tvl-depot/absl/random/uniform_real_distribution.h
Abseil Team 502efe6d78 Export of internal Abseil changes
--
8e04df6fcbd062e5eaf179a6ec9b0a26f8aa8a39 by Abseil Team <absl-team@google.com>:

Use a floating point type for the example usage of absl::uniform_real_distribution.

PiperOrigin-RevId: 271167776

--
5f8f1dfea50bc16a9d9af3e50c4636500a938b29 by Abseil Team <absl-team@google.com>:

the llvm wasm backend does not support this data symbol in text section, so remove it from the test.

PiperOrigin-RevId: 271138100

--
2874542cb212962ac3093fd78fd5e1eb85c126c0 by Xiaoyi Zhang <zhangxy@google.com>:

Work around MSVC 2019 compiler bug related to constexpr in optional_test.
The change in optional_test is necessary to avoid another bug on MSVC
complaining about accessing invalid member of union, and also makes the test
more reasonale by checking the value of a non-static member.

Filed a bug against MSVC
https://developercommunity.visualstudio.com/content/problem/743998/internal-compiler-error-related-to-constexpr-and-u.html.

PiperOrigin-RevId: 271129805

--
3a5d56f0c3362aabf68938fb95c4e2d3eca59538 by Abseil Team <absl-team@google.com>:

Improve precision of absl::GetCurrentTimeNanos() by adjusting
cycle time sooner.

PiperOrigin-RevId: 271007945

--
1e044a6dec7c0ca150fff1aee52dbdb16aa43ed7 by Abseil Team <absl-team@google.com>:

Internal change.

PiperOrigin-RevId: 270962690
GitOrigin-RevId: 8e04df6fcbd062e5eaf179a6ec9b0a26f8aa8a39
Change-Id: Icb05423a7e93ebdae16baadd59a60b75b5cfa249
2019-09-25 15:12:18 -04:00

193 lines
6.9 KiB
C++

// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: uniform_real_distribution.h
// -----------------------------------------------------------------------------
//
// This header defines a class for representing a uniform floating-point
// distribution over a half-open interval [a,b). You use this distribution in
// combination with an Abseil random bit generator to produce random values
// according to the rules of the distribution.
//
// `absl::uniform_real_distribution` is a drop-in replacement for the C++11
// `std::uniform_real_distribution` [rand.dist.uni.real] but is considerably
// faster than the libstdc++ implementation.
//
// Note: the standard-library version may occasionally return `1.0` when
// default-initialized. See https://bugs.llvm.org//show_bug.cgi?id=18767
// `absl::uniform_real_distribution` does not exhibit this behavior.
#ifndef ABSL_RANDOM_UNIFORM_REAL_DISTRIBUTION_H_
#define ABSL_RANDOM_UNIFORM_REAL_DISTRIBUTION_H_
#include <cassert>
#include <cmath>
#include <cstdint>
#include <istream>
#include <limits>
#include <type_traits>
#include "absl/random/internal/distribution_impl.h"
#include "absl/random/internal/fast_uniform_bits.h"
#include "absl/random/internal/iostream_state_saver.h"
namespace absl {
// absl::uniform_real_distribution<T>
//
// This distribution produces random floating-point values uniformly distributed
// over the half-open interval [a, b).
//
// Example:
//
// absl::BitGen gen;
//
// // Use the distribution to produce a value between 0.0 (inclusive)
// // and 1.0 (exclusive).
// double value = absl::uniform_real_distribution<double>(0, 1)(gen);
//
template <typename RealType = double>
class uniform_real_distribution {
public:
using result_type = RealType;
class param_type {
public:
using distribution_type = uniform_real_distribution;
explicit param_type(result_type lo = 0, result_type hi = 1)
: lo_(lo), hi_(hi), range_(hi - lo) {
// [rand.dist.uni.real] preconditions 2 & 3
assert(lo <= hi);
// NOTE: For integral types, we can promote the range to an unsigned type,
// which gives full width of the range. However for real (fp) types, this
// is not possible, so value generation cannot use the full range of the
// real type.
assert(range_ <= (std::numeric_limits<result_type>::max)());
}
result_type a() const { return lo_; }
result_type b() const { return hi_; }
friend bool operator==(const param_type& a, const param_type& b) {
return a.lo_ == b.lo_ && a.hi_ == b.hi_;
}
friend bool operator!=(const param_type& a, const param_type& b) {
return !(a == b);
}
private:
friend class uniform_real_distribution;
result_type lo_, hi_, range_;
static_assert(std::is_floating_point<RealType>::value,
"Class-template absl::uniform_real_distribution<> must be "
"parameterized using a floating-point type.");
};
uniform_real_distribution() : uniform_real_distribution(0) {}
explicit uniform_real_distribution(result_type lo, result_type hi = 1)
: param_(lo, hi) {}
explicit uniform_real_distribution(const param_type& param) : param_(param) {}
// uniform_real_distribution<T>::reset()
//
// Resets the uniform real distribution. Note that this function has no effect
// because the distribution already produces independent values.
void reset() {}
template <typename URBG>
result_type operator()(URBG& gen) { // NOLINT(runtime/references)
return operator()(gen, param_);
}
template <typename URBG>
result_type operator()(URBG& gen, // NOLINT(runtime/references)
const param_type& p);
result_type a() const { return param_.a(); }
result_type b() const { return param_.b(); }
param_type param() const { return param_; }
void param(const param_type& params) { param_ = params; }
result_type(min)() const { return a(); }
result_type(max)() const { return b(); }
friend bool operator==(const uniform_real_distribution& a,
const uniform_real_distribution& b) {
return a.param_ == b.param_;
}
friend bool operator!=(const uniform_real_distribution& a,
const uniform_real_distribution& b) {
return a.param_ != b.param_;
}
private:
param_type param_;
random_internal::FastUniformBits<uint64_t> fast_u64_;
};
// -----------------------------------------------------------------------------
// Implementation details follow
// -----------------------------------------------------------------------------
template <typename RealType>
template <typename URBG>
typename uniform_real_distribution<RealType>::result_type
uniform_real_distribution<RealType>::operator()(
URBG& gen, const param_type& p) { // NOLINT(runtime/references)
using random_internal::PositiveValueT;
while (true) {
const result_type sample = random_internal::RandU64ToReal<
result_type>::template Value<PositiveValueT, true>(fast_u64_(gen));
const result_type res = p.a() + (sample * p.range_);
if (res < p.b() || p.range_ <= 0 || !std::isfinite(p.range_)) {
return res;
}
// else sample rejected, try again.
}
}
template <typename CharT, typename Traits, typename RealType>
std::basic_ostream<CharT, Traits>& operator<<(
std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references)
const uniform_real_distribution<RealType>& x) {
auto saver = random_internal::make_ostream_state_saver(os);
os.precision(random_internal::stream_precision_helper<RealType>::kPrecision);
os << x.a() << os.fill() << x.b();
return os;
}
template <typename CharT, typename Traits, typename RealType>
std::basic_istream<CharT, Traits>& operator>>(
std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references)
uniform_real_distribution<RealType>& x) { // NOLINT(runtime/references)
using param_type = typename uniform_real_distribution<RealType>::param_type;
using result_type = typename uniform_real_distribution<RealType>::result_type;
auto saver = random_internal::make_istream_state_saver(is);
auto a = random_internal::read_floating_point<result_type>(is);
if (is.fail()) return is;
auto b = random_internal::read_floating_point<result_type>(is);
if (!is.fail()) {
x.param(param_type(a, b));
}
return is;
}
} // namespace absl
#endif // ABSL_RANDOM_UNIFORM_REAL_DISTRIBUTION_H_