|
|
const_reference v) {
|
|
assert(position >= begin() && position <= end());
|
|
if (ABSL_PREDICT_FALSE(n == 0)) return const_cast<iterator>(position);
|
|
|
|
value_type copy = v;
|
|
std::pair<iterator, iterator> it_pair = ShiftRight(position, n);
|
|
std::fill(it_pair.first, it_pair.second, copy);
|
|
UninitializedFill(it_pair.second, it_pair.first + n, copy);
|
|
|
|
return it_pair.first;
|
|
}
|
|
|
|
template <typename ForwardIt>
|
|
iterator InsertWithForwardRange(const_iterator position, ForwardIt first,
|
|
ForwardIt last) {
|
|
static_assert(IsAtLeastForwardIterator<ForwardIt>::value, "");
|
|
assert(position >= begin() && position <= end());
|
|
|
|
if (ABSL_PREDICT_FALSE(first == last))
|
|
return const_cast<iterator>(position);
|
|
|
|
auto n = std::distance(first, last);
|
|
std::pair<iterator, iterator> it_pair = ShiftRight(position, n);
|
|
size_type used_spots = it_pair.second - it_pair.first;
|
|
auto open_spot = std::next(first, used_spots);
|
|
std::copy(first, open_spot, it_pair.first);
|
|
UninitializedCopy(open_spot, last, it_pair.second);
|
|
return it_pair.first;
|
|
}
|
|
|
|
void SwapImpl(InlinedVector& other) {
|
|
using std::swap; // Augment ADL with `std::swap`.
|
|
|
|
if (allocated() && other.allocated()) {
|
|
// Both out of line, so just swap the tag, allocation, and allocator.
|
|
swap(tag(), other.tag());
|
|
swap(allocation(), other.allocation());
|
|
swap(allocator(), other.allocator());
|
|
return;
|
|
}
|
|
if (!allocated() && !other.allocated()) {
|
|
// Both inlined: swap up to smaller size, then move remaining elements.
|
|
InlinedVector* a = this;
|
|
InlinedVector* b = std::addressof(other);
|
|
if (size() < other.size()) {
|
|
swap(a, b);
|
|
}
|
|
|
|
const size_type a_size = a->size();
|
|
const size_type b_size = b->size();
|
|
assert(a_size >= b_size);
|
|
// `a` is larger. Swap the elements up to the smaller array size.
|
|
std::swap_ranges(a->inlined_space(), a->inlined_space() + b_size,
|
|
b->inlined_space());
|
|
|
|
// Move the remaining elements:
|
|
// [`b_size`, `a_size`) from `a` -> [`b_size`, `a_size`) from `b`
|
|
b->UninitializedCopy(a->inlined_space() + b_size,
|
|
a->inlined_space() + a_size,
|
|
b->inlined_space() + b_size);
|
|
a->Destroy(a->inlined_space() + b_size, a->inlined_space() + a_size);
|
|
|
|
swap(a->tag(), b->tag());
|
|
swap(a->allocator(), b->allocator());
|
|
assert(b->size() == a_size);
|
|
assert(a->size() == b_size);
|
|
return;
|
|
}
|
|
|
|
// One is out of line, one is inline.
|
|
// We first move the elements from the inlined vector into the
|
|
// inlined space in the other vector. We then put the other vector's
|
|
// pointer/capacity into the originally inlined vector and swap
|
|
// the tags.
|
|
InlinedVector* a = this;
|
|
InlinedVector* b = std::addressof(other);
|
|
if (a->allocated()) {
|
|
swap(a, b);
|
|
}
|
|
assert(!a->allocated());
|
|
assert(b->allocated());
|
|
const size_type a_size = a->size();
|
|
const size_type b_size = b->size();
|
|
// In an optimized build, `b_size` would be unused.
|
|
static_cast<void>(b_size);
|
|
|
|
// Made Local copies of `size()`, don't need `tag()` accurate anymore
|
|
swap(a->tag(), b->tag());
|
|
|
|
// Copy `b_allocation` out before `b`'s union gets clobbered by
|
|
// `inline_space`
|
|
Allocation b_allocation = b->allocation();
|
|
|
|
b->UninitializedCopy(a->inlined_space(), a->inlined_space() + a_size,
|
|
b->inlined_space());
|
|
a->Destroy(a->inlined_space(), a->inlined_space() + a_size);
|
|
|
|
a->allocation() = b_allocation;
|
|
|
|
if (a->allocator() != b->allocator()) {
|
|
swap(a->allocator(), b->allocator());
|
|
}
|
|
|
|
assert(b->size() == a_size);
|
|
assert(a->size() == b_size);
|
|
}
|
|
|
|
Storage storage_;
|
|
};
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// InlinedVector Non-Member Functions
|
|
// -----------------------------------------------------------------------------
|
|
|
|
// `swap()`
|
|
//
|
|
// Swaps the contents of two inlined vectors. This convenience function
|
|
// simply calls `InlinedVector::swap()`.
|
|
template <typename T, size_t N, typename A>
|
|
auto swap(InlinedVector<T, N, A>& a,
|
|
InlinedVector<T, N, A>& b) noexcept(noexcept(a.swap(b))) -> void {
|
|
a.swap(b);
|
|
}
|
|
|
|
// `operator==()`
|
|
//
|
|
// Tests the equivalency of the contents of two inlined vectors.
|
|
template <typename T, size_t N, typename A>
|
|
auto operator==(const InlinedVector<T, N, A>& a,
|
|
const InlinedVector<T, N, A>& b) -> bool {
|
|
return absl::equal(a.begin(), a.end(), b.begin(), b.end());
|
|
}
|
|
|
|
// `operator!=()`
|
|
//
|
|
// Tests the inequality of the contents of two inlined vectors.
|
|
template <typename T, size_t N, typename A>
|
|
auto operator!=(const InlinedVector<T, N, A>& a,
|
|
const InlinedVector<T, N, A>& b) -> bool {
|
|
return !(a == b);
|
|
}
|
|
|
|
// `operator<()`
|
|
//
|
|
// Tests whether the contents of one inlined vector are less than the contents
|
|
// of another through a lexicographical comparison operation.
|
|
template <typename T, size_t N, typename A>
|
|
auto operator<(const InlinedVector<T, N, A>& a, const InlinedVector<T, N, A>& b)
|
|
-> bool {
|
|
return std::lexicographical_compare(a.begin(), a.end(), b.begin(), b.end());
|
|
}
|
|
|
|
// `operator>()`
|
|
//
|
|
// Tests whether the contents of one inlined vector are greater than the
|
|
// contents of another through a lexicographical comparison operation.
|
|
template <typename T, size_t N, typename A>
|
|
auto operator>(const InlinedVector<T, N, A>& a, const InlinedVector<T, N, A>& b)
|
|
-> bool {
|
|
return b < a;
|
|
}
|
|
|
|
// `operator<=()`
|
|
//
|
|
// Tests whether the contents of one inlined vector are less than or equal to
|
|
// the contents of another through a lexicographical comparison operation.
|
|
template <typename T, size_t N, typename A>
|
|
auto operator<=(const InlinedVector<T, N, A>& a,
|
|
const InlinedVector<T, N, A>& b) -> bool {
|
|
return !(b < a);
|
|
}
|
|
|
|
// `operator>=()`
|
|
//
|
|
// Tests whether the contents of one inlined vector are greater than or equal to
|
|
// the contents of another through a lexicographical comparison operation.
|
|
template <typename T, size_t N, typename A>
|
|
auto operator>=(const InlinedVector<T, N, A>& a,
|
|
const InlinedVector<T, N, A>& b) -> bool {
|
|
return !(a < b);
|
|
}
|
|
|
|
// AbslHashValue()
|
|
//
|
|
// Provides `absl::Hash` support for inlined vectors. You do not normally call
|
|
// this function directly.
|
|
template <typename H, typename TheT, size_t TheN, typename TheA>
|
|
auto AbslHashValue(H h, const InlinedVector<TheT, TheN, TheA>& v) -> H {
|
|
auto p = v.data();
|
|
auto n = v.size();
|
|
return H::combine(H::combine_contiguous(std::move(h), p, n), n);
|
|
}
|
|
} // namespace absl
|
|
|
|
#endif // ABSL_CONTAINER_INLINED_VECTOR_H_
|