159bf2bf6d
-- c42a234e2c186bf697ce8d77e85628601fa514a6 by Abseil Team <absl-team@google.com>: Enable the assertion in the iterator's operator++ PiperOrigin-RevId: 290134813 -- f8c53ba8e9c5bb16bbcc1e412a5c2519c912c83e by Abseil Team <absl-team@google.com>: Define operator== and operator!= for absl::{weak,strong}_equality and absl::{partial,weak,strong}_ordering types themselves. PiperOrigin-RevId: 290111564 -- 36bc574090cefad74a451719ce2761982647a51d by Tom Manshreck <shreck@google.com>: Specify Time library flag formats PiperOrigin-RevId: 289928010 -- 26dd40281add260baab2b60fec05dfb9c5304aaa by Mark Barolak <mbar@google.com>: Delete an extraneous forward declaration of absl::Cord. PiperOrigin-RevId: 289708481 -- e60aea7f33554ff66d7699bb70e7af1d26323f1d by Abseil Team <absl-team@google.com>: Release b-tree benchmarks. PiperOrigin-RevId: 289654429 -- 660aa83fa000d4bae072b2d1c790f81d0939bc7e by Greg Falcon <gfalcon@google.com>: Use https links. Import of https://github.com/abseil/abseil-cpp/pull/586 PiperOrigin-RevId: 289479559 -- 0611ea4482dcf23d6b0a0389fe041eeb9052449a by Derek Mauro <dmauro@google.com>: Removes the static initializer for LookupTables<absl::uint128>::kVmaxOverBase Uses template specialization to hard code the resulting array. Static initializers are problematic for a number of reasons. Not only are they responsible for the static initialization order fiasco, but they are in the critical path during program startup. For these reasons, the Google C++ style guide strongly discourages them (and forbids them when they are not trivially destructible), and Chromium even has a test forbidding them. https://google.github.io/styleguide/cppguide.html#Static_and_Global_Variables https://chromium.googlesource.com/chromium/src.git/+/master/docs/static_initializers.md http://neugierig.org/software/chromium/notes/2011/08/static-initializers.html PiperOrigin-RevId: 289458677 -- c869362f6bb7a872314f74750d38d81bdaa73f95 by Greg Falcon <gfalcon@google.com>: Step 2 of 2 to fix our CCTZ fork to respect inline namespaces. Re-import of CCTZ from GitHub, applying new changes to honor Abseil's optional inline namespace in MSVC. PiperOrigin-RevId: 289454407 -- fdb3474d76c2ee0371ccdf7593a78137c03a3f58 by Greg Falcon <gfalcon@google.com>: Step 1 of 2 to fix our CCTZ fork to respect inline namespaces. CCTZ uses a linker flag to simulate weak symbol support in MSVC. This takes the form of a #pragma that includes the mangled names of two types: the symbol to treat as weak, and the symbol to use as its default value if no override is provided. When Abseil is configured to use inline namespaces, the mangled names of these symbols change, and the pragma should change to reflect that. Fortunately for us, MSVC name mangling is simple enough that we can generate the needed string literals in the preprocessor. This CL introduces the new macros; the uses will be introduced in a follow-up CL. PiperOrigin-RevId: 289435599 -- 5f152cc36f008acb9ab78f30b5efa40ebaf2754b by Matt Kulukundis <kfm@google.com>: Improve documentation for lazy_emplace PiperOrigin-RevId: 289333112 GitOrigin-RevId: c42a234e2c186bf697ce8d77e85628601fa514a6 Change-Id: I139ce6c7044a70d083af53e428bcb987f0fd88c6
964 lines
33 KiB
C++
964 lines
33 KiB
C++
// Copyright 2017 The Abseil Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
// This file contains string processing functions related to
|
|
// numeric values.
|
|
|
|
#include "absl/strings/numbers.h"
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cfloat> // for DBL_DIG and FLT_DIG
|
|
#include <cmath> // for HUGE_VAL
|
|
#include <cstdint>
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <iterator>
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <utility>
|
|
|
|
#include "absl/base/attributes.h"
|
|
#include "absl/base/internal/bits.h"
|
|
#include "absl/base/internal/raw_logging.h"
|
|
#include "absl/strings/ascii.h"
|
|
#include "absl/strings/charconv.h"
|
|
#include "absl/strings/escaping.h"
|
|
#include "absl/strings/internal/memutil.h"
|
|
#include "absl/strings/match.h"
|
|
#include "absl/strings/str_cat.h"
|
|
|
|
namespace absl {
|
|
ABSL_NAMESPACE_BEGIN
|
|
|
|
bool SimpleAtof(absl::string_view str, float* out) {
|
|
*out = 0.0;
|
|
str = StripAsciiWhitespace(str);
|
|
if (!str.empty() && str[0] == '+') {
|
|
str.remove_prefix(1);
|
|
}
|
|
auto result = absl::from_chars(str.data(), str.data() + str.size(), *out);
|
|
if (result.ec == std::errc::invalid_argument) {
|
|
return false;
|
|
}
|
|
if (result.ptr != str.data() + str.size()) {
|
|
// not all non-whitespace characters consumed
|
|
return false;
|
|
}
|
|
// from_chars() with DR 3081's current wording will return max() on
|
|
// overflow. SimpleAtof returns infinity instead.
|
|
if (result.ec == std::errc::result_out_of_range) {
|
|
if (*out > 1.0) {
|
|
*out = std::numeric_limits<float>::infinity();
|
|
} else if (*out < -1.0) {
|
|
*out = -std::numeric_limits<float>::infinity();
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool SimpleAtod(absl::string_view str, double* out) {
|
|
*out = 0.0;
|
|
str = StripAsciiWhitespace(str);
|
|
if (!str.empty() && str[0] == '+') {
|
|
str.remove_prefix(1);
|
|
}
|
|
auto result = absl::from_chars(str.data(), str.data() + str.size(), *out);
|
|
if (result.ec == std::errc::invalid_argument) {
|
|
return false;
|
|
}
|
|
if (result.ptr != str.data() + str.size()) {
|
|
// not all non-whitespace characters consumed
|
|
return false;
|
|
}
|
|
// from_chars() with DR 3081's current wording will return max() on
|
|
// overflow. SimpleAtod returns infinity instead.
|
|
if (result.ec == std::errc::result_out_of_range) {
|
|
if (*out > 1.0) {
|
|
*out = std::numeric_limits<double>::infinity();
|
|
} else if (*out < -1.0) {
|
|
*out = -std::numeric_limits<double>::infinity();
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool SimpleAtob(absl::string_view str, bool* out) {
|
|
ABSL_RAW_CHECK(out != nullptr, "Output pointer must not be nullptr.");
|
|
if (EqualsIgnoreCase(str, "true") || EqualsIgnoreCase(str, "t") ||
|
|
EqualsIgnoreCase(str, "yes") || EqualsIgnoreCase(str, "y") ||
|
|
EqualsIgnoreCase(str, "1")) {
|
|
*out = true;
|
|
return true;
|
|
}
|
|
if (EqualsIgnoreCase(str, "false") || EqualsIgnoreCase(str, "f") ||
|
|
EqualsIgnoreCase(str, "no") || EqualsIgnoreCase(str, "n") ||
|
|
EqualsIgnoreCase(str, "0")) {
|
|
*out = false;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------
|
|
// FastIntToBuffer() overloads
|
|
//
|
|
// Like the Fast*ToBuffer() functions above, these are intended for speed.
|
|
// Unlike the Fast*ToBuffer() functions, however, these functions write
|
|
// their output to the beginning of the buffer. The caller is responsible
|
|
// for ensuring that the buffer has enough space to hold the output.
|
|
//
|
|
// Returns a pointer to the end of the string (i.e. the null character
|
|
// terminating the string).
|
|
// ----------------------------------------------------------------------
|
|
|
|
namespace {
|
|
|
|
// Used to optimize printing a decimal number's final digit.
|
|
const char one_ASCII_final_digits[10][2] {
|
|
{'0', 0}, {'1', 0}, {'2', 0}, {'3', 0}, {'4', 0},
|
|
{'5', 0}, {'6', 0}, {'7', 0}, {'8', 0}, {'9', 0},
|
|
};
|
|
|
|
} // namespace
|
|
|
|
char* numbers_internal::FastIntToBuffer(uint32_t i, char* buffer) {
|
|
uint32_t digits;
|
|
// The idea of this implementation is to trim the number of divides to as few
|
|
// as possible, and also reducing memory stores and branches, by going in
|
|
// steps of two digits at a time rather than one whenever possible.
|
|
// The huge-number case is first, in the hopes that the compiler will output
|
|
// that case in one branch-free block of code, and only output conditional
|
|
// branches into it from below.
|
|
if (i >= 1000000000) { // >= 1,000,000,000
|
|
digits = i / 100000000; // 100,000,000
|
|
i -= digits * 100000000;
|
|
PutTwoDigits(digits, buffer);
|
|
buffer += 2;
|
|
lt100_000_000:
|
|
digits = i / 1000000; // 1,000,000
|
|
i -= digits * 1000000;
|
|
PutTwoDigits(digits, buffer);
|
|
buffer += 2;
|
|
lt1_000_000:
|
|
digits = i / 10000; // 10,000
|
|
i -= digits * 10000;
|
|
PutTwoDigits(digits, buffer);
|
|
buffer += 2;
|
|
lt10_000:
|
|
digits = i / 100;
|
|
i -= digits * 100;
|
|
PutTwoDigits(digits, buffer);
|
|
buffer += 2;
|
|
lt100:
|
|
digits = i;
|
|
PutTwoDigits(digits, buffer);
|
|
buffer += 2;
|
|
*buffer = 0;
|
|
return buffer;
|
|
}
|
|
|
|
if (i < 100) {
|
|
digits = i;
|
|
if (i >= 10) goto lt100;
|
|
memcpy(buffer, one_ASCII_final_digits[i], 2);
|
|
return buffer + 1;
|
|
}
|
|
if (i < 10000) { // 10,000
|
|
if (i >= 1000) goto lt10_000;
|
|
digits = i / 100;
|
|
i -= digits * 100;
|
|
*buffer++ = '0' + digits;
|
|
goto lt100;
|
|
}
|
|
if (i < 1000000) { // 1,000,000
|
|
if (i >= 100000) goto lt1_000_000;
|
|
digits = i / 10000; // 10,000
|
|
i -= digits * 10000;
|
|
*buffer++ = '0' + digits;
|
|
goto lt10_000;
|
|
}
|
|
if (i < 100000000) { // 100,000,000
|
|
if (i >= 10000000) goto lt100_000_000;
|
|
digits = i / 1000000; // 1,000,000
|
|
i -= digits * 1000000;
|
|
*buffer++ = '0' + digits;
|
|
goto lt1_000_000;
|
|
}
|
|
// we already know that i < 1,000,000,000
|
|
digits = i / 100000000; // 100,000,000
|
|
i -= digits * 100000000;
|
|
*buffer++ = '0' + digits;
|
|
goto lt100_000_000;
|
|
}
|
|
|
|
char* numbers_internal::FastIntToBuffer(int32_t i, char* buffer) {
|
|
uint32_t u = i;
|
|
if (i < 0) {
|
|
*buffer++ = '-';
|
|
// We need to do the negation in modular (i.e., "unsigned")
|
|
// arithmetic; MSVC++ apprently warns for plain "-u", so
|
|
// we write the equivalent expression "0 - u" instead.
|
|
u = 0 - u;
|
|
}
|
|
return numbers_internal::FastIntToBuffer(u, buffer);
|
|
}
|
|
|
|
char* numbers_internal::FastIntToBuffer(uint64_t i, char* buffer) {
|
|
uint32_t u32 = static_cast<uint32_t>(i);
|
|
if (u32 == i) return numbers_internal::FastIntToBuffer(u32, buffer);
|
|
|
|
// Here we know i has at least 10 decimal digits.
|
|
uint64_t top_1to11 = i / 1000000000;
|
|
u32 = static_cast<uint32_t>(i - top_1to11 * 1000000000);
|
|
uint32_t top_1to11_32 = static_cast<uint32_t>(top_1to11);
|
|
|
|
if (top_1to11_32 == top_1to11) {
|
|
buffer = numbers_internal::FastIntToBuffer(top_1to11_32, buffer);
|
|
} else {
|
|
// top_1to11 has more than 32 bits too; print it in two steps.
|
|
uint32_t top_8to9 = static_cast<uint32_t>(top_1to11 / 100);
|
|
uint32_t mid_2 = static_cast<uint32_t>(top_1to11 - top_8to9 * 100);
|
|
buffer = numbers_internal::FastIntToBuffer(top_8to9, buffer);
|
|
PutTwoDigits(mid_2, buffer);
|
|
buffer += 2;
|
|
}
|
|
|
|
// We have only 9 digits now, again the maximum uint32_t can handle fully.
|
|
uint32_t digits = u32 / 10000000; // 10,000,000
|
|
u32 -= digits * 10000000;
|
|
PutTwoDigits(digits, buffer);
|
|
buffer += 2;
|
|
digits = u32 / 100000; // 100,000
|
|
u32 -= digits * 100000;
|
|
PutTwoDigits(digits, buffer);
|
|
buffer += 2;
|
|
digits = u32 / 1000; // 1,000
|
|
u32 -= digits * 1000;
|
|
PutTwoDigits(digits, buffer);
|
|
buffer += 2;
|
|
digits = u32 / 10;
|
|
u32 -= digits * 10;
|
|
PutTwoDigits(digits, buffer);
|
|
buffer += 2;
|
|
memcpy(buffer, one_ASCII_final_digits[u32], 2);
|
|
return buffer + 1;
|
|
}
|
|
|
|
char* numbers_internal::FastIntToBuffer(int64_t i, char* buffer) {
|
|
uint64_t u = i;
|
|
if (i < 0) {
|
|
*buffer++ = '-';
|
|
u = 0 - u;
|
|
}
|
|
return numbers_internal::FastIntToBuffer(u, buffer);
|
|
}
|
|
|
|
// Given a 128-bit number expressed as a pair of uint64_t, high half first,
|
|
// return that number multiplied by the given 32-bit value. If the result is
|
|
// too large to fit in a 128-bit number, divide it by 2 until it fits.
|
|
static std::pair<uint64_t, uint64_t> Mul32(std::pair<uint64_t, uint64_t> num,
|
|
uint32_t mul) {
|
|
uint64_t bits0_31 = num.second & 0xFFFFFFFF;
|
|
uint64_t bits32_63 = num.second >> 32;
|
|
uint64_t bits64_95 = num.first & 0xFFFFFFFF;
|
|
uint64_t bits96_127 = num.first >> 32;
|
|
|
|
// The picture so far: each of these 64-bit values has only the lower 32 bits
|
|
// filled in.
|
|
// bits96_127: [ 00000000 xxxxxxxx ]
|
|
// bits64_95: [ 00000000 xxxxxxxx ]
|
|
// bits32_63: [ 00000000 xxxxxxxx ]
|
|
// bits0_31: [ 00000000 xxxxxxxx ]
|
|
|
|
bits0_31 *= mul;
|
|
bits32_63 *= mul;
|
|
bits64_95 *= mul;
|
|
bits96_127 *= mul;
|
|
|
|
// Now the top halves may also have value, though all 64 of their bits will
|
|
// never be set at the same time, since they are a result of a 32x32 bit
|
|
// multiply. This makes the carry calculation slightly easier.
|
|
// bits96_127: [ mmmmmmmm | mmmmmmmm ]
|
|
// bits64_95: [ | mmmmmmmm mmmmmmmm | ]
|
|
// bits32_63: | [ mmmmmmmm | mmmmmmmm ]
|
|
// bits0_31: | [ | mmmmmmmm mmmmmmmm ]
|
|
// eventually: [ bits128_up | ...bits64_127.... | ..bits0_63... ]
|
|
|
|
uint64_t bits0_63 = bits0_31 + (bits32_63 << 32);
|
|
uint64_t bits64_127 = bits64_95 + (bits96_127 << 32) + (bits32_63 >> 32) +
|
|
(bits0_63 < bits0_31);
|
|
uint64_t bits128_up = (bits96_127 >> 32) + (bits64_127 < bits64_95);
|
|
if (bits128_up == 0) return {bits64_127, bits0_63};
|
|
|
|
int shift = 64 - base_internal::CountLeadingZeros64(bits128_up);
|
|
uint64_t lo = (bits0_63 >> shift) + (bits64_127 << (64 - shift));
|
|
uint64_t hi = (bits64_127 >> shift) + (bits128_up << (64 - shift));
|
|
return {hi, lo};
|
|
}
|
|
|
|
// Compute num * 5 ^ expfive, and return the first 128 bits of the result,
|
|
// where the first bit is always a one. So PowFive(1, 0) starts 0b100000,
|
|
// PowFive(1, 1) starts 0b101000, PowFive(1, 2) starts 0b110010, etc.
|
|
static std::pair<uint64_t, uint64_t> PowFive(uint64_t num, int expfive) {
|
|
std::pair<uint64_t, uint64_t> result = {num, 0};
|
|
while (expfive >= 13) {
|
|
// 5^13 is the highest power of five that will fit in a 32-bit integer.
|
|
result = Mul32(result, 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5);
|
|
expfive -= 13;
|
|
}
|
|
constexpr int powers_of_five[13] = {
|
|
1,
|
|
5,
|
|
5 * 5,
|
|
5 * 5 * 5,
|
|
5 * 5 * 5 * 5,
|
|
5 * 5 * 5 * 5 * 5,
|
|
5 * 5 * 5 * 5 * 5 * 5,
|
|
5 * 5 * 5 * 5 * 5 * 5 * 5,
|
|
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
|
|
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
|
|
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
|
|
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
|
|
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5};
|
|
result = Mul32(result, powers_of_five[expfive & 15]);
|
|
int shift = base_internal::CountLeadingZeros64(result.first);
|
|
if (shift != 0) {
|
|
result.first = (result.first << shift) + (result.second >> (64 - shift));
|
|
result.second = (result.second << shift);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
struct ExpDigits {
|
|
int32_t exponent;
|
|
char digits[6];
|
|
};
|
|
|
|
// SplitToSix converts value, a positive double-precision floating-point number,
|
|
// into a base-10 exponent and 6 ASCII digits, where the first digit is never
|
|
// zero. For example, SplitToSix(1) returns an exponent of zero and a digits
|
|
// array of {'1', '0', '0', '0', '0', '0'}. If value is exactly halfway between
|
|
// two possible representations, e.g. value = 100000.5, then "round to even" is
|
|
// performed.
|
|
static ExpDigits SplitToSix(const double value) {
|
|
ExpDigits exp_dig;
|
|
int exp = 5;
|
|
double d = value;
|
|
// First step: calculate a close approximation of the output, where the
|
|
// value d will be between 100,000 and 999,999, representing the digits
|
|
// in the output ASCII array, and exp is the base-10 exponent. It would be
|
|
// faster to use a table here, and to look up the base-2 exponent of value,
|
|
// however value is an IEEE-754 64-bit number, so the table would have 2,000
|
|
// entries, which is not cache-friendly.
|
|
if (d >= 999999.5) {
|
|
if (d >= 1e+261) exp += 256, d *= 1e-256;
|
|
if (d >= 1e+133) exp += 128, d *= 1e-128;
|
|
if (d >= 1e+69) exp += 64, d *= 1e-64;
|
|
if (d >= 1e+37) exp += 32, d *= 1e-32;
|
|
if (d >= 1e+21) exp += 16, d *= 1e-16;
|
|
if (d >= 1e+13) exp += 8, d *= 1e-8;
|
|
if (d >= 1e+9) exp += 4, d *= 1e-4;
|
|
if (d >= 1e+7) exp += 2, d *= 1e-2;
|
|
if (d >= 1e+6) exp += 1, d *= 1e-1;
|
|
} else {
|
|
if (d < 1e-250) exp -= 256, d *= 1e256;
|
|
if (d < 1e-122) exp -= 128, d *= 1e128;
|
|
if (d < 1e-58) exp -= 64, d *= 1e64;
|
|
if (d < 1e-26) exp -= 32, d *= 1e32;
|
|
if (d < 1e-10) exp -= 16, d *= 1e16;
|
|
if (d < 1e-2) exp -= 8, d *= 1e8;
|
|
if (d < 1e+2) exp -= 4, d *= 1e4;
|
|
if (d < 1e+4) exp -= 2, d *= 1e2;
|
|
if (d < 1e+5) exp -= 1, d *= 1e1;
|
|
}
|
|
// At this point, d is in the range [99999.5..999999.5) and exp is in the
|
|
// range [-324..308]. Since we need to round d up, we want to add a half
|
|
// and truncate.
|
|
// However, the technique above may have lost some precision, due to its
|
|
// repeated multiplication by constants that each may be off by half a bit
|
|
// of precision. This only matters if we're close to the edge though.
|
|
// Since we'd like to know if the fractional part of d is close to a half,
|
|
// we multiply it by 65536 and see if the fractional part is close to 32768.
|
|
// (The number doesn't have to be a power of two,but powers of two are faster)
|
|
uint64_t d64k = d * 65536;
|
|
int dddddd; // A 6-digit decimal integer.
|
|
if ((d64k % 65536) == 32767 || (d64k % 65536) == 32768) {
|
|
// OK, it's fairly likely that precision was lost above, which is
|
|
// not a surprise given only 52 mantissa bits are available. Therefore
|
|
// redo the calculation using 128-bit numbers. (64 bits are not enough).
|
|
|
|
// Start out with digits rounded down; maybe add one below.
|
|
dddddd = static_cast<int>(d64k / 65536);
|
|
|
|
// mantissa is a 64-bit integer representing M.mmm... * 2^63. The actual
|
|
// value we're representing, of course, is M.mmm... * 2^exp2.
|
|
int exp2;
|
|
double m = std::frexp(value, &exp2);
|
|
uint64_t mantissa = m * (32768.0 * 65536.0 * 65536.0 * 65536.0);
|
|
// std::frexp returns an m value in the range [0.5, 1.0), however we
|
|
// can't multiply it by 2^64 and convert to an integer because some FPUs
|
|
// throw an exception when converting an number higher than 2^63 into an
|
|
// integer - even an unsigned 64-bit integer! Fortunately it doesn't matter
|
|
// since m only has 52 significant bits anyway.
|
|
mantissa <<= 1;
|
|
exp2 -= 64; // not needed, but nice for debugging
|
|
|
|
// OK, we are here to compare:
|
|
// (dddddd + 0.5) * 10^(exp-5) vs. mantissa * 2^exp2
|
|
// so we can round up dddddd if appropriate. Those values span the full
|
|
// range of 600 orders of magnitude of IEE 64-bit floating-point.
|
|
// Fortunately, we already know they are very close, so we don't need to
|
|
// track the base-2 exponent of both sides. This greatly simplifies the
|
|
// the math since the 2^exp2 calculation is unnecessary and the power-of-10
|
|
// calculation can become a power-of-5 instead.
|
|
|
|
std::pair<uint64_t, uint64_t> edge, val;
|
|
if (exp >= 6) {
|
|
// Compare (dddddd + 0.5) * 5 ^ (exp - 5) to mantissa
|
|
// Since we're tossing powers of two, 2 * dddddd + 1 is the
|
|
// same as dddddd + 0.5
|
|
edge = PowFive(2 * dddddd + 1, exp - 5);
|
|
|
|
val.first = mantissa;
|
|
val.second = 0;
|
|
} else {
|
|
// We can't compare (dddddd + 0.5) * 5 ^ (exp - 5) to mantissa as we did
|
|
// above because (exp - 5) is negative. So we compare (dddddd + 0.5) to
|
|
// mantissa * 5 ^ (5 - exp)
|
|
edge = PowFive(2 * dddddd + 1, 0);
|
|
|
|
val = PowFive(mantissa, 5 - exp);
|
|
}
|
|
// printf("exp=%d %016lx %016lx vs %016lx %016lx\n", exp, val.first,
|
|
// val.second, edge.first, edge.second);
|
|
if (val > edge) {
|
|
dddddd++;
|
|
} else if (val == edge) {
|
|
dddddd += (dddddd & 1);
|
|
}
|
|
} else {
|
|
// Here, we are not close to the edge.
|
|
dddddd = static_cast<int>((d64k + 32768) / 65536);
|
|
}
|
|
if (dddddd == 1000000) {
|
|
dddddd = 100000;
|
|
exp += 1;
|
|
}
|
|
exp_dig.exponent = exp;
|
|
|
|
int two_digits = dddddd / 10000;
|
|
dddddd -= two_digits * 10000;
|
|
numbers_internal::PutTwoDigits(two_digits, &exp_dig.digits[0]);
|
|
|
|
two_digits = dddddd / 100;
|
|
dddddd -= two_digits * 100;
|
|
numbers_internal::PutTwoDigits(two_digits, &exp_dig.digits[2]);
|
|
|
|
numbers_internal::PutTwoDigits(dddddd, &exp_dig.digits[4]);
|
|
return exp_dig;
|
|
}
|
|
|
|
// Helper function for fast formatting of floating-point.
|
|
// The result is the same as "%g", a.k.a. "%.6g".
|
|
size_t numbers_internal::SixDigitsToBuffer(double d, char* const buffer) {
|
|
static_assert(std::numeric_limits<float>::is_iec559,
|
|
"IEEE-754/IEC-559 support only");
|
|
|
|
char* out = buffer; // we write data to out, incrementing as we go, but
|
|
// FloatToBuffer always returns the address of the buffer
|
|
// passed in.
|
|
|
|
if (std::isnan(d)) {
|
|
strcpy(out, "nan"); // NOLINT(runtime/printf)
|
|
return 3;
|
|
}
|
|
if (d == 0) { // +0 and -0 are handled here
|
|
if (std::signbit(d)) *out++ = '-';
|
|
*out++ = '0';
|
|
*out = 0;
|
|
return out - buffer;
|
|
}
|
|
if (d < 0) {
|
|
*out++ = '-';
|
|
d = -d;
|
|
}
|
|
if (std::isinf(d)) {
|
|
strcpy(out, "inf"); // NOLINT(runtime/printf)
|
|
return out + 3 - buffer;
|
|
}
|
|
|
|
auto exp_dig = SplitToSix(d);
|
|
int exp = exp_dig.exponent;
|
|
const char* digits = exp_dig.digits;
|
|
out[0] = '0';
|
|
out[1] = '.';
|
|
switch (exp) {
|
|
case 5:
|
|
memcpy(out, &digits[0], 6), out += 6;
|
|
*out = 0;
|
|
return out - buffer;
|
|
case 4:
|
|
memcpy(out, &digits[0], 5), out += 5;
|
|
if (digits[5] != '0') {
|
|
*out++ = '.';
|
|
*out++ = digits[5];
|
|
}
|
|
*out = 0;
|
|
return out - buffer;
|
|
case 3:
|
|
memcpy(out, &digits[0], 4), out += 4;
|
|
if ((digits[5] | digits[4]) != '0') {
|
|
*out++ = '.';
|
|
*out++ = digits[4];
|
|
if (digits[5] != '0') *out++ = digits[5];
|
|
}
|
|
*out = 0;
|
|
return out - buffer;
|
|
case 2:
|
|
memcpy(out, &digits[0], 3), out += 3;
|
|
*out++ = '.';
|
|
memcpy(out, &digits[3], 3);
|
|
out += 3;
|
|
while (out[-1] == '0') --out;
|
|
if (out[-1] == '.') --out;
|
|
*out = 0;
|
|
return out - buffer;
|
|
case 1:
|
|
memcpy(out, &digits[0], 2), out += 2;
|
|
*out++ = '.';
|
|
memcpy(out, &digits[2], 4);
|
|
out += 4;
|
|
while (out[-1] == '0') --out;
|
|
if (out[-1] == '.') --out;
|
|
*out = 0;
|
|
return out - buffer;
|
|
case 0:
|
|
memcpy(out, &digits[0], 1), out += 1;
|
|
*out++ = '.';
|
|
memcpy(out, &digits[1], 5);
|
|
out += 5;
|
|
while (out[-1] == '0') --out;
|
|
if (out[-1] == '.') --out;
|
|
*out = 0;
|
|
return out - buffer;
|
|
case -4:
|
|
out[2] = '0';
|
|
++out;
|
|
ABSL_FALLTHROUGH_INTENDED;
|
|
case -3:
|
|
out[2] = '0';
|
|
++out;
|
|
ABSL_FALLTHROUGH_INTENDED;
|
|
case -2:
|
|
out[2] = '0';
|
|
++out;
|
|
ABSL_FALLTHROUGH_INTENDED;
|
|
case -1:
|
|
out += 2;
|
|
memcpy(out, &digits[0], 6);
|
|
out += 6;
|
|
while (out[-1] == '0') --out;
|
|
*out = 0;
|
|
return out - buffer;
|
|
}
|
|
assert(exp < -4 || exp >= 6);
|
|
out[0] = digits[0];
|
|
assert(out[1] == '.');
|
|
out += 2;
|
|
memcpy(out, &digits[1], 5), out += 5;
|
|
while (out[-1] == '0') --out;
|
|
if (out[-1] == '.') --out;
|
|
*out++ = 'e';
|
|
if (exp > 0) {
|
|
*out++ = '+';
|
|
} else {
|
|
*out++ = '-';
|
|
exp = -exp;
|
|
}
|
|
if (exp > 99) {
|
|
int dig1 = exp / 100;
|
|
exp -= dig1 * 100;
|
|
*out++ = '0' + dig1;
|
|
}
|
|
PutTwoDigits(exp, out);
|
|
out += 2;
|
|
*out = 0;
|
|
return out - buffer;
|
|
}
|
|
|
|
namespace {
|
|
// Represents integer values of digits.
|
|
// Uses 36 to indicate an invalid character since we support
|
|
// bases up to 36.
|
|
static const int8_t kAsciiToInt[256] = {
|
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, // 16 36s.
|
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
|
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 0, 1, 2, 3, 4, 5,
|
|
6, 7, 8, 9, 36, 36, 36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17,
|
|
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
|
|
36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
|
|
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 36, 36, 36, 36, 36,
|
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
|
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
|
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
|
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
|
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
|
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
|
|
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36};
|
|
|
|
// Parse the sign and optional hex or oct prefix in text.
|
|
inline bool safe_parse_sign_and_base(absl::string_view* text /*inout*/,
|
|
int* base_ptr /*inout*/,
|
|
bool* negative_ptr /*output*/) {
|
|
if (text->data() == nullptr) {
|
|
return false;
|
|
}
|
|
|
|
const char* start = text->data();
|
|
const char* end = start + text->size();
|
|
int base = *base_ptr;
|
|
|
|
// Consume whitespace.
|
|
while (start < end && absl::ascii_isspace(start[0])) {
|
|
++start;
|
|
}
|
|
while (start < end && absl::ascii_isspace(end[-1])) {
|
|
--end;
|
|
}
|
|
if (start >= end) {
|
|
return false;
|
|
}
|
|
|
|
// Consume sign.
|
|
*negative_ptr = (start[0] == '-');
|
|
if (*negative_ptr || start[0] == '+') {
|
|
++start;
|
|
if (start >= end) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Consume base-dependent prefix.
|
|
// base 0: "0x" -> base 16, "0" -> base 8, default -> base 10
|
|
// base 16: "0x" -> base 16
|
|
// Also validate the base.
|
|
if (base == 0) {
|
|
if (end - start >= 2 && start[0] == '0' &&
|
|
(start[1] == 'x' || start[1] == 'X')) {
|
|
base = 16;
|
|
start += 2;
|
|
if (start >= end) {
|
|
// "0x" with no digits after is invalid.
|
|
return false;
|
|
}
|
|
} else if (end - start >= 1 && start[0] == '0') {
|
|
base = 8;
|
|
start += 1;
|
|
} else {
|
|
base = 10;
|
|
}
|
|
} else if (base == 16) {
|
|
if (end - start >= 2 && start[0] == '0' &&
|
|
(start[1] == 'x' || start[1] == 'X')) {
|
|
start += 2;
|
|
if (start >= end) {
|
|
// "0x" with no digits after is invalid.
|
|
return false;
|
|
}
|
|
}
|
|
} else if (base >= 2 && base <= 36) {
|
|
// okay
|
|
} else {
|
|
return false;
|
|
}
|
|
*text = absl::string_view(start, end - start);
|
|
*base_ptr = base;
|
|
return true;
|
|
}
|
|
|
|
// Consume digits.
|
|
//
|
|
// The classic loop:
|
|
//
|
|
// for each digit
|
|
// value = value * base + digit
|
|
// value *= sign
|
|
//
|
|
// The classic loop needs overflow checking. It also fails on the most
|
|
// negative integer, -2147483648 in 32-bit two's complement representation.
|
|
//
|
|
// My improved loop:
|
|
//
|
|
// if (!negative)
|
|
// for each digit
|
|
// value = value * base
|
|
// value = value + digit
|
|
// else
|
|
// for each digit
|
|
// value = value * base
|
|
// value = value - digit
|
|
//
|
|
// Overflow checking becomes simple.
|
|
|
|
// Lookup tables per IntType:
|
|
// vmax/base and vmin/base are precomputed because division costs at least 8ns.
|
|
// TODO(junyer): Doing this per base instead (i.e. an array of structs, not a
|
|
// struct of arrays) would probably be better in terms of d-cache for the most
|
|
// commonly used bases.
|
|
template <typename IntType>
|
|
struct LookupTables {
|
|
ABSL_CONST_INIT static const IntType kVmaxOverBase[];
|
|
ABSL_CONST_INIT static const IntType kVminOverBase[];
|
|
};
|
|
|
|
// An array initializer macro for X/base where base in [0, 36].
|
|
// However, note that lookups for base in [0, 1] should never happen because
|
|
// base has been validated to be in [2, 36] by safe_parse_sign_and_base().
|
|
#define X_OVER_BASE_INITIALIZER(X) \
|
|
{ \
|
|
0, 0, X / 2, X / 3, X / 4, X / 5, X / 6, X / 7, X / 8, X / 9, X / 10, \
|
|
X / 11, X / 12, X / 13, X / 14, X / 15, X / 16, X / 17, X / 18, \
|
|
X / 19, X / 20, X / 21, X / 22, X / 23, X / 24, X / 25, X / 26, \
|
|
X / 27, X / 28, X / 29, X / 30, X / 31, X / 32, X / 33, X / 34, \
|
|
X / 35, X / 36, \
|
|
}
|
|
|
|
// uint128& operator/=(uint128) is not constexpr, so hardcode the resulting
|
|
// array to avoid a static initializer.
|
|
template <>
|
|
const uint128 LookupTables<uint128>::kVmaxOverBase[] = {
|
|
0,
|
|
0,
|
|
MakeUint128(9223372036854775807u, 18446744073709551615u),
|
|
MakeUint128(6148914691236517205u, 6148914691236517205u),
|
|
MakeUint128(4611686018427387903u, 18446744073709551615u),
|
|
MakeUint128(3689348814741910323u, 3689348814741910323u),
|
|
MakeUint128(3074457345618258602u, 12297829382473034410u),
|
|
MakeUint128(2635249153387078802u, 5270498306774157604u),
|
|
MakeUint128(2305843009213693951u, 18446744073709551615u),
|
|
MakeUint128(2049638230412172401u, 14347467612885206812u),
|
|
MakeUint128(1844674407370955161u, 11068046444225730969u),
|
|
MakeUint128(1676976733973595601u, 8384883669867978007u),
|
|
MakeUint128(1537228672809129301u, 6148914691236517205u),
|
|
MakeUint128(1418980313362273201u, 4256940940086819603u),
|
|
MakeUint128(1317624576693539401u, 2635249153387078802u),
|
|
MakeUint128(1229782938247303441u, 1229782938247303441u),
|
|
MakeUint128(1152921504606846975u, 18446744073709551615u),
|
|
MakeUint128(1085102592571150095u, 1085102592571150095u),
|
|
MakeUint128(1024819115206086200u, 16397105843297379214u),
|
|
MakeUint128(970881267037344821u, 16504981539634861972u),
|
|
MakeUint128(922337203685477580u, 14757395258967641292u),
|
|
MakeUint128(878416384462359600u, 14054662151397753612u),
|
|
MakeUint128(838488366986797800u, 13415813871788764811u),
|
|
MakeUint128(802032351030850070u, 4812194106185100421u),
|
|
MakeUint128(768614336404564650u, 12297829382473034410u),
|
|
MakeUint128(737869762948382064u, 11805916207174113034u),
|
|
MakeUint128(709490156681136600u, 11351842506898185609u),
|
|
MakeUint128(683212743470724133u, 17080318586768103348u),
|
|
MakeUint128(658812288346769700u, 10540996613548315209u),
|
|
MakeUint128(636094623231363848u, 15266270957552732371u),
|
|
MakeUint128(614891469123651720u, 9838263505978427528u),
|
|
MakeUint128(595056260442243600u, 9520900167075897608u),
|
|
MakeUint128(576460752303423487u, 18446744073709551615u),
|
|
MakeUint128(558992244657865200u, 8943875914525843207u),
|
|
MakeUint128(542551296285575047u, 9765923333140350855u),
|
|
MakeUint128(527049830677415760u, 8432797290838652167u),
|
|
MakeUint128(512409557603043100u, 8198552921648689607u),
|
|
};
|
|
|
|
template <typename IntType>
|
|
const IntType LookupTables<IntType>::kVmaxOverBase[] =
|
|
X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::max());
|
|
|
|
template <typename IntType>
|
|
const IntType LookupTables<IntType>::kVminOverBase[] =
|
|
X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::min());
|
|
|
|
#undef X_OVER_BASE_INITIALIZER
|
|
|
|
template <typename IntType>
|
|
inline bool safe_parse_positive_int(absl::string_view text, int base,
|
|
IntType* value_p) {
|
|
IntType value = 0;
|
|
const IntType vmax = std::numeric_limits<IntType>::max();
|
|
assert(vmax > 0);
|
|
assert(base >= 0);
|
|
assert(vmax >= static_cast<IntType>(base));
|
|
const IntType vmax_over_base = LookupTables<IntType>::kVmaxOverBase[base];
|
|
assert(base < 2 ||
|
|
std::numeric_limits<IntType>::max() / base == vmax_over_base);
|
|
const char* start = text.data();
|
|
const char* end = start + text.size();
|
|
// loop over digits
|
|
for (; start < end; ++start) {
|
|
unsigned char c = static_cast<unsigned char>(start[0]);
|
|
int digit = kAsciiToInt[c];
|
|
if (digit >= base) {
|
|
*value_p = value;
|
|
return false;
|
|
}
|
|
if (value > vmax_over_base) {
|
|
*value_p = vmax;
|
|
return false;
|
|
}
|
|
value *= base;
|
|
if (value > vmax - digit) {
|
|
*value_p = vmax;
|
|
return false;
|
|
}
|
|
value += digit;
|
|
}
|
|
*value_p = value;
|
|
return true;
|
|
}
|
|
|
|
template <typename IntType>
|
|
inline bool safe_parse_negative_int(absl::string_view text, int base,
|
|
IntType* value_p) {
|
|
IntType value = 0;
|
|
const IntType vmin = std::numeric_limits<IntType>::min();
|
|
assert(vmin < 0);
|
|
assert(vmin <= 0 - base);
|
|
IntType vmin_over_base = LookupTables<IntType>::kVminOverBase[base];
|
|
assert(base < 2 ||
|
|
std::numeric_limits<IntType>::min() / base == vmin_over_base);
|
|
// 2003 c++ standard [expr.mul]
|
|
// "... the sign of the remainder is implementation-defined."
|
|
// Although (vmin/base)*base + vmin%base is always vmin.
|
|
// 2011 c++ standard tightens the spec but we cannot rely on it.
|
|
// TODO(junyer): Handle this in the lookup table generation.
|
|
if (vmin % base > 0) {
|
|
vmin_over_base += 1;
|
|
}
|
|
const char* start = text.data();
|
|
const char* end = start + text.size();
|
|
// loop over digits
|
|
for (; start < end; ++start) {
|
|
unsigned char c = static_cast<unsigned char>(start[0]);
|
|
int digit = kAsciiToInt[c];
|
|
if (digit >= base) {
|
|
*value_p = value;
|
|
return false;
|
|
}
|
|
if (value < vmin_over_base) {
|
|
*value_p = vmin;
|
|
return false;
|
|
}
|
|
value *= base;
|
|
if (value < vmin + digit) {
|
|
*value_p = vmin;
|
|
return false;
|
|
}
|
|
value -= digit;
|
|
}
|
|
*value_p = value;
|
|
return true;
|
|
}
|
|
|
|
// Input format based on POSIX.1-2008 strtol
|
|
// http://pubs.opengroup.org/onlinepubs/9699919799/functions/strtol.html
|
|
template <typename IntType>
|
|
inline bool safe_int_internal(absl::string_view text, IntType* value_p,
|
|
int base) {
|
|
*value_p = 0;
|
|
bool negative;
|
|
if (!safe_parse_sign_and_base(&text, &base, &negative)) {
|
|
return false;
|
|
}
|
|
if (!negative) {
|
|
return safe_parse_positive_int(text, base, value_p);
|
|
} else {
|
|
return safe_parse_negative_int(text, base, value_p);
|
|
}
|
|
}
|
|
|
|
template <typename IntType>
|
|
inline bool safe_uint_internal(absl::string_view text, IntType* value_p,
|
|
int base) {
|
|
*value_p = 0;
|
|
bool negative;
|
|
if (!safe_parse_sign_and_base(&text, &base, &negative) || negative) {
|
|
return false;
|
|
}
|
|
return safe_parse_positive_int(text, base, value_p);
|
|
}
|
|
} // anonymous namespace
|
|
|
|
namespace numbers_internal {
|
|
|
|
// Digit conversion.
|
|
ABSL_CONST_INIT const char kHexChar[] = "0123456789abcdef";
|
|
|
|
ABSL_CONST_INIT const char kHexTable[513] =
|
|
"000102030405060708090a0b0c0d0e0f"
|
|
"101112131415161718191a1b1c1d1e1f"
|
|
"202122232425262728292a2b2c2d2e2f"
|
|
"303132333435363738393a3b3c3d3e3f"
|
|
"404142434445464748494a4b4c4d4e4f"
|
|
"505152535455565758595a5b5c5d5e5f"
|
|
"606162636465666768696a6b6c6d6e6f"
|
|
"707172737475767778797a7b7c7d7e7f"
|
|
"808182838485868788898a8b8c8d8e8f"
|
|
"909192939495969798999a9b9c9d9e9f"
|
|
"a0a1a2a3a4a5a6a7a8a9aaabacadaeaf"
|
|
"b0b1b2b3b4b5b6b7b8b9babbbcbdbebf"
|
|
"c0c1c2c3c4c5c6c7c8c9cacbcccdcecf"
|
|
"d0d1d2d3d4d5d6d7d8d9dadbdcdddedf"
|
|
"e0e1e2e3e4e5e6e7e8e9eaebecedeeef"
|
|
"f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff";
|
|
|
|
ABSL_CONST_INIT const char two_ASCII_digits[100][2] = {
|
|
{'0', '0'}, {'0', '1'}, {'0', '2'}, {'0', '3'}, {'0', '4'}, {'0', '5'},
|
|
{'0', '6'}, {'0', '7'}, {'0', '8'}, {'0', '9'}, {'1', '0'}, {'1', '1'},
|
|
{'1', '2'}, {'1', '3'}, {'1', '4'}, {'1', '5'}, {'1', '6'}, {'1', '7'},
|
|
{'1', '8'}, {'1', '9'}, {'2', '0'}, {'2', '1'}, {'2', '2'}, {'2', '3'},
|
|
{'2', '4'}, {'2', '5'}, {'2', '6'}, {'2', '7'}, {'2', '8'}, {'2', '9'},
|
|
{'3', '0'}, {'3', '1'}, {'3', '2'}, {'3', '3'}, {'3', '4'}, {'3', '5'},
|
|
{'3', '6'}, {'3', '7'}, {'3', '8'}, {'3', '9'}, {'4', '0'}, {'4', '1'},
|
|
{'4', '2'}, {'4', '3'}, {'4', '4'}, {'4', '5'}, {'4', '6'}, {'4', '7'},
|
|
{'4', '8'}, {'4', '9'}, {'5', '0'}, {'5', '1'}, {'5', '2'}, {'5', '3'},
|
|
{'5', '4'}, {'5', '5'}, {'5', '6'}, {'5', '7'}, {'5', '8'}, {'5', '9'},
|
|
{'6', '0'}, {'6', '1'}, {'6', '2'}, {'6', '3'}, {'6', '4'}, {'6', '5'},
|
|
{'6', '6'}, {'6', '7'}, {'6', '8'}, {'6', '9'}, {'7', '0'}, {'7', '1'},
|
|
{'7', '2'}, {'7', '3'}, {'7', '4'}, {'7', '5'}, {'7', '6'}, {'7', '7'},
|
|
{'7', '8'}, {'7', '9'}, {'8', '0'}, {'8', '1'}, {'8', '2'}, {'8', '3'},
|
|
{'8', '4'}, {'8', '5'}, {'8', '6'}, {'8', '7'}, {'8', '8'}, {'8', '9'},
|
|
{'9', '0'}, {'9', '1'}, {'9', '2'}, {'9', '3'}, {'9', '4'}, {'9', '5'},
|
|
{'9', '6'}, {'9', '7'}, {'9', '8'}, {'9', '9'}};
|
|
|
|
bool safe_strto32_base(absl::string_view text, int32_t* value, int base) {
|
|
return safe_int_internal<int32_t>(text, value, base);
|
|
}
|
|
|
|
bool safe_strto64_base(absl::string_view text, int64_t* value, int base) {
|
|
return safe_int_internal<int64_t>(text, value, base);
|
|
}
|
|
|
|
bool safe_strtou32_base(absl::string_view text, uint32_t* value, int base) {
|
|
return safe_uint_internal<uint32_t>(text, value, base);
|
|
}
|
|
|
|
bool safe_strtou64_base(absl::string_view text, uint64_t* value, int base) {
|
|
return safe_uint_internal<uint64_t>(text, value, base);
|
|
}
|
|
|
|
bool safe_strtou128_base(absl::string_view text, uint128* value, int base) {
|
|
return safe_uint_internal<absl::uint128>(text, value, base);
|
|
}
|
|
|
|
} // namespace numbers_internal
|
|
ABSL_NAMESPACE_END
|
|
} // namespace absl
|