1e39f8626a
-- b842b7fd9b1289be31f0b7ee8e62e48e550747cf by Greg Falcon <gfalcon@google.com>: Change the Cord str_format formatter to use iteration instead of CordReader. When Cord is publicly released, CordReader is not going with it. PiperOrigin-RevId: 284780736 -- 28e76c08ea7185a7ff9f4e0e02ae565fbbf7980f by Greg Falcon <gfalcon@google.com>: Implementation detail change. Introduce ABSL_NAMESPACE_BEGIN and _END annotation macros which indicate the beginning and end of a `namespace absl` scope. Currently these do nothing, but they will be used to inject an inline namespace for LTS builds (to avoid symbol collisions against other Abseil versions). These macros should not be used by end users, because end users should never write `namespace absl {` in their own code. This CL applies these annotations to all code under //absl/base/. The rest of Abseil will be annotated in this way in follow-up CLs. PiperOrigin-RevId: 284776410 -- e1711dc6d696dcca50d4e7d4b4d8f3076575b7ec by Abseil Team <absl-team@google.com>: --help changed to report long flags. PiperOrigin-RevId: 284757720 -- 78f66a68f428bbbd19d8d60e1125f43ba765fd35 by Tom Manshreck <shreck@google.com>: Update comment on + or - in SimpleAToi() PiperOrigin-RevId: 284231843 GitOrigin-RevId: b842b7fd9b1289be31f0b7ee8e62e48e550747cf Change-Id: I3046b31391bd11c8bc4abab7785a863c377cd757
199 lines
6.2 KiB
C++
199 lines
6.2 KiB
C++
// Copyright 2019 The Abseil Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "absl/base/internal/exponential_biased.h"
|
|
|
|
#include <stddef.h>
|
|
|
|
#include <cmath>
|
|
#include <cstdint>
|
|
#include <vector>
|
|
|
|
#include "gmock/gmock.h"
|
|
#include "gtest/gtest.h"
|
|
#include "absl/strings/str_cat.h"
|
|
|
|
using ::testing::Ge;
|
|
|
|
namespace absl {
|
|
ABSL_NAMESPACE_BEGIN
|
|
namespace base_internal {
|
|
|
|
MATCHER_P2(IsBetween, a, b,
|
|
absl::StrCat(std::string(negation ? "isn't" : "is"), " between ", a,
|
|
" and ", b)) {
|
|
return a <= arg && arg <= b;
|
|
}
|
|
|
|
// Tests of the quality of the random numbers generated
|
|
// This uses the Anderson Darling test for uniformity.
|
|
// See "Evaluating the Anderson-Darling Distribution" by Marsaglia
|
|
// for details.
|
|
|
|
// Short cut version of ADinf(z), z>0 (from Marsaglia)
|
|
// This returns the p-value for Anderson Darling statistic in
|
|
// the limit as n-> infinity. For finite n, apply the error fix below.
|
|
double AndersonDarlingInf(double z) {
|
|
if (z < 2) {
|
|
return exp(-1.2337141 / z) / sqrt(z) *
|
|
(2.00012 +
|
|
(0.247105 -
|
|
(0.0649821 - (0.0347962 - (0.011672 - 0.00168691 * z) * z) * z) *
|
|
z) *
|
|
z);
|
|
}
|
|
return exp(
|
|
-exp(1.0776 -
|
|
(2.30695 -
|
|
(0.43424 - (0.082433 - (0.008056 - 0.0003146 * z) * z) * z) * z) *
|
|
z));
|
|
}
|
|
|
|
// Corrects the approximation error in AndersonDarlingInf for small values of n
|
|
// Add this to AndersonDarlingInf to get a better approximation
|
|
// (from Marsaglia)
|
|
double AndersonDarlingErrFix(int n, double x) {
|
|
if (x > 0.8) {
|
|
return (-130.2137 +
|
|
(745.2337 -
|
|
(1705.091 - (1950.646 - (1116.360 - 255.7844 * x) * x) * x) * x) *
|
|
x) /
|
|
n;
|
|
}
|
|
double cutoff = 0.01265 + 0.1757 / n;
|
|
if (x < cutoff) {
|
|
double t = x / cutoff;
|
|
t = sqrt(t) * (1 - t) * (49 * t - 102);
|
|
return t * (0.0037 / (n * n) + 0.00078 / n + 0.00006) / n;
|
|
} else {
|
|
double t = (x - cutoff) / (0.8 - cutoff);
|
|
t = -0.00022633 +
|
|
(6.54034 - (14.6538 - (14.458 - (8.259 - 1.91864 * t) * t) * t) * t) *
|
|
t;
|
|
return t * (0.04213 + 0.01365 / n) / n;
|
|
}
|
|
}
|
|
|
|
// Returns the AndersonDarling p-value given n and the value of the statistic
|
|
double AndersonDarlingPValue(int n, double z) {
|
|
double ad = AndersonDarlingInf(z);
|
|
double errfix = AndersonDarlingErrFix(n, ad);
|
|
return ad + errfix;
|
|
}
|
|
|
|
double AndersonDarlingStatistic(const std::vector<double>& random_sample) {
|
|
int n = random_sample.size();
|
|
double ad_sum = 0;
|
|
for (int i = 0; i < n; i++) {
|
|
ad_sum += (2 * i + 1) *
|
|
std::log(random_sample[i] * (1 - random_sample[n - 1 - i]));
|
|
}
|
|
double ad_statistic = -n - 1 / static_cast<double>(n) * ad_sum;
|
|
return ad_statistic;
|
|
}
|
|
|
|
// Tests if the array of doubles is uniformly distributed.
|
|
// Returns the p-value of the Anderson Darling Statistic
|
|
// for the given set of sorted random doubles
|
|
// See "Evaluating the Anderson-Darling Distribution" by
|
|
// Marsaglia and Marsaglia for details.
|
|
double AndersonDarlingTest(const std::vector<double>& random_sample) {
|
|
double ad_statistic = AndersonDarlingStatistic(random_sample);
|
|
double p = AndersonDarlingPValue(random_sample.size(), ad_statistic);
|
|
return p;
|
|
}
|
|
|
|
TEST(ExponentialBiasedTest, CoinTossDemoWithGetSkipCount) {
|
|
ExponentialBiased eb;
|
|
for (int runs = 0; runs < 10; ++runs) {
|
|
for (int flips = eb.GetSkipCount(1); flips > 0; --flips) {
|
|
printf("head...");
|
|
}
|
|
printf("tail\n");
|
|
}
|
|
int heads = 0;
|
|
for (int i = 0; i < 10000000; i += 1 + eb.GetSkipCount(1)) {
|
|
++heads;
|
|
}
|
|
printf("Heads = %d (%f%%)\n", heads, 100.0 * heads / 10000000);
|
|
}
|
|
|
|
TEST(ExponentialBiasedTest, SampleDemoWithStride) {
|
|
ExponentialBiased eb;
|
|
int stride = eb.GetStride(10);
|
|
int samples = 0;
|
|
for (int i = 0; i < 10000000; ++i) {
|
|
if (--stride == 0) {
|
|
++samples;
|
|
stride = eb.GetStride(10);
|
|
}
|
|
}
|
|
printf("Samples = %d (%f%%)\n", samples, 100.0 * samples / 10000000);
|
|
}
|
|
|
|
|
|
// Testing that NextRandom generates uniform random numbers. Applies the
|
|
// Anderson-Darling test for uniformity
|
|
TEST(ExponentialBiasedTest, TestNextRandom) {
|
|
for (auto n : std::vector<int>({
|
|
10, // Check short-range correlation
|
|
100, 1000,
|
|
10000 // Make sure there's no systemic error
|
|
})) {
|
|
uint64_t x = 1;
|
|
// This assumes that the prng returns 48 bit numbers
|
|
uint64_t max_prng_value = static_cast<uint64_t>(1) << 48;
|
|
// Initialize.
|
|
for (int i = 1; i <= 20; i++) {
|
|
x = ExponentialBiased::NextRandom(x);
|
|
}
|
|
std::vector<uint64_t> int_random_sample(n);
|
|
// Collect samples
|
|
for (int i = 0; i < n; i++) {
|
|
int_random_sample[i] = x;
|
|
x = ExponentialBiased::NextRandom(x);
|
|
}
|
|
// First sort them...
|
|
std::sort(int_random_sample.begin(), int_random_sample.end());
|
|
std::vector<double> random_sample(n);
|
|
// Convert them to uniform randoms (in the range [0,1])
|
|
for (int i = 0; i < n; i++) {
|
|
random_sample[i] =
|
|
static_cast<double>(int_random_sample[i]) / max_prng_value;
|
|
}
|
|
// Now compute the Anderson-Darling statistic
|
|
double ad_pvalue = AndersonDarlingTest(random_sample);
|
|
EXPECT_GT(std::min(ad_pvalue, 1 - ad_pvalue), 0.0001)
|
|
<< "prng is not uniform: n = " << n << " p = " << ad_pvalue;
|
|
}
|
|
}
|
|
|
|
// The generator needs to be available as a thread_local and as a static
|
|
// variable.
|
|
TEST(ExponentialBiasedTest, InitializationModes) {
|
|
ABSL_CONST_INIT static ExponentialBiased eb_static;
|
|
EXPECT_THAT(eb_static.GetSkipCount(2), Ge(0));
|
|
|
|
#if ABSL_HAVE_THREAD_LOCAL
|
|
thread_local ExponentialBiased eb_thread;
|
|
EXPECT_THAT(eb_thread.GetSkipCount(2), Ge(0));
|
|
#endif
|
|
|
|
ExponentialBiased eb_stack;
|
|
EXPECT_THAT(eb_stack.GetSkipCount(2), Ge(0));
|
|
}
|
|
|
|
} // namespace base_internal
|
|
ABSL_NAMESPACE_END
|
|
} // namespace absl
|