tvl-depot/tools/nixery/server/layers/grouping.go
Vincent Ambo 87e196757b feat(server): Reimplement creation & uploading of layers
The new build process can now call out to Nix to create layers and
upload them to the bucket if necessary.

The layer cache is populated, but not yet used.
2019-10-03 13:21:04 +01:00

334 lines
9.2 KiB
Go

// This package reads an export reference graph (i.e. a graph representing the
// runtime dependencies of a set of derivations) created by Nix and groups it in
// a way that is likely to match the grouping for other derivation sets with
// overlapping dependencies.
//
// This is used to determine which derivations to include in which layers of a
// container image.
//
// # Inputs
//
// * a graph of Nix runtime dependencies, generated via exportReferenceGraph
// * popularity values of each package in the Nix package set (in the form of a
// direct reference count)
// * a maximum number of layers to allocate for the image (the "layer budget")
//
// # Algorithm
//
// It works by first creating a (directed) dependency tree:
//
// img (root node)
// │
// ├───> A ─────┐
// │ v
// ├───> B ───> E
// │ ^
// ├───> C ─────┘
// │ │
// │ v
// └───> D ───> F
// │
// └────> G
//
// Each node (i.e. package) is then visited to determine how important
// it is to separate this node into its own layer, specifically:
//
// 1. Is the node within a certain threshold percentile of absolute
// popularity within all of nixpkgs? (e.g. `glibc`, `openssl`)
//
// 2. Is the node's runtime closure above a threshold size? (e.g. 100MB)
//
// In either case, a bit is flipped for this node representing each
// condition and an edge to it is inserted directly from the image
// root, if it does not already exist.
//
// For the rest of the example we assume 'G' is above the threshold
// size and 'E' is popular.
//
// This tree is then transformed into a dominator tree:
//
// img
// │
// ├───> A
// ├───> B
// ├───> C
// ├───> E
// ├───> D ───> F
// └───> G
//
// Specifically this means that the paths to A, B, C, E, G, and D
// always pass through the root (i.e. are dominated by it), whilst F
// is dominated by D (all paths go through it).
//
// The top-level subtrees are considered as the initially selected
// layers.
//
// If the list of layers fits within the layer budget, it is returned.
//
// Otherwise, a merge rating is calculated for each layer. This is the
// product of the layer's total size and its root node's popularity.
//
// Layers are then merged in ascending order of merge ratings until
// they fit into the layer budget.
//
// # Threshold values
//
// Threshold values for the partitioning conditions mentioned above
// have not yet been determined, but we will make a good first guess
// based on gut feeling and proceed to measure their impact on cache
// hits/misses.
//
// # Example
//
// Using the logic described above as well as the example presented in
// the introduction, this program would create the following layer
// groupings (assuming no additional partitioning):
//
// Layer budget: 1
// Layers: { A, B, C, D, E, F, G }
//
// Layer budget: 2
// Layers: { G }, { A, B, C, D, E, F }
//
// Layer budget: 3
// Layers: { G }, { E }, { A, B, C, D, F }
//
// Layer budget: 4
// Layers: { G }, { E }, { D, F }, { A, B, C }
//
// ...
//
// Layer budget: 10
// Layers: { E }, { D, F }, { A }, { B }, { C }
package layers
import (
"crypto/sha1"
"fmt"
"log"
"regexp"
"sort"
"strings"
"gonum.org/v1/gonum/graph/flow"
"gonum.org/v1/gonum/graph/simple"
)
// RuntimeGraph represents structured information from Nix about the runtime
// dependencies of a derivation.
//
// This is generated in Nix by using the exportReferencesGraph feature.
type RuntimeGraph struct {
References struct {
Graph []string `json:"graph"`
} `json:"exportReferencesGraph"`
Graph []struct {
Size uint64 `json:"closureSize"`
Path string `json:"path"`
Refs []string `json:"references"`
} `json:"graph"`
}
// Popularity data for each Nix package that was calculated in advance.
//
// Popularity is a number from 1-100 that represents the
// popularity percentile in which this package resides inside
// of the nixpkgs tree.
type Popularity = map[string]int
// Layer represents the data returned for each layer that Nix should
// build for the container image.
type Layer struct {
Contents []string `json:"contents"`
mergeRating uint64
}
// Hash the contents of a layer to create a deterministic identifier that can be
// used for caching.
func (l *Layer) Hash() string {
sum := sha1.Sum([]byte(strings.Join(l.Contents, ":")))
return fmt.Sprintf("%x", sum)
}
func (a Layer) merge(b Layer) Layer {
a.Contents = append(a.Contents, b.Contents...)
a.mergeRating += b.mergeRating
return a
}
// closure as pointed to by the graph nodes.
type closure struct {
GraphID int64
Path string
Size uint64
Refs []string
Popularity int
}
func (c *closure) ID() int64 {
return c.GraphID
}
var nixRegexp = regexp.MustCompile(`^/nix/store/[a-z0-9]+-`)
func (c *closure) DOTID() string {
return nixRegexp.ReplaceAllString(c.Path, "")
}
// bigOrPopular checks whether this closure should be considered for
// separation into its own layer, even if it would otherwise only
// appear in a subtree of the dominator tree.
func (c *closure) bigOrPopular() bool {
const sizeThreshold = 100 * 1000000 // 100MB
if c.Size > sizeThreshold {
return true
}
// The threshold value used here is currently roughly the
// minimum number of references that only 1% of packages in
// the entire package set have.
//
// TODO(tazjin): Do this more elegantly by calculating
// percentiles for each package and using those instead.
if c.Popularity >= 1000 {
return true
}
return false
}
func insertEdges(graph *simple.DirectedGraph, cmap *map[string]*closure, node *closure) {
// Big or popular nodes get a separate edge from the top to
// flag them for their own layer.
if node.bigOrPopular() && !graph.HasEdgeFromTo(0, node.ID()) {
edge := graph.NewEdge(graph.Node(0), node)
graph.SetEdge(edge)
}
for _, c := range node.Refs {
// Nix adds a self reference to each node, which
// should not be inserted.
if c != node.Path {
edge := graph.NewEdge(node, (*cmap)[c])
graph.SetEdge(edge)
}
}
}
// Create a graph structure from the references supplied by Nix.
func buildGraph(refs *RuntimeGraph, pop *Popularity) *simple.DirectedGraph {
cmap := make(map[string]*closure)
graph := simple.NewDirectedGraph()
// Insert all closures into the graph, as well as a fake root
// closure which serves as the top of the tree.
//
// A map from store paths to IDs is kept to actually insert
// edges below.
root := &closure{
GraphID: 0,
Path: "image_root",
}
graph.AddNode(root)
for idx, c := range refs.Graph {
node := &closure{
GraphID: int64(idx + 1), // inc because of root node
Path: c.Path,
Size: c.Size,
Refs: c.Refs,
}
if p, ok := (*pop)[node.DOTID()]; ok {
node.Popularity = p
} else {
node.Popularity = 1
}
graph.AddNode(node)
cmap[c.Path] = node
}
// Insert the top-level closures with edges from the root
// node, then insert all edges for each closure.
for _, p := range refs.References.Graph {
edge := graph.NewEdge(root, cmap[p])
graph.SetEdge(edge)
}
for _, c := range cmap {
insertEdges(graph, &cmap, c)
}
return graph
}
// Extracts a subgraph starting at the specified root from the
// dominator tree. The subgraph is converted into a flat list of
// layers, each containing the store paths and merge rating.
func groupLayer(dt *flow.DominatorTree, root *closure) Layer {
size := root.Size
contents := []string{root.Path}
children := dt.DominatedBy(root.ID())
// This iteration does not use 'range' because the list being
// iterated is modified during the iteration (yes, I'm sorry).
for i := 0; i < len(children); i++ {
child := children[i].(*closure)
size += child.Size
contents = append(contents, child.Path)
children = append(children, dt.DominatedBy(child.ID())...)
}
// Contents are sorted to ensure that hashing is consistent
sort.Strings(contents)
return Layer{
Contents: contents,
// TODO(tazjin): The point of this is to factor in
// both the size and the popularity when making merge
// decisions, but there might be a smarter way to do
// it than a plain multiplication.
mergeRating: uint64(root.Popularity) * size,
}
}
// Calculate the dominator tree of the entire package set and group
// each top-level subtree into a layer.
//
// Layers are merged together until they fit into the layer budget,
// based on their merge rating.
func dominate(budget int, graph *simple.DirectedGraph) []Layer {
dt := flow.Dominators(graph.Node(0), graph)
var layers []Layer
for _, n := range dt.DominatedBy(dt.Root().ID()) {
layers = append(layers, groupLayer(&dt, n.(*closure)))
}
sort.Slice(layers, func(i, j int) bool {
return layers[i].mergeRating < layers[j].mergeRating
})
if len(layers) > budget {
log.Printf("Ideal image has %v layers, but budget is %v\n", len(layers), budget)
}
for len(layers) > budget {
merged := layers[0].merge(layers[1])
layers[1] = merged
layers = layers[1:]
}
return layers
}
// GroupLayers applies the algorithm described above the its input and returns a
// list of layers, each consisting of a list of Nix store paths that it should
// contain.
func Group(refs *RuntimeGraph, pop *Popularity, budget int) []Layer {
graph := buildGraph(refs, pop)
return dominate(budget, graph)
}