0e7afdcbd2
-- 62058c9c008e23c787f35c1a5fe05851046a71f1 by Abseil Team <absl-team@google.com>: Fix some strange usage of INSTANTIATE_TEST_SUITE_P PiperOrigin-RevId: 264185105 -- 4400d84027d86415a2f9b81996ff22e7fd7aa30f by Derek Mauro <dmauro@google.com>: Disable testing std::string_view from nullptr on GCC >= GCC9. PiperOrigin-RevId: 264150587 -- 656d5a742ba48d025589709fad33ddae4b02c620 by Matt Calabrese <calabrese@google.com>: Fix `absl::any_cast` such that it properly works with qualifications. PiperOrigin-RevId: 263843429 -- 6ec89214a4ef2170bf069623a56ffd22863b748d by Abseil Team <absl-team@google.com>: Use macros to enable inline constexpr variables in compare.h when the compiler supports the feature. PiperOrigin-RevId: 263790677 -- a5171e0897195a0367fc08abce9504f813d027ff by Derek Mauro <dmauro@google.com>: Add the Apache License to files that are missing it. PiperOrigin-RevId: 263774164 -- 19e09a7ce8a0aac0a7d534e1799e4d73b63a1bb5 by Abseil Team <absl-team@google.com>: Update iter.position when moving up the tree in rebalance_after_delete. This field isn't read after the first iteration in rebalance_after_delete, and I think it's not a correctness issue, but it is read in try_merge_or_rebalance and potentially affects rebalancing decisions so it can affect performance. There's also an extremely unlikely potential for undefined behavior due to signed integer overflow since this field is only ever incremented in try_merge_or_rebalance (and position is an int). Basically though, I just don't think it makes sense to have this invalid iterator floating around here. PiperOrigin-RevId: 263770305 GitOrigin-RevId: 62058c9c008e23c787f35c1a5fe05851046a71f1 Change-Id: I1e2fb7cbfac7507dddedd181414ee35a5778f8f5
422 lines
14 KiB
C++
422 lines
14 KiB
C++
// Copyright 2017 The Abseil Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "absl/random/exponential_distribution.h"
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <limits>
|
|
#include <random>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <type_traits>
|
|
#include <vector>
|
|
|
|
#include "gmock/gmock.h"
|
|
#include "gtest/gtest.h"
|
|
#include "absl/base/internal/raw_logging.h"
|
|
#include "absl/base/macros.h"
|
|
#include "absl/random/internal/chi_square.h"
|
|
#include "absl/random/internal/distribution_test_util.h"
|
|
#include "absl/random/internal/sequence_urbg.h"
|
|
#include "absl/random/random.h"
|
|
#include "absl/strings/str_cat.h"
|
|
#include "absl/strings/str_format.h"
|
|
#include "absl/strings/str_replace.h"
|
|
#include "absl/strings/strip.h"
|
|
|
|
namespace {
|
|
|
|
using absl::random_internal::kChiSquared;
|
|
|
|
template <typename RealType>
|
|
class ExponentialDistributionTypedTest : public ::testing::Test {};
|
|
|
|
using RealTypes = ::testing::Types<float, double, long double>;
|
|
TYPED_TEST_CASE(ExponentialDistributionTypedTest, RealTypes);
|
|
|
|
TYPED_TEST(ExponentialDistributionTypedTest, SerializeTest) {
|
|
using param_type =
|
|
typename absl::exponential_distribution<TypeParam>::param_type;
|
|
|
|
const TypeParam kParams[] = {
|
|
// Cases around 1.
|
|
1, //
|
|
std::nextafter(TypeParam(1), TypeParam(0)), // 1 - epsilon
|
|
std::nextafter(TypeParam(1), TypeParam(2)), // 1 + epsilon
|
|
// Typical cases.
|
|
TypeParam(1e-8), TypeParam(1e-4), TypeParam(1), TypeParam(2),
|
|
TypeParam(1e4), TypeParam(1e8), TypeParam(1e20), TypeParam(2.5),
|
|
// Boundary cases.
|
|
std::numeric_limits<TypeParam>::max(),
|
|
std::numeric_limits<TypeParam>::epsilon(),
|
|
std::nextafter(std::numeric_limits<TypeParam>::min(),
|
|
TypeParam(1)), // min + epsilon
|
|
std::numeric_limits<TypeParam>::min(), // smallest normal
|
|
// There are some errors dealing with denorms on apple platforms.
|
|
std::numeric_limits<TypeParam>::denorm_min(), // smallest denorm
|
|
std::numeric_limits<TypeParam>::min() / 2, // denorm
|
|
std::nextafter(std::numeric_limits<TypeParam>::min(),
|
|
TypeParam(0)), // denorm_max
|
|
};
|
|
|
|
constexpr int kCount = 1000;
|
|
absl::InsecureBitGen gen;
|
|
|
|
for (const TypeParam lambda : kParams) {
|
|
// Some values may be invalid; skip those.
|
|
if (!std::isfinite(lambda)) continue;
|
|
ABSL_ASSERT(lambda > 0);
|
|
|
|
const param_type param(lambda);
|
|
|
|
absl::exponential_distribution<TypeParam> before(lambda);
|
|
EXPECT_EQ(before.lambda(), param.lambda());
|
|
|
|
{
|
|
absl::exponential_distribution<TypeParam> via_param(param);
|
|
EXPECT_EQ(via_param, before);
|
|
EXPECT_EQ(via_param.param(), before.param());
|
|
}
|
|
|
|
// Smoke test.
|
|
auto sample_min = before.max();
|
|
auto sample_max = before.min();
|
|
for (int i = 0; i < kCount; i++) {
|
|
auto sample = before(gen);
|
|
EXPECT_GE(sample, before.min()) << before;
|
|
EXPECT_LE(sample, before.max()) << before;
|
|
if (sample > sample_max) sample_max = sample;
|
|
if (sample < sample_min) sample_min = sample;
|
|
}
|
|
if (!std::is_same<TypeParam, long double>::value) {
|
|
ABSL_INTERNAL_LOG(INFO,
|
|
absl::StrFormat("Range {%f}: %f, %f, lambda=%f", lambda,
|
|
sample_min, sample_max, lambda));
|
|
}
|
|
|
|
std::stringstream ss;
|
|
ss << before;
|
|
|
|
if (!std::isfinite(lambda)) {
|
|
// Streams do not deserialize inf/nan correctly.
|
|
continue;
|
|
}
|
|
// Validate stream serialization.
|
|
absl::exponential_distribution<TypeParam> after(34.56f);
|
|
|
|
EXPECT_NE(before.lambda(), after.lambda());
|
|
EXPECT_NE(before.param(), after.param());
|
|
EXPECT_NE(before, after);
|
|
|
|
ss >> after;
|
|
|
|
#if defined(__powerpc64__) || defined(__PPC64__) || defined(__powerpc__) || \
|
|
defined(__ppc__) || defined(__PPC__)
|
|
if (std::is_same<TypeParam, long double>::value) {
|
|
// Roundtripping floating point values requires sufficient precision to
|
|
// reconstruct the exact value. It turns out that long double has some
|
|
// errors doing this on ppc, particularly for values
|
|
// near {1.0 +/- epsilon}.
|
|
if (lambda <= std::numeric_limits<double>::max() &&
|
|
lambda >= std::numeric_limits<double>::lowest()) {
|
|
EXPECT_EQ(static_cast<double>(before.lambda()),
|
|
static_cast<double>(after.lambda()))
|
|
<< ss.str();
|
|
}
|
|
continue;
|
|
}
|
|
#endif
|
|
|
|
EXPECT_EQ(before.lambda(), after.lambda()) //
|
|
<< ss.str() << " " //
|
|
<< (ss.good() ? "good " : "") //
|
|
<< (ss.bad() ? "bad " : "") //
|
|
<< (ss.eof() ? "eof " : "") //
|
|
<< (ss.fail() ? "fail " : "");
|
|
}
|
|
}
|
|
|
|
// http://www.itl.nist.gov/div898/handbook/eda/section3/eda3667.htm
|
|
|
|
class ExponentialModel {
|
|
public:
|
|
explicit ExponentialModel(double lambda)
|
|
: lambda_(lambda), beta_(1.0 / lambda) {}
|
|
|
|
double lambda() const { return lambda_; }
|
|
|
|
double mean() const { return beta_; }
|
|
double variance() const { return beta_ * beta_; }
|
|
double stddev() const { return std::sqrt(variance()); }
|
|
double skew() const { return 2; }
|
|
double kurtosis() const { return 6.0; }
|
|
|
|
double CDF(double x) { return 1.0 - std::exp(-lambda_ * x); }
|
|
|
|
// The inverse CDF, or PercentPoint function of the distribution
|
|
double InverseCDF(double p) {
|
|
ABSL_ASSERT(p >= 0.0);
|
|
ABSL_ASSERT(p < 1.0);
|
|
return -beta_ * std::log(1.0 - p);
|
|
}
|
|
|
|
private:
|
|
const double lambda_;
|
|
const double beta_;
|
|
};
|
|
|
|
struct Param {
|
|
double lambda;
|
|
double p_fail;
|
|
int trials;
|
|
};
|
|
|
|
class ExponentialDistributionTests : public testing::TestWithParam<Param>,
|
|
public ExponentialModel {
|
|
public:
|
|
ExponentialDistributionTests() : ExponentialModel(GetParam().lambda) {}
|
|
|
|
// SingleZTest provides a basic z-squared test of the mean vs. expected
|
|
// mean for data generated by the poisson distribution.
|
|
template <typename D>
|
|
bool SingleZTest(const double p, const size_t samples);
|
|
|
|
// SingleChiSquaredTest provides a basic chi-squared test of the normal
|
|
// distribution.
|
|
template <typename D>
|
|
double SingleChiSquaredTest();
|
|
|
|
absl::InsecureBitGen rng_;
|
|
};
|
|
|
|
template <typename D>
|
|
bool ExponentialDistributionTests::SingleZTest(const double p,
|
|
const size_t samples) {
|
|
D dis(lambda());
|
|
|
|
std::vector<double> data;
|
|
data.reserve(samples);
|
|
for (size_t i = 0; i < samples; i++) {
|
|
const double x = dis(rng_);
|
|
data.push_back(x);
|
|
}
|
|
|
|
const auto m = absl::random_internal::ComputeDistributionMoments(data);
|
|
const double max_err = absl::random_internal::MaxErrorTolerance(p);
|
|
const double z = absl::random_internal::ZScore(mean(), m);
|
|
const bool pass = absl::random_internal::Near("z", z, 0.0, max_err);
|
|
|
|
if (!pass) {
|
|
ABSL_INTERNAL_LOG(
|
|
INFO, absl::StrFormat("p=%f max_err=%f\n"
|
|
" lambda=%f\n"
|
|
" mean=%f vs. %f\n"
|
|
" stddev=%f vs. %f\n"
|
|
" skewness=%f vs. %f\n"
|
|
" kurtosis=%f vs. %f\n"
|
|
" z=%f vs. 0",
|
|
p, max_err, lambda(), m.mean, mean(),
|
|
std::sqrt(m.variance), stddev(), m.skewness,
|
|
skew(), m.kurtosis, kurtosis(), z));
|
|
}
|
|
return pass;
|
|
}
|
|
|
|
template <typename D>
|
|
double ExponentialDistributionTests::SingleChiSquaredTest() {
|
|
const size_t kSamples = 10000;
|
|
const int kBuckets = 50;
|
|
|
|
// The InverseCDF is the percent point function of the distribution, and can
|
|
// be used to assign buckets roughly uniformly.
|
|
std::vector<double> cutoffs;
|
|
const double kInc = 1.0 / static_cast<double>(kBuckets);
|
|
for (double p = kInc; p < 1.0; p += kInc) {
|
|
cutoffs.push_back(InverseCDF(p));
|
|
}
|
|
if (cutoffs.back() != std::numeric_limits<double>::infinity()) {
|
|
cutoffs.push_back(std::numeric_limits<double>::infinity());
|
|
}
|
|
|
|
D dis(lambda());
|
|
|
|
std::vector<int32_t> counts(cutoffs.size(), 0);
|
|
for (int j = 0; j < kSamples; j++) {
|
|
const double x = dis(rng_);
|
|
auto it = std::upper_bound(cutoffs.begin(), cutoffs.end(), x);
|
|
counts[std::distance(cutoffs.begin(), it)]++;
|
|
}
|
|
|
|
// Null-hypothesis is that the distribution is exponentially distributed
|
|
// with the provided lambda (not estimated from the data).
|
|
const int dof = static_cast<int>(counts.size()) - 1;
|
|
|
|
// Our threshold for logging is 1-in-50.
|
|
const double threshold = absl::random_internal::ChiSquareValue(dof, 0.98);
|
|
|
|
const double expected =
|
|
static_cast<double>(kSamples) / static_cast<double>(counts.size());
|
|
|
|
double chi_square = absl::random_internal::ChiSquareWithExpected(
|
|
std::begin(counts), std::end(counts), expected);
|
|
double p = absl::random_internal::ChiSquarePValue(chi_square, dof);
|
|
|
|
if (chi_square > threshold) {
|
|
for (int i = 0; i < cutoffs.size(); i++) {
|
|
ABSL_INTERNAL_LOG(
|
|
INFO, absl::StrFormat("%d : (%f) = %d", i, cutoffs[i], counts[i]));
|
|
}
|
|
|
|
ABSL_INTERNAL_LOG(INFO,
|
|
absl::StrCat("lambda ", lambda(), "\n", //
|
|
" expected ", expected, "\n", //
|
|
kChiSquared, " ", chi_square, " (", p, ")\n",
|
|
kChiSquared, " @ 0.98 = ", threshold));
|
|
}
|
|
return p;
|
|
}
|
|
|
|
TEST_P(ExponentialDistributionTests, ZTest) {
|
|
const size_t kSamples = 10000;
|
|
const auto& param = GetParam();
|
|
const int expected_failures =
|
|
std::max(1, static_cast<int>(std::ceil(param.trials * param.p_fail)));
|
|
const double p = absl::random_internal::RequiredSuccessProbability(
|
|
param.p_fail, param.trials);
|
|
|
|
int failures = 0;
|
|
for (int i = 0; i < param.trials; i++) {
|
|
failures += SingleZTest<absl::exponential_distribution<double>>(p, kSamples)
|
|
? 0
|
|
: 1;
|
|
}
|
|
EXPECT_LE(failures, expected_failures);
|
|
}
|
|
|
|
TEST_P(ExponentialDistributionTests, ChiSquaredTest) {
|
|
const int kTrials = 20;
|
|
int failures = 0;
|
|
|
|
for (int i = 0; i < kTrials; i++) {
|
|
double p_value =
|
|
SingleChiSquaredTest<absl::exponential_distribution<double>>();
|
|
if (p_value < 0.005) { // 1/200
|
|
failures++;
|
|
}
|
|
}
|
|
|
|
// There is a 0.10% chance of producing at least one failure, so raise the
|
|
// failure threshold high enough to allow for a flake rate < 10,000.
|
|
EXPECT_LE(failures, 4);
|
|
}
|
|
|
|
std::vector<Param> GenParams() {
|
|
return {
|
|
Param{1.0, 0.02, 100},
|
|
Param{2.5, 0.02, 100},
|
|
Param{10, 0.02, 100},
|
|
// large
|
|
Param{1e4, 0.02, 100},
|
|
Param{1e9, 0.02, 100},
|
|
// small
|
|
Param{0.1, 0.02, 100},
|
|
Param{1e-3, 0.02, 100},
|
|
Param{1e-5, 0.02, 100},
|
|
};
|
|
}
|
|
|
|
std::string ParamName(const ::testing::TestParamInfo<Param>& info) {
|
|
const auto& p = info.param;
|
|
std::string name = absl::StrCat("lambda_", absl::SixDigits(p.lambda));
|
|
return absl::StrReplaceAll(name, {{"+", "_"}, {"-", "_"}, {".", "_"}});
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(All, ExponentialDistributionTests,
|
|
::testing::ValuesIn(GenParams()), ParamName);
|
|
|
|
// NOTE: absl::exponential_distribution is not guaranteed to be stable.
|
|
TEST(ExponentialDistributionTest, StabilityTest) {
|
|
// absl::exponential_distribution stability relies on std::log1p and
|
|
// absl::uniform_real_distribution.
|
|
absl::random_internal::sequence_urbg urbg(
|
|
{0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
|
|
0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
|
|
0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
|
|
0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
|
|
|
|
std::vector<int> output(14);
|
|
|
|
{
|
|
absl::exponential_distribution<double> dist;
|
|
std::generate(std::begin(output), std::end(output),
|
|
[&] { return static_cast<int>(10000.0 * dist(urbg)); });
|
|
|
|
EXPECT_EQ(14, urbg.invocations());
|
|
EXPECT_THAT(output,
|
|
testing::ElementsAre(0, 71913, 14375, 5039, 1835, 861, 25936,
|
|
804, 126, 12337, 17984, 27002, 0, 71913));
|
|
}
|
|
|
|
urbg.reset();
|
|
{
|
|
absl::exponential_distribution<float> dist;
|
|
std::generate(std::begin(output), std::end(output),
|
|
[&] { return static_cast<int>(10000.0f * dist(urbg)); });
|
|
|
|
EXPECT_EQ(14, urbg.invocations());
|
|
EXPECT_THAT(output,
|
|
testing::ElementsAre(0, 71913, 14375, 5039, 1835, 861, 25936,
|
|
804, 126, 12337, 17984, 27002, 0, 71913));
|
|
}
|
|
}
|
|
|
|
TEST(ExponentialDistributionTest, AlgorithmBounds) {
|
|
// Relies on absl::uniform_real_distribution, so some of these comments
|
|
// reference that.
|
|
absl::exponential_distribution<double> dist;
|
|
|
|
{
|
|
// This returns the smallest value >0 from absl::uniform_real_distribution.
|
|
absl::random_internal::sequence_urbg urbg({0x0000000000000001ull});
|
|
double a = dist(urbg);
|
|
EXPECT_EQ(a, 5.42101086242752217004e-20);
|
|
}
|
|
|
|
{
|
|
// This returns a value very near 0.5 from absl::uniform_real_distribution.
|
|
absl::random_internal::sequence_urbg urbg({0x7fffffffffffffefull});
|
|
double a = dist(urbg);
|
|
EXPECT_EQ(a, 0.693147180559945175204);
|
|
}
|
|
|
|
{
|
|
// This returns the largest value <1 from absl::uniform_real_distribution.
|
|
// WolframAlpha: ~39.1439465808987766283058547296341915292187253
|
|
absl::random_internal::sequence_urbg urbg({0xFFFFFFFFFFFFFFeFull});
|
|
double a = dist(urbg);
|
|
EXPECT_EQ(a, 36.7368005696771007251);
|
|
}
|
|
{
|
|
// This *ALSO* returns the largest value <1.
|
|
absl::random_internal::sequence_urbg urbg({0xFFFFFFFFFFFFFFFFull});
|
|
double a = dist(urbg);
|
|
EXPECT_EQ(a, 36.7368005696771007251);
|
|
}
|
|
}
|
|
|
|
} // namespace
|