tvl-depot/absl/container/inlined_vector_benchmark.cc
Abseil Team 43ef2148c0 Export of internal Abseil changes.
--
635146be541d732fbf2e9c93c6bec89035552484 by Gennadiy Rozental <rogeeff@google.com>:

Merge external PR #324

PiperOrigin-RevId: 253849839

--
7a37f87f0f419ab535e59c7dae7961546586671a by Gennadiy Rozental <rogeeff@google.com>:

Merge external PR #323

PiperOrigin-RevId: 253849558

--
75455e93e1f3987c926f35fbe80a0ea84e4ba35b by CJ Johnson <johnsoncj@google.com>:

Removes `ivi` namespace typedef to reduce reader confusion

PiperOrigin-RevId: 253789534

--
2f99d27194468129767c48ab621b952660427493 by CJ Johnson <johnsoncj@google.com>:

New benchmarks the various overloads of InlinedVector::assign(...)/InlinedVector::operator=(...)

PiperOrigin-RevId: 253787316

--
a0949eb100b93aae22b85b4a4820e4bf9a5a2dbb by CJ Johnson <johnsoncj@google.com>:

Updates the definition of `InlinedVector::pop_back(...)` to be cleaner and more direct (hiding the is_allocated branch behind a single call to `data()`)

Adds exception safety test for `InlinedVector::pop_back(...)`

PiperOrigin-RevId: 253607385

--
2dbc728ddf84835dcb6341f9a166f1c9bde103b9 by CJ Johnson <johnsoncj@google.com>:

Adds the remaining constructor exception safety tests for InlinedVector

PiperOrigin-RevId: 253592324

--
40d88e0d6232c93af5e008088f69ad41cb44e4ce by CJ Johnson <johnsoncj@google.com>:

Updates the constructors of InlinedVector to new, exception-safe and more-performant implementations.

PiperOrigin-RevId: 253294508
GitOrigin-RevId: 635146be541d732fbf2e9c93c6bec89035552484
Change-Id: I7d37a749632084f5d7fa56d42392e622a9d0180d
2019-06-18 16:10:39 -04:00

612 lines
19 KiB
C++

// Copyright 2019 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <array>
#include <string>
#include <vector>
#include "benchmark/benchmark.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/macros.h"
#include "absl/container/inlined_vector.h"
#include "absl/strings/str_cat.h"
namespace {
void BM_InlinedVectorFill(benchmark::State& state) {
absl::InlinedVector<int, 8> v;
int val = 10;
for (auto _ : state) {
benchmark::DoNotOptimize(v);
v.push_back(val);
}
}
BENCHMARK(BM_InlinedVectorFill)->Range(0, 1024);
void BM_InlinedVectorFillRange(benchmark::State& state) {
const int len = state.range(0);
std::unique_ptr<int[]> ia(new int[len]);
for (int i = 0; i < len; i++) {
ia[i] = i;
}
auto* from = ia.get();
auto* to = from + len;
for (auto _ : state) {
benchmark::DoNotOptimize(from);
benchmark::DoNotOptimize(to);
absl::InlinedVector<int, 8> v(from, to);
benchmark::DoNotOptimize(v);
}
}
BENCHMARK(BM_InlinedVectorFillRange)->Range(0, 1024);
void BM_StdVectorFill(benchmark::State& state) {
std::vector<int> v;
int val = 10;
for (auto _ : state) {
benchmark::DoNotOptimize(v);
benchmark::DoNotOptimize(val);
v.push_back(val);
}
}
BENCHMARK(BM_StdVectorFill)->Range(0, 1024);
// The purpose of the next two benchmarks is to verify that
// absl::InlinedVector is efficient when moving is more efficent than
// copying. To do so, we use strings that are larger than the short
// string optimization.
bool StringRepresentedInline(std::string s) {
const char* chars = s.data();
std::string s1 = std::move(s);
return s1.data() != chars;
}
int GetNonShortStringOptimizationSize() {
for (int i = 24; i <= 192; i *= 2) {
if (!StringRepresentedInline(std::string(i, 'A'))) {
return i;
}
}
ABSL_RAW_LOG(
FATAL,
"Failed to find a std::string larger than the short std::string optimization");
return -1;
}
void BM_InlinedVectorFillString(benchmark::State& state) {
const int len = state.range(0);
const int no_sso = GetNonShortStringOptimizationSize();
std::string strings[4] = {std::string(no_sso, 'A'), std::string(no_sso, 'B'),
std::string(no_sso, 'C'), std::string(no_sso, 'D')};
for (auto _ : state) {
absl::InlinedVector<std::string, 8> v;
for (int i = 0; i < len; i++) {
v.push_back(strings[i & 3]);
}
}
state.SetItemsProcessed(static_cast<int64_t>(state.iterations()) * len);
}
BENCHMARK(BM_InlinedVectorFillString)->Range(0, 1024);
void BM_StdVectorFillString(benchmark::State& state) {
const int len = state.range(0);
const int no_sso = GetNonShortStringOptimizationSize();
std::string strings[4] = {std::string(no_sso, 'A'), std::string(no_sso, 'B'),
std::string(no_sso, 'C'), std::string(no_sso, 'D')};
for (auto _ : state) {
std::vector<std::string> v;
for (int i = 0; i < len; i++) {
v.push_back(strings[i & 3]);
}
}
state.SetItemsProcessed(static_cast<int64_t>(state.iterations()) * len);
}
BENCHMARK(BM_StdVectorFillString)->Range(0, 1024);
struct Buffer { // some arbitrary structure for benchmarking.
char* base;
int length;
int capacity;
void* user_data;
};
void BM_InlinedVectorAssignments(benchmark::State& state) {
const int len = state.range(0);
using BufferVec = absl::InlinedVector<Buffer, 2>;
BufferVec src;
src.resize(len);
BufferVec dst;
for (auto _ : state) {
benchmark::DoNotOptimize(dst);
benchmark::DoNotOptimize(src);
dst = src;
}
}
BENCHMARK(BM_InlinedVectorAssignments)
->Arg(0)
->Arg(1)
->Arg(2)
->Arg(3)
->Arg(4)
->Arg(20);
void BM_CreateFromContainer(benchmark::State& state) {
for (auto _ : state) {
absl::InlinedVector<int, 4> src{1, 2, 3};
benchmark::DoNotOptimize(src);
absl::InlinedVector<int, 4> dst(std::move(src));
benchmark::DoNotOptimize(dst);
}
}
BENCHMARK(BM_CreateFromContainer);
struct LargeCopyableOnly {
LargeCopyableOnly() : d(1024, 17) {}
LargeCopyableOnly(const LargeCopyableOnly& o) = default;
LargeCopyableOnly& operator=(const LargeCopyableOnly& o) = default;
std::vector<int> d;
};
struct LargeCopyableSwappable {
LargeCopyableSwappable() : d(1024, 17) {}
LargeCopyableSwappable(const LargeCopyableSwappable& o) = default;
LargeCopyableSwappable& operator=(LargeCopyableSwappable o) {
using std::swap;
swap(*this, o);
return *this;
}
friend void swap(LargeCopyableSwappable& a, LargeCopyableSwappable& b) {
using std::swap;
swap(a.d, b.d);
}
std::vector<int> d;
};
struct LargeCopyableMovable {
LargeCopyableMovable() : d(1024, 17) {}
// Use implicitly defined copy and move.
std::vector<int> d;
};
struct LargeCopyableMovableSwappable {
LargeCopyableMovableSwappable() : d(1024, 17) {}
LargeCopyableMovableSwappable(const LargeCopyableMovableSwappable& o) =
default;
LargeCopyableMovableSwappable(LargeCopyableMovableSwappable&& o) = default;
LargeCopyableMovableSwappable& operator=(LargeCopyableMovableSwappable o) {
using std::swap;
swap(*this, o);
return *this;
}
LargeCopyableMovableSwappable& operator=(LargeCopyableMovableSwappable&& o) =
default;
friend void swap(LargeCopyableMovableSwappable& a,
LargeCopyableMovableSwappable& b) {
using std::swap;
swap(a.d, b.d);
}
std::vector<int> d;
};
template <typename ElementType>
void BM_SwapElements(benchmark::State& state) {
const int len = state.range(0);
using Vec = absl::InlinedVector<ElementType, 32>;
Vec a(len);
Vec b;
for (auto _ : state) {
using std::swap;
benchmark::DoNotOptimize(a);
benchmark::DoNotOptimize(b);
swap(a, b);
}
}
BENCHMARK_TEMPLATE(BM_SwapElements, LargeCopyableOnly)->Range(0, 1024);
BENCHMARK_TEMPLATE(BM_SwapElements, LargeCopyableSwappable)->Range(0, 1024);
BENCHMARK_TEMPLATE(BM_SwapElements, LargeCopyableMovable)->Range(0, 1024);
BENCHMARK_TEMPLATE(BM_SwapElements, LargeCopyableMovableSwappable)
->Range(0, 1024);
// The following benchmark is meant to track the efficiency of the vector size
// as a function of stored type via the benchmark label. It is not meant to
// output useful sizeof operator performance. The loop is a dummy operation
// to fulfill the requirement of running the benchmark.
template <typename VecType>
void BM_Sizeof(benchmark::State& state) {
int size = 0;
for (auto _ : state) {
VecType vec;
size = sizeof(vec);
}
state.SetLabel(absl::StrCat("sz=", size));
}
BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector<char, 1>);
BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector<char, 4>);
BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector<char, 7>);
BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector<char, 8>);
BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector<int, 1>);
BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector<int, 4>);
BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector<int, 7>);
BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector<int, 8>);
BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector<void*, 1>);
BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector<void*, 4>);
BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector<void*, 7>);
BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector<void*, 8>);
BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector<std::string, 1>);
BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector<std::string, 4>);
BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector<std::string, 7>);
BENCHMARK_TEMPLATE(BM_Sizeof, absl::InlinedVector<std::string, 8>);
void BM_InlinedVectorIndexInlined(benchmark::State& state) {
absl::InlinedVector<int, 8> v = {1, 2, 3, 4, 5, 6, 7};
for (auto _ : state) {
benchmark::DoNotOptimize(v);
benchmark::DoNotOptimize(v[4]);
}
}
BENCHMARK(BM_InlinedVectorIndexInlined);
void BM_InlinedVectorIndexExternal(benchmark::State& state) {
absl::InlinedVector<int, 8> v = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
for (auto _ : state) {
benchmark::DoNotOptimize(v);
benchmark::DoNotOptimize(v[4]);
}
}
BENCHMARK(BM_InlinedVectorIndexExternal);
void BM_StdVectorIndex(benchmark::State& state) {
std::vector<int> v = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
for (auto _ : state) {
benchmark::DoNotOptimize(v);
benchmark::DoNotOptimize(v[4]);
}
}
BENCHMARK(BM_StdVectorIndex);
void BM_InlinedVectorDataInlined(benchmark::State& state) {
absl::InlinedVector<int, 8> v = {1, 2, 3, 4, 5, 6, 7};
for (auto _ : state) {
benchmark::DoNotOptimize(v);
benchmark::DoNotOptimize(v.data());
}
}
BENCHMARK(BM_InlinedVectorDataInlined);
void BM_InlinedVectorDataExternal(benchmark::State& state) {
absl::InlinedVector<int, 8> v = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
for (auto _ : state) {
benchmark::DoNotOptimize(v);
benchmark::DoNotOptimize(v.data());
}
state.SetItemsProcessed(16 * static_cast<int64_t>(state.iterations()));
}
BENCHMARK(BM_InlinedVectorDataExternal);
void BM_StdVectorData(benchmark::State& state) {
std::vector<int> v = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
for (auto _ : state) {
benchmark::DoNotOptimize(v);
benchmark::DoNotOptimize(v.data());
}
state.SetItemsProcessed(16 * static_cast<int64_t>(state.iterations()));
}
BENCHMARK(BM_StdVectorData);
void BM_InlinedVectorSizeInlined(benchmark::State& state) {
absl::InlinedVector<int, 8> v = {1, 2, 3, 4, 5, 6, 7};
for (auto _ : state) {
benchmark::DoNotOptimize(v);
benchmark::DoNotOptimize(v.size());
}
}
BENCHMARK(BM_InlinedVectorSizeInlined);
void BM_InlinedVectorSizeExternal(benchmark::State& state) {
absl::InlinedVector<int, 8> v = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
for (auto _ : state) {
benchmark::DoNotOptimize(v);
benchmark::DoNotOptimize(v.size());
}
}
BENCHMARK(BM_InlinedVectorSizeExternal);
void BM_StdVectorSize(benchmark::State& state) {
std::vector<int> v = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
for (auto _ : state) {
benchmark::DoNotOptimize(v);
benchmark::DoNotOptimize(v.size());
}
}
BENCHMARK(BM_StdVectorSize);
void BM_InlinedVectorEmptyInlined(benchmark::State& state) {
absl::InlinedVector<int, 8> v = {1, 2, 3, 4, 5, 6, 7};
for (auto _ : state) {
benchmark::DoNotOptimize(v);
benchmark::DoNotOptimize(v.empty());
}
}
BENCHMARK(BM_InlinedVectorEmptyInlined);
void BM_InlinedVectorEmptyExternal(benchmark::State& state) {
absl::InlinedVector<int, 8> v = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
for (auto _ : state) {
benchmark::DoNotOptimize(v);
benchmark::DoNotOptimize(v.empty());
}
}
BENCHMARK(BM_InlinedVectorEmptyExternal);
void BM_StdVectorEmpty(benchmark::State& state) {
std::vector<int> v = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
for (auto _ : state) {
benchmark::DoNotOptimize(v);
benchmark::DoNotOptimize(v.empty());
}
}
BENCHMARK(BM_StdVectorEmpty);
constexpr size_t kInlinedCapacity = 4;
constexpr size_t kLargeSize = kInlinedCapacity * 2;
constexpr size_t kSmallSize = kInlinedCapacity / 2;
constexpr size_t kBatchSize = 100;
#define ABSL_INTERNAL_BENCHMARK_ONE_SIZE(BM_FunctionTemplate, T) \
BENCHMARK_TEMPLATE(BM_FunctionTemplate, T, kLargeSize); \
BENCHMARK_TEMPLATE(BM_FunctionTemplate, T, kSmallSize)
#define ABSL_INTERNAL_BENCHMARK_TWO_SIZE(BM_FunctionTemplate, T) \
BENCHMARK_TEMPLATE(BM_FunctionTemplate, T, kLargeSize, kLargeSize); \
BENCHMARK_TEMPLATE(BM_FunctionTemplate, T, kLargeSize, kSmallSize); \
BENCHMARK_TEMPLATE(BM_FunctionTemplate, T, kSmallSize, kLargeSize); \
BENCHMARK_TEMPLATE(BM_FunctionTemplate, T, kSmallSize, kSmallSize)
template <typename T>
using InlVec = absl::InlinedVector<T, kInlinedCapacity>;
struct TrivialType {
size_t val;
};
class NontrivialType {
public:
ABSL_ATTRIBUTE_NOINLINE NontrivialType() : val_() {
benchmark::DoNotOptimize(*this);
}
ABSL_ATTRIBUTE_NOINLINE NontrivialType(const NontrivialType& other)
: val_(other.val_) {
benchmark::DoNotOptimize(*this);
}
ABSL_ATTRIBUTE_NOINLINE NontrivialType& operator=(
const NontrivialType& other) {
val_ = other.val_;
benchmark::DoNotOptimize(*this);
return *this;
}
ABSL_ATTRIBUTE_NOINLINE ~NontrivialType() noexcept {
benchmark::DoNotOptimize(*this);
}
private:
size_t val_;
};
template <typename T, typename PrepareVecFn, typename TestVecFn>
void BatchedBenchmark(benchmark::State& state, PrepareVecFn prepare_vec,
TestVecFn test_vec) {
std::array<InlVec<T>, kBatchSize> vector_batch{};
while (state.KeepRunningBatch(kBatchSize)) {
// Prepare batch
state.PauseTiming();
for (size_t i = 0; i < kBatchSize; ++i) {
prepare_vec(vector_batch.data() + i, i);
}
benchmark::DoNotOptimize(vector_batch);
state.ResumeTiming();
// Test batch
for (size_t i = 0; i < kBatchSize; ++i) {
test_vec(vector_batch.data() + i, i);
}
}
}
template <typename T, size_t ToSize>
void BM_ConstructFromSize(benchmark::State& state) {
using VecT = InlVec<T>;
auto size = ToSize;
BatchedBenchmark<T>(
state,
/* prepare_vec = */ [](InlVec<T>* vec, size_t) { vec->~VecT(); },
/* test_vec = */
[&](void* ptr, size_t) {
benchmark::DoNotOptimize(size);
::new (ptr) VecT(size);
});
}
ABSL_INTERNAL_BENCHMARK_ONE_SIZE(BM_ConstructFromSize, TrivialType);
ABSL_INTERNAL_BENCHMARK_ONE_SIZE(BM_ConstructFromSize, NontrivialType);
template <typename T, size_t ToSize>
void BM_ConstructFromSizeRef(benchmark::State& state) {
using VecT = InlVec<T>;
auto size = ToSize;
auto ref = T();
BatchedBenchmark<T>(
state,
/* prepare_vec = */ [](InlVec<T>* vec, size_t) { vec->~VecT(); },
/* test_vec = */
[&](void* ptr, size_t) {
benchmark::DoNotOptimize(size);
benchmark::DoNotOptimize(ref);
::new (ptr) VecT(size, ref);
});
}
ABSL_INTERNAL_BENCHMARK_ONE_SIZE(BM_ConstructFromSizeRef, TrivialType);
ABSL_INTERNAL_BENCHMARK_ONE_SIZE(BM_ConstructFromSizeRef, NontrivialType);
template <typename T, size_t ToSize>
void BM_ConstructFromRange(benchmark::State& state) {
using VecT = InlVec<T>;
std::array<T, ToSize> arr{};
BatchedBenchmark<T>(
state,
/* prepare_vec = */ [](InlVec<T>* vec, size_t) { vec->~VecT(); },
/* test_vec = */
[&](void* ptr, size_t) {
benchmark::DoNotOptimize(arr);
::new (ptr) VecT(arr.begin(), arr.end());
});
}
ABSL_INTERNAL_BENCHMARK_ONE_SIZE(BM_ConstructFromRange, TrivialType);
ABSL_INTERNAL_BENCHMARK_ONE_SIZE(BM_ConstructFromRange, NontrivialType);
template <typename T, size_t ToSize>
void BM_ConstructFromCopy(benchmark::State& state) {
using VecT = InlVec<T>;
VecT other_vec(ToSize);
BatchedBenchmark<T>(
state,
/* prepare_vec = */
[](InlVec<T>* vec, size_t) { vec->~VecT(); },
/* test_vec = */
[&](void* ptr, size_t) {
benchmark::DoNotOptimize(other_vec);
::new (ptr) VecT(other_vec);
});
}
ABSL_INTERNAL_BENCHMARK_ONE_SIZE(BM_ConstructFromCopy, TrivialType);
ABSL_INTERNAL_BENCHMARK_ONE_SIZE(BM_ConstructFromCopy, NontrivialType);
template <typename T, size_t ToSize>
void BM_ConstructFromMove(benchmark::State& state) {
using VecT = InlVec<T>;
std::array<VecT, kBatchSize> vector_batch{};
BatchedBenchmark<T>(
state,
/* prepare_vec = */
[&](InlVec<T>* vec, size_t i) {
vector_batch[i].clear();
vector_batch[i].resize(ToSize);
vec->~VecT();
},
/* test_vec = */
[&](void* ptr, size_t i) {
benchmark::DoNotOptimize(vector_batch[i]);
::new (ptr) VecT(std::move(vector_batch[i]));
});
}
ABSL_INTERNAL_BENCHMARK_ONE_SIZE(BM_ConstructFromMove, TrivialType);
ABSL_INTERNAL_BENCHMARK_ONE_SIZE(BM_ConstructFromMove, NontrivialType);
template <typename T, size_t FromSize, size_t ToSize>
void BM_AssignSizeRef(benchmark::State& state) {
auto size = ToSize;
auto ref = T();
BatchedBenchmark<T>(
state,
/* prepare_vec = */ [](InlVec<T>* vec, size_t) { vec->resize(FromSize); },
/* test_vec = */
[&](InlVec<T>* vec, size_t) {
benchmark::DoNotOptimize(size);
benchmark::DoNotOptimize(ref);
vec->assign(size, ref);
});
}
ABSL_INTERNAL_BENCHMARK_TWO_SIZE(BM_AssignSizeRef, TrivialType);
ABSL_INTERNAL_BENCHMARK_TWO_SIZE(BM_AssignSizeRef, NontrivialType);
template <typename T, size_t FromSize, size_t ToSize>
void BM_AssignRange(benchmark::State& state) {
std::array<T, ToSize> arr{};
BatchedBenchmark<T>(
state,
/* prepare_vec = */ [](InlVec<T>* vec, size_t) { vec->resize(FromSize); },
/* test_vec = */
[&](InlVec<T>* vec, size_t) {
benchmark::DoNotOptimize(arr);
vec->assign(arr.begin(), arr.end());
});
}
ABSL_INTERNAL_BENCHMARK_TWO_SIZE(BM_AssignRange, TrivialType);
ABSL_INTERNAL_BENCHMARK_TWO_SIZE(BM_AssignRange, NontrivialType);
template <typename T, size_t FromSize, size_t ToSize>
void BM_AssignFromCopy(benchmark::State& state) {
InlVec<T> other_vec(ToSize);
BatchedBenchmark<T>(
state,
/* prepare_vec = */ [](InlVec<T>* vec, size_t) { vec->resize(FromSize); },
/* test_vec = */
[&](InlVec<T>* vec, size_t) {
benchmark::DoNotOptimize(other_vec);
*vec = other_vec;
});
}
ABSL_INTERNAL_BENCHMARK_TWO_SIZE(BM_AssignFromCopy, TrivialType);
ABSL_INTERNAL_BENCHMARK_TWO_SIZE(BM_AssignFromCopy, NontrivialType);
template <typename T, size_t FromSize, size_t ToSize>
void BM_AssignFromMove(benchmark::State& state) {
using VecT = InlVec<T>;
std::array<VecT, kBatchSize> vector_batch{};
BatchedBenchmark<T>(
state,
/* prepare_vec = */
[&](InlVec<T>* vec, size_t i) {
vector_batch[i].clear();
vector_batch[i].resize(ToSize);
vec->resize(FromSize);
},
/* test_vec = */
[&](InlVec<T>* vec, size_t i) {
benchmark::DoNotOptimize(vector_batch[i]);
*vec = std::move(vector_batch[i]);
});
}
ABSL_INTERNAL_BENCHMARK_TWO_SIZE(BM_AssignFromMove, TrivialType);
ABSL_INTERNAL_BENCHMARK_TWO_SIZE(BM_AssignFromMove, NontrivialType);
template <typename T, size_t FromSize>
void BM_Clear(benchmark::State& state) {
BatchedBenchmark<T>(
state,
/* prepare_vec = */ [](InlVec<T>* vec, size_t) { vec->resize(FromSize); },
/* test_vec = */ [](InlVec<T>* vec, size_t) { vec->clear(); });
}
ABSL_INTERNAL_BENCHMARK_ONE_SIZE(BM_Clear, TrivialType);
ABSL_INTERNAL_BENCHMARK_ONE_SIZE(BM_Clear, NontrivialType);
} // namespace