3c81410510
-- 97faa5fdfa4cd5d7a74cd9332cddd8a7c1e67b89 by Abseil Team <absl-team@google.com>: Internal changes PiperOrigin-RevId: 295164378 -- 74990f100b3f4172c770ef8c76c05c8e99febdde by Xiaoyi Zhang <zhangxy@google.com>: Release `absl::Cord`. PiperOrigin-RevId: 295161959 -- 6018c57f43c45c31dc1a61c0cd75fa2aa9be8dab by Gennadiy Rozental <rogeeff@google.com>: Introduce independent notion of FlagStaticTypeID. This change separates static flag value type identification from the type specific "vtable" with all the operations specific to value type. This change allows us to do the following: * We can move most of "vtable" implementation from handle header, which will become public soon, into implementation details of Abseil Flag. * We can combine back marshalling ops and general ops into a single vtable routine. They were split previously to facilitate type identification without requiring marshalling routines to be exposed in header. * We do not need to store two vtable pointers. We can now store only one. The static type id can be deduced on request. Overall we are saving 24 bytes per flag according to size_tester run. PiperOrigin-RevId: 295149687 -- 986b78e9ba571aa85154e70bda4580edd45bb7bf by Abseil Team <absl-team@google.com>: Update internal comments. PiperOrigin-RevId: 295030681 -- 825412b29fd6015027bbc3e5f802706eee0d2837 by Matthew Brown <matthewbr@google.com>: Change str_format_internal::ConversionChar to an enum (from a struct-wrapped enum). PiperOrigin-RevId: 294987462 -- f9f88d91809d2cc33fc129df70fa93e7a2c35c69 by Derek Mauro <dmauro@google.com>: Use more precise wording in the question on live-at-head PiperOrigin-RevId: 294957679 GitOrigin-RevId: 97faa5fdfa4cd5d7a74cd9332cddd8a7c1e67b89 Change-Id: I081e70d148ffac7296d65e2a2f775f643eaf70bf
493 lines
14 KiB
C++
493 lines
14 KiB
C++
#include "absl/strings/internal/str_format/float_conversion.h"
|
|
|
|
#include <string.h>
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <string>
|
|
|
|
#include "absl/base/config.h"
|
|
|
|
namespace absl {
|
|
ABSL_NAMESPACE_BEGIN
|
|
namespace str_format_internal {
|
|
|
|
namespace {
|
|
|
|
char *CopyStringTo(string_view v, char *out) {
|
|
std::memcpy(out, v.data(), v.size());
|
|
return out + v.size();
|
|
}
|
|
|
|
template <typename Float>
|
|
bool FallbackToSnprintf(const Float v, const ConversionSpec &conv,
|
|
FormatSinkImpl *sink) {
|
|
int w = conv.width() >= 0 ? conv.width() : 0;
|
|
int p = conv.precision() >= 0 ? conv.precision() : -1;
|
|
char fmt[32];
|
|
{
|
|
char *fp = fmt;
|
|
*fp++ = '%';
|
|
fp = CopyStringTo(conv.flags().ToString(), fp);
|
|
fp = CopyStringTo("*.*", fp);
|
|
if (std::is_same<long double, Float>()) {
|
|
*fp++ = 'L';
|
|
}
|
|
*fp++ = FormatConversionCharToChar(conv.conv());
|
|
*fp = 0;
|
|
assert(fp < fmt + sizeof(fmt));
|
|
}
|
|
std::string space(512, '\0');
|
|
string_view result;
|
|
while (true) {
|
|
int n = snprintf(&space[0], space.size(), fmt, w, p, v);
|
|
if (n < 0) return false;
|
|
if (static_cast<size_t>(n) < space.size()) {
|
|
result = string_view(space.data(), n);
|
|
break;
|
|
}
|
|
space.resize(n + 1);
|
|
}
|
|
sink->Append(result);
|
|
return true;
|
|
}
|
|
|
|
// 128-bits in decimal: ceil(128*log(2)/log(10))
|
|
// or std::numeric_limits<__uint128_t>::digits10
|
|
constexpr int kMaxFixedPrecision = 39;
|
|
|
|
constexpr int kBufferLength = /*sign*/ 1 +
|
|
/*integer*/ kMaxFixedPrecision +
|
|
/*point*/ 1 +
|
|
/*fraction*/ kMaxFixedPrecision +
|
|
/*exponent e+123*/ 5;
|
|
|
|
struct Buffer {
|
|
void push_front(char c) {
|
|
assert(begin > data);
|
|
*--begin = c;
|
|
}
|
|
void push_back(char c) {
|
|
assert(end < data + sizeof(data));
|
|
*end++ = c;
|
|
}
|
|
void pop_back() {
|
|
assert(begin < end);
|
|
--end;
|
|
}
|
|
|
|
char &back() {
|
|
assert(begin < end);
|
|
return end[-1];
|
|
}
|
|
|
|
char last_digit() const { return end[-1] == '.' ? end[-2] : end[-1]; }
|
|
|
|
int size() const { return static_cast<int>(end - begin); }
|
|
|
|
char data[kBufferLength];
|
|
char *begin;
|
|
char *end;
|
|
};
|
|
|
|
enum class FormatStyle { Fixed, Precision };
|
|
|
|
// If the value is Inf or Nan, print it and return true.
|
|
// Otherwise, return false.
|
|
template <typename Float>
|
|
bool ConvertNonNumericFloats(char sign_char, Float v,
|
|
const ConversionSpec &conv, FormatSinkImpl *sink) {
|
|
char text[4], *ptr = text;
|
|
if (sign_char) *ptr++ = sign_char;
|
|
if (std::isnan(v)) {
|
|
ptr = std::copy_n(FormatConversionCharIsUpper(conv.conv()) ? "NAN" : "nan",
|
|
3, ptr);
|
|
} else if (std::isinf(v)) {
|
|
ptr = std::copy_n(FormatConversionCharIsUpper(conv.conv()) ? "INF" : "inf",
|
|
3, ptr);
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
return sink->PutPaddedString(string_view(text, ptr - text), conv.width(), -1,
|
|
conv.flags().left);
|
|
}
|
|
|
|
// Round up the last digit of the value.
|
|
// It will carry over and potentially overflow. 'exp' will be adjusted in that
|
|
// case.
|
|
template <FormatStyle mode>
|
|
void RoundUp(Buffer *buffer, int *exp) {
|
|
char *p = &buffer->back();
|
|
while (p >= buffer->begin && (*p == '9' || *p == '.')) {
|
|
if (*p == '9') *p = '0';
|
|
--p;
|
|
}
|
|
|
|
if (p < buffer->begin) {
|
|
*p = '1';
|
|
buffer->begin = p;
|
|
if (mode == FormatStyle::Precision) {
|
|
std::swap(p[1], p[2]); // move the .
|
|
++*exp;
|
|
buffer->pop_back();
|
|
}
|
|
} else {
|
|
++*p;
|
|
}
|
|
}
|
|
|
|
void PrintExponent(int exp, char e, Buffer *out) {
|
|
out->push_back(e);
|
|
if (exp < 0) {
|
|
out->push_back('-');
|
|
exp = -exp;
|
|
} else {
|
|
out->push_back('+');
|
|
}
|
|
// Exponent digits.
|
|
if (exp > 99) {
|
|
out->push_back(exp / 100 + '0');
|
|
out->push_back(exp / 10 % 10 + '0');
|
|
out->push_back(exp % 10 + '0');
|
|
} else {
|
|
out->push_back(exp / 10 + '0');
|
|
out->push_back(exp % 10 + '0');
|
|
}
|
|
}
|
|
|
|
template <typename Float, typename Int>
|
|
constexpr bool CanFitMantissa() {
|
|
return
|
|
#if defined(__clang__) && !defined(__SSE3__)
|
|
// Workaround for clang bug: https://bugs.llvm.org/show_bug.cgi?id=38289
|
|
// Casting from long double to uint64_t is miscompiled and drops bits.
|
|
(!std::is_same<Float, long double>::value ||
|
|
!std::is_same<Int, uint64_t>::value) &&
|
|
#endif
|
|
std::numeric_limits<Float>::digits <= std::numeric_limits<Int>::digits;
|
|
}
|
|
|
|
template <typename Float>
|
|
struct Decomposed {
|
|
Float mantissa;
|
|
int exponent;
|
|
};
|
|
|
|
// Decompose the double into an integer mantissa and an exponent.
|
|
template <typename Float>
|
|
Decomposed<Float> Decompose(Float v) {
|
|
int exp;
|
|
Float m = std::frexp(v, &exp);
|
|
m = std::ldexp(m, std::numeric_limits<Float>::digits);
|
|
exp -= std::numeric_limits<Float>::digits;
|
|
return {m, exp};
|
|
}
|
|
|
|
// Print 'digits' as decimal.
|
|
// In Fixed mode, we add a '.' at the end.
|
|
// In Precision mode, we add a '.' after the first digit.
|
|
template <FormatStyle mode, typename Int>
|
|
int PrintIntegralDigits(Int digits, Buffer *out) {
|
|
int printed = 0;
|
|
if (digits) {
|
|
for (; digits; digits /= 10) out->push_front(digits % 10 + '0');
|
|
printed = out->size();
|
|
if (mode == FormatStyle::Precision) {
|
|
out->push_front(*out->begin);
|
|
out->begin[1] = '.';
|
|
} else {
|
|
out->push_back('.');
|
|
}
|
|
} else if (mode == FormatStyle::Fixed) {
|
|
out->push_front('0');
|
|
out->push_back('.');
|
|
printed = 1;
|
|
}
|
|
return printed;
|
|
}
|
|
|
|
// Back out 'extra_digits' digits and round up if necessary.
|
|
bool RemoveExtraPrecision(int extra_digits, bool has_leftover_value,
|
|
Buffer *out, int *exp_out) {
|
|
if (extra_digits <= 0) return false;
|
|
|
|
// Back out the extra digits
|
|
out->end -= extra_digits;
|
|
|
|
bool needs_to_round_up = [&] {
|
|
// We look at the digit just past the end.
|
|
// There must be 'extra_digits' extra valid digits after end.
|
|
if (*out->end > '5') return true;
|
|
if (*out->end < '5') return false;
|
|
if (has_leftover_value || std::any_of(out->end + 1, out->end + extra_digits,
|
|
[](char c) { return c != '0'; }))
|
|
return true;
|
|
|
|
// Ends in ...50*, round to even.
|
|
return out->last_digit() % 2 == 1;
|
|
}();
|
|
|
|
if (needs_to_round_up) {
|
|
RoundUp<FormatStyle::Precision>(out, exp_out);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Print the value into the buffer.
|
|
// This will not include the exponent, which will be returned in 'exp_out' for
|
|
// Precision mode.
|
|
template <typename Int, typename Float, FormatStyle mode>
|
|
bool FloatToBufferImpl(Int int_mantissa, int exp, int precision, Buffer *out,
|
|
int *exp_out) {
|
|
assert((CanFitMantissa<Float, Int>()));
|
|
|
|
const int int_bits = std::numeric_limits<Int>::digits;
|
|
|
|
// In precision mode, we start printing one char to the right because it will
|
|
// also include the '.'
|
|
// In fixed mode we put the dot afterwards on the right.
|
|
out->begin = out->end =
|
|
out->data + 1 + kMaxFixedPrecision + (mode == FormatStyle::Precision);
|
|
|
|
if (exp >= 0) {
|
|
if (std::numeric_limits<Float>::digits + exp > int_bits) {
|
|
// The value will overflow the Int
|
|
return false;
|
|
}
|
|
int digits_printed = PrintIntegralDigits<mode>(int_mantissa << exp, out);
|
|
int digits_to_zero_pad = precision;
|
|
if (mode == FormatStyle::Precision) {
|
|
*exp_out = digits_printed - 1;
|
|
digits_to_zero_pad -= digits_printed - 1;
|
|
if (RemoveExtraPrecision(-digits_to_zero_pad, false, out, exp_out)) {
|
|
return true;
|
|
}
|
|
}
|
|
for (; digits_to_zero_pad-- > 0;) out->push_back('0');
|
|
return true;
|
|
}
|
|
|
|
exp = -exp;
|
|
// We need at least 4 empty bits for the next decimal digit.
|
|
// We will multiply by 10.
|
|
if (exp > int_bits - 4) return false;
|
|
|
|
const Int mask = (Int{1} << exp) - 1;
|
|
|
|
// Print the integral part first.
|
|
int digits_printed = PrintIntegralDigits<mode>(int_mantissa >> exp, out);
|
|
int_mantissa &= mask;
|
|
|
|
int fractional_count = precision;
|
|
if (mode == FormatStyle::Precision) {
|
|
if (digits_printed == 0) {
|
|
// Find the first non-zero digit, when in Precision mode.
|
|
*exp_out = 0;
|
|
if (int_mantissa) {
|
|
while (int_mantissa <= mask) {
|
|
int_mantissa *= 10;
|
|
--*exp_out;
|
|
}
|
|
}
|
|
out->push_front(static_cast<char>(int_mantissa >> exp) + '0');
|
|
out->push_back('.');
|
|
int_mantissa &= mask;
|
|
} else {
|
|
// We already have a digit, and a '.'
|
|
*exp_out = digits_printed - 1;
|
|
fractional_count -= *exp_out;
|
|
if (RemoveExtraPrecision(-fractional_count, int_mantissa != 0, out,
|
|
exp_out)) {
|
|
// If we had enough digits, return right away.
|
|
// The code below will try to round again otherwise.
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
auto get_next_digit = [&] {
|
|
int_mantissa *= 10;
|
|
int digit = static_cast<int>(int_mantissa >> exp);
|
|
int_mantissa &= mask;
|
|
return digit;
|
|
};
|
|
|
|
// Print fractional_count more digits, if available.
|
|
for (; fractional_count > 0; --fractional_count) {
|
|
out->push_back(get_next_digit() + '0');
|
|
}
|
|
|
|
int next_digit = get_next_digit();
|
|
if (next_digit > 5 ||
|
|
(next_digit == 5 && (int_mantissa || out->last_digit() % 2 == 1))) {
|
|
RoundUp<mode>(out, exp_out);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
template <FormatStyle mode, typename Float>
|
|
bool FloatToBuffer(Decomposed<Float> decomposed, int precision, Buffer *out,
|
|
int *exp) {
|
|
if (precision > kMaxFixedPrecision) return false;
|
|
|
|
// Try with uint64_t.
|
|
if (CanFitMantissa<Float, std::uint64_t>() &&
|
|
FloatToBufferImpl<std::uint64_t, Float, mode>(
|
|
static_cast<std::uint64_t>(decomposed.mantissa),
|
|
static_cast<std::uint64_t>(decomposed.exponent), precision, out, exp))
|
|
return true;
|
|
|
|
#if defined(ABSL_HAVE_INTRINSIC_INT128)
|
|
// If that is not enough, try with __uint128_t.
|
|
return CanFitMantissa<Float, __uint128_t>() &&
|
|
FloatToBufferImpl<__uint128_t, Float, mode>(
|
|
static_cast<__uint128_t>(decomposed.mantissa),
|
|
static_cast<__uint128_t>(decomposed.exponent), precision, out,
|
|
exp);
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
void WriteBufferToSink(char sign_char, string_view str,
|
|
const ConversionSpec &conv, FormatSinkImpl *sink) {
|
|
int left_spaces = 0, zeros = 0, right_spaces = 0;
|
|
int missing_chars =
|
|
conv.width() >= 0 ? std::max(conv.width() - static_cast<int>(str.size()) -
|
|
static_cast<int>(sign_char != 0),
|
|
0)
|
|
: 0;
|
|
if (conv.flags().left) {
|
|
right_spaces = missing_chars;
|
|
} else if (conv.flags().zero) {
|
|
zeros = missing_chars;
|
|
} else {
|
|
left_spaces = missing_chars;
|
|
}
|
|
|
|
sink->Append(left_spaces, ' ');
|
|
if (sign_char) sink->Append(1, sign_char);
|
|
sink->Append(zeros, '0');
|
|
sink->Append(str);
|
|
sink->Append(right_spaces, ' ');
|
|
}
|
|
|
|
template <typename Float>
|
|
bool FloatToSink(const Float v, const ConversionSpec &conv,
|
|
FormatSinkImpl *sink) {
|
|
// Print the sign or the sign column.
|
|
Float abs_v = v;
|
|
char sign_char = 0;
|
|
if (std::signbit(abs_v)) {
|
|
sign_char = '-';
|
|
abs_v = -abs_v;
|
|
} else if (conv.flags().show_pos) {
|
|
sign_char = '+';
|
|
} else if (conv.flags().sign_col) {
|
|
sign_char = ' ';
|
|
}
|
|
|
|
// Print nan/inf.
|
|
if (ConvertNonNumericFloats(sign_char, abs_v, conv, sink)) {
|
|
return true;
|
|
}
|
|
|
|
int precision = conv.precision() < 0 ? 6 : conv.precision();
|
|
|
|
int exp = 0;
|
|
|
|
auto decomposed = Decompose(abs_v);
|
|
|
|
Buffer buffer;
|
|
|
|
switch (conv.conv()) {
|
|
case ConversionChar::f:
|
|
case ConversionChar::F:
|
|
if (!FloatToBuffer<FormatStyle::Fixed>(decomposed, precision, &buffer,
|
|
nullptr)) {
|
|
return FallbackToSnprintf(v, conv, sink);
|
|
}
|
|
if (!conv.flags().alt && buffer.back() == '.') buffer.pop_back();
|
|
break;
|
|
|
|
case ConversionChar::e:
|
|
case ConversionChar::E:
|
|
if (!FloatToBuffer<FormatStyle::Precision>(decomposed, precision, &buffer,
|
|
&exp)) {
|
|
return FallbackToSnprintf(v, conv, sink);
|
|
}
|
|
if (!conv.flags().alt && buffer.back() == '.') buffer.pop_back();
|
|
PrintExponent(exp, FormatConversionCharIsUpper(conv.conv()) ? 'E' : 'e',
|
|
&buffer);
|
|
break;
|
|
|
|
case ConversionChar::g:
|
|
case ConversionChar::G:
|
|
precision = std::max(0, precision - 1);
|
|
if (!FloatToBuffer<FormatStyle::Precision>(decomposed, precision, &buffer,
|
|
&exp)) {
|
|
return FallbackToSnprintf(v, conv, sink);
|
|
}
|
|
if (precision + 1 > exp && exp >= -4) {
|
|
if (exp < 0) {
|
|
// Have 1.23456, needs 0.00123456
|
|
// Move the first digit
|
|
buffer.begin[1] = *buffer.begin;
|
|
// Add some zeros
|
|
for (; exp < -1; ++exp) *buffer.begin-- = '0';
|
|
*buffer.begin-- = '.';
|
|
*buffer.begin = '0';
|
|
} else if (exp > 0) {
|
|
// Have 1.23456, needs 1234.56
|
|
// Move the '.' exp positions to the right.
|
|
std::rotate(buffer.begin + 1, buffer.begin + 2,
|
|
buffer.begin + exp + 2);
|
|
}
|
|
exp = 0;
|
|
}
|
|
if (!conv.flags().alt) {
|
|
while (buffer.back() == '0') buffer.pop_back();
|
|
if (buffer.back() == '.') buffer.pop_back();
|
|
}
|
|
if (exp) {
|
|
PrintExponent(exp, FormatConversionCharIsUpper(conv.conv()) ? 'E' : 'e',
|
|
&buffer);
|
|
}
|
|
break;
|
|
|
|
case ConversionChar::a:
|
|
case ConversionChar::A:
|
|
return FallbackToSnprintf(v, conv, sink);
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
WriteBufferToSink(sign_char,
|
|
string_view(buffer.begin, buffer.end - buffer.begin), conv,
|
|
sink);
|
|
|
|
return true;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
bool ConvertFloatImpl(long double v, const ConversionSpec &conv,
|
|
FormatSinkImpl *sink) {
|
|
return FloatToSink(v, conv, sink);
|
|
}
|
|
|
|
bool ConvertFloatImpl(float v, const ConversionSpec &conv,
|
|
FormatSinkImpl *sink) {
|
|
return FloatToSink(v, conv, sink);
|
|
}
|
|
|
|
bool ConvertFloatImpl(double v, const ConversionSpec &conv,
|
|
FormatSinkImpl *sink) {
|
|
return FloatToSink(v, conv, sink);
|
|
}
|
|
|
|
} // namespace str_format_internal
|
|
ABSL_NAMESPACE_END
|
|
} // namespace absl
|