fc8dc48020
git-subtree-dir: third_party/abseil_cpp git-subtree-mainline:ffb2ae54be
git-subtree-split:768eb2ca28
247 lines
7.8 KiB
C++
247 lines
7.8 KiB
C++
// Copyright 2017 The Abseil Authors.
|
||
//
|
||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
// you may not use this file except in compliance with the License.
|
||
// You may obtain a copy of the License at
|
||
//
|
||
// https://www.apache.org/licenses/LICENSE-2.0
|
||
//
|
||
// Unless required by applicable law or agreed to in writing, software
|
||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
// See the License for the specific language governing permissions and
|
||
// limitations under the License.
|
||
|
||
#ifndef ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_
|
||
#define ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_
|
||
|
||
#include <cassert>
|
||
#include <cmath>
|
||
#include <istream>
|
||
#include <limits>
|
||
#include <numeric>
|
||
#include <type_traits>
|
||
#include <utility>
|
||
#include <vector>
|
||
|
||
#include "absl/random/bernoulli_distribution.h"
|
||
#include "absl/random/internal/iostream_state_saver.h"
|
||
#include "absl/random/uniform_int_distribution.h"
|
||
|
||
namespace absl {
|
||
ABSL_NAMESPACE_BEGIN
|
||
|
||
// absl::discrete_distribution
|
||
//
|
||
// A discrete distribution produces random integers i, where 0 <= i < n
|
||
// distributed according to the discrete probability function:
|
||
//
|
||
// P(i|p0,...,pn−1)=pi
|
||
//
|
||
// This class is an implementation of discrete_distribution (see
|
||
// [rand.dist.samp.discrete]).
|
||
//
|
||
// The algorithm used is Walker's Aliasing algorithm, described in Knuth, Vol 2.
|
||
// absl::discrete_distribution takes O(N) time to precompute the probabilities
|
||
// (where N is the number of possible outcomes in the distribution) at
|
||
// construction, and then takes O(1) time for each variate generation. Many
|
||
// other implementations also take O(N) time to construct an ordered sequence of
|
||
// partial sums, plus O(log N) time per variate to binary search.
|
||
//
|
||
template <typename IntType = int>
|
||
class discrete_distribution {
|
||
public:
|
||
using result_type = IntType;
|
||
|
||
class param_type {
|
||
public:
|
||
using distribution_type = discrete_distribution;
|
||
|
||
param_type() { init(); }
|
||
|
||
template <typename InputIterator>
|
||
explicit param_type(InputIterator begin, InputIterator end)
|
||
: p_(begin, end) {
|
||
init();
|
||
}
|
||
|
||
explicit param_type(std::initializer_list<double> weights) : p_(weights) {
|
||
init();
|
||
}
|
||
|
||
template <class UnaryOperation>
|
||
explicit param_type(size_t nw, double xmin, double xmax,
|
||
UnaryOperation fw) {
|
||
if (nw > 0) {
|
||
p_.reserve(nw);
|
||
double delta = (xmax - xmin) / static_cast<double>(nw);
|
||
assert(delta > 0);
|
||
double t = delta * 0.5;
|
||
for (size_t i = 0; i < nw; ++i) {
|
||
p_.push_back(fw(xmin + i * delta + t));
|
||
}
|
||
}
|
||
init();
|
||
}
|
||
|
||
const std::vector<double>& probabilities() const { return p_; }
|
||
size_t n() const { return p_.size() - 1; }
|
||
|
||
friend bool operator==(const param_type& a, const param_type& b) {
|
||
return a.probabilities() == b.probabilities();
|
||
}
|
||
|
||
friend bool operator!=(const param_type& a, const param_type& b) {
|
||
return !(a == b);
|
||
}
|
||
|
||
private:
|
||
friend class discrete_distribution;
|
||
|
||
void init();
|
||
|
||
std::vector<double> p_; // normalized probabilities
|
||
std::vector<std::pair<double, size_t>> q_; // (acceptance, alternate) pairs
|
||
|
||
static_assert(std::is_integral<result_type>::value,
|
||
"Class-template absl::discrete_distribution<> must be "
|
||
"parameterized using an integral type.");
|
||
};
|
||
|
||
discrete_distribution() : param_() {}
|
||
|
||
explicit discrete_distribution(const param_type& p) : param_(p) {}
|
||
|
||
template <typename InputIterator>
|
||
explicit discrete_distribution(InputIterator begin, InputIterator end)
|
||
: param_(begin, end) {}
|
||
|
||
explicit discrete_distribution(std::initializer_list<double> weights)
|
||
: param_(weights) {}
|
||
|
||
template <class UnaryOperation>
|
||
explicit discrete_distribution(size_t nw, double xmin, double xmax,
|
||
UnaryOperation fw)
|
||
: param_(nw, xmin, xmax, std::move(fw)) {}
|
||
|
||
void reset() {}
|
||
|
||
// generating functions
|
||
template <typename URBG>
|
||
result_type operator()(URBG& g) { // NOLINT(runtime/references)
|
||
return (*this)(g, param_);
|
||
}
|
||
|
||
template <typename URBG>
|
||
result_type operator()(URBG& g, // NOLINT(runtime/references)
|
||
const param_type& p);
|
||
|
||
const param_type& param() const { return param_; }
|
||
void param(const param_type& p) { param_ = p; }
|
||
|
||
result_type(min)() const { return 0; }
|
||
result_type(max)() const {
|
||
return static_cast<result_type>(param_.n());
|
||
} // inclusive
|
||
|
||
// NOTE [rand.dist.sample.discrete] returns a std::vector<double> not a
|
||
// const std::vector<double>&.
|
||
const std::vector<double>& probabilities() const {
|
||
return param_.probabilities();
|
||
}
|
||
|
||
friend bool operator==(const discrete_distribution& a,
|
||
const discrete_distribution& b) {
|
||
return a.param_ == b.param_;
|
||
}
|
||
friend bool operator!=(const discrete_distribution& a,
|
||
const discrete_distribution& b) {
|
||
return a.param_ != b.param_;
|
||
}
|
||
|
||
private:
|
||
param_type param_;
|
||
};
|
||
|
||
// --------------------------------------------------------------------------
|
||
// Implementation details only below
|
||
// --------------------------------------------------------------------------
|
||
|
||
namespace random_internal {
|
||
|
||
// Using the vector `*probabilities`, whose values are the weights or
|
||
// probabilities of an element being selected, constructs the proportional
|
||
// probabilities used by the discrete distribution. `*probabilities` will be
|
||
// scaled, if necessary, so that its entries sum to a value sufficiently close
|
||
// to 1.0.
|
||
std::vector<std::pair<double, size_t>> InitDiscreteDistribution(
|
||
std::vector<double>* probabilities);
|
||
|
||
} // namespace random_internal
|
||
|
||
template <typename IntType>
|
||
void discrete_distribution<IntType>::param_type::init() {
|
||
if (p_.empty()) {
|
||
p_.push_back(1.0);
|
||
q_.emplace_back(1.0, 0);
|
||
} else {
|
||
assert(n() <= (std::numeric_limits<IntType>::max)());
|
||
q_ = random_internal::InitDiscreteDistribution(&p_);
|
||
}
|
||
}
|
||
|
||
template <typename IntType>
|
||
template <typename URBG>
|
||
typename discrete_distribution<IntType>::result_type
|
||
discrete_distribution<IntType>::operator()(
|
||
URBG& g, // NOLINT(runtime/references)
|
||
const param_type& p) {
|
||
const auto idx = absl::uniform_int_distribution<result_type>(0, p.n())(g);
|
||
const auto& q = p.q_[idx];
|
||
const bool selected = absl::bernoulli_distribution(q.first)(g);
|
||
return selected ? idx : static_cast<result_type>(q.second);
|
||
}
|
||
|
||
template <typename CharT, typename Traits, typename IntType>
|
||
std::basic_ostream<CharT, Traits>& operator<<(
|
||
std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references)
|
||
const discrete_distribution<IntType>& x) {
|
||
auto saver = random_internal::make_ostream_state_saver(os);
|
||
const auto& probabilities = x.param().probabilities();
|
||
os << probabilities.size();
|
||
|
||
os.precision(random_internal::stream_precision_helper<double>::kPrecision);
|
||
for (const auto& p : probabilities) {
|
||
os << os.fill() << p;
|
||
}
|
||
return os;
|
||
}
|
||
|
||
template <typename CharT, typename Traits, typename IntType>
|
||
std::basic_istream<CharT, Traits>& operator>>(
|
||
std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references)
|
||
discrete_distribution<IntType>& x) { // NOLINT(runtime/references)
|
||
using param_type = typename discrete_distribution<IntType>::param_type;
|
||
auto saver = random_internal::make_istream_state_saver(is);
|
||
|
||
size_t n;
|
||
std::vector<double> p;
|
||
|
||
is >> n;
|
||
if (is.fail()) return is;
|
||
if (n > 0) {
|
||
p.reserve(n);
|
||
for (IntType i = 0; i < n && !is.fail(); ++i) {
|
||
auto tmp = random_internal::read_floating_point<double>(is);
|
||
if (is.fail()) return is;
|
||
p.push_back(tmp);
|
||
}
|
||
}
|
||
x.param(param_type(p.begin(), p.end()));
|
||
return is;
|
||
}
|
||
|
||
ABSL_NAMESPACE_END
|
||
} // namespace absl
|
||
|
||
#endif // ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_
|