tvl-depot/absl/types/variant.h
Abseil Team 13327debeb Export of internal Abseil changes.
--
15d7bcf28220750db46930f4d8c090b54e3ae5fe by Jon Cohen <cohenjon@google.com>:

Fix miscellaneous CMake change interleaving issues for the daily release:
  * add back the absl::container target
  * Add copts to absl_cc_library targets in absl/container/CMakeLists.txt
  * Add trailing newline to the end of AbseilConfigureCopts.cmake

PiperOrigin-RevId: 223057096

--
baac35470d75b6561477f688dc4eb021f604cf71 by Abseil Team <absl-team@google.com>:

Internal Cleanup.

PiperOrigin-RevId: 223051579

--
6791c2f2e35b030b5579f36d3c607c6ba92fa089 by Abseil Team <absl-team@google.com>:

Internal Change.

PiperOrigin-RevId: 223046855

--
5467ad987ea82aef77d2f1cc85aa9105e7d9c320 by Samuel Benzaquen <sbenza@google.com>:

Workaround for gcc bug https://gcc.gnu.org/PR88115

PiperOrigin-RevId: 223041901

--
36fa5cfd41df2b71d26487c45363901bbf6a2463 by Tom Manshreck <shreck@google.com>:

Clarify visit() constraints

PiperOrigin-RevId: 223032194

--
afdf4013de036b411db7f92cde8a2493e6665223 by Abseil Team <absl-team@google.com>:

Fix comment typos.

PiperOrigin-RevId: 223024090

--
e11c01927eb8b898f6633282824022104b258342 by Jon Cohen <cohenjon@google.com>:

Make absl::spinlock_test_common TESTONLY

This should fix https://github.com/abseil/abseil-cpp/issues/221

PiperOrigin-RevId: 222885323

--
5ccc576d1c68e4b92705aa8064f1e8d715e5415e by Abseil Team <absl-team@google.com>:

Internal change.

PiperOrigin-RevId: 222877017

--
96ff25bf78c4f4bca0d6e61faa4feeab91a2e73c by Jon Cohen <cohenjon@google.com>:

Align CMake and Bazel compile options.  This is the first step towards a single source of truth for Abseil compile options.  Also makes absl_test and absl_cc_test make binaries and targets with compatible names to each other to make testing easier.

PiperOrigin-RevId: 222858408

--
7dd3e2618ad5a5de5d918fc73e438ef0b98cec6a by Abseil Team <absl-team@google.com>:

Revert "absl: cap SpinLock backoff to 4ms"

PiperOrigin-RevId: 222656230

--
0d49538a3cab714156ed0a5651656c0aa098a1e5 by Abseil Team <absl-team@google.com>:

Update absl/container/CMakeLists.txt to use new functions
i.e. absl_cc_(library|test)

PiperOrigin-RevId: 222535766

--
92744e9d0e5c3bf9e1167a7bdf1a6777192531b1 by Abseil Team <absl-team@google.com>:

Disable header parsing for broken targets

PiperOrigin-RevId: 222257218

--
39a6c623601c44e02d91e412f126a813d719507b by Abseil Team <absl-team@google.com>:

absl: cap SpinLock backoff to 4ms

The current backoff logic has 3 problems:
1. It can produce too high values (up to 256ms), which can negatively
affect tail latency. The value was chosen long time ago and now it's
a good idea to reconsider it.
2. It does not have low bound, so on any iteration it can produce
a very small value that will lead to unnecessary cpu consumption.
3. It does not increase low bound with the number of iterations.
So if the SpinLock is actually somehow locked for a very prolonged time,
a waiter can still wake periodically.

Rework the logic to solve these problems.
Add lower bound of 128us, no code should rely on absence of episodic
delays in this range as they can occur everywhere.
Lower upper bound to 4ms. A thread sleeping for 4ms does not consume
significant cpu time (see below).
Grow lower bound with the number of iterations.

This is cpu consumption of a process doing usleep(x) in a loop
(sampled with ps):

    64us -> 4.0%
   128us -> 2.7%
   256us -> 3.5%
   512us -> 2.8%
  1024us -> 1.6%
  2048us -> 0.6%
  4096us -> 0.3%
  8192us -> 0.0%

Few millisecond sleeps do not consume significant time.

PiperOrigin-RevId: 222196086

--
17104a2396ddda61fb0faed0a72ff8c161ca17ea by Shahriar Rouf <nafi@google.com>:

Add benchmarks for hashing civil_times.

PiperOrigin-RevId: 222152108
GitOrigin-RevId: 15d7bcf28220750db46930f4d8c090b54e3ae5fe
Change-Id: I73b929feaf6ce72b70fdafd6108f53bbbeaf9738
2018-11-27 17:37:00 -05:00

850 lines
33 KiB
C++

// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// variant.h
// -----------------------------------------------------------------------------
//
// This header file defines an `absl::variant` type for holding a type-safe
// value of some prescribed set of types (noted as alternative types), and
// associated functions for managing variants.
//
// The `absl::variant` type is a form of type-safe union. An `absl::variant`
// should always hold a value of one of its alternative types (except in the
// "valueless by exception state" -- see below). A default-constructed
// `absl::variant` will hold the value of its first alternative type, provided
// it is default-constructable.
//
// In exceptional cases due to error, an `absl::variant` can hold no
// value (known as a "valueless by exception" state), though this is not the
// norm.
//
// As with `absl::optional`, an `absl::variant` -- when it holds a value --
// allocates a value of that type directly within the `variant` itself; it
// cannot hold a reference, array, or the type `void`; it can, however, hold a
// pointer to externally managed memory.
//
// `absl::variant` is a C++11 compatible version of the C++17 `std::variant`
// abstraction and is designed to be a drop-in replacement for code compliant
// with C++17.
#ifndef ABSL_TYPES_VARIANT_H_
#define ABSL_TYPES_VARIANT_H_
#include "absl/base/config.h"
#include "absl/utility/utility.h"
#ifdef ABSL_HAVE_STD_VARIANT
#include <variant>
namespace absl {
using std::bad_variant_access;
using std::get;
using std::get_if;
using std::holds_alternative;
using std::monostate;
using std::variant;
using std::variant_alternative;
using std::variant_alternative_t;
using std::variant_npos;
using std::variant_size;
using std::variant_size_v;
using std::visit;
} // namespace absl
#else // ABSL_HAVE_STD_VARIANT
#include <functional>
#include <new>
#include <type_traits>
#include <utility>
#include "absl/base/macros.h"
#include "absl/base/port.h"
#include "absl/meta/type_traits.h"
#include "absl/types/internal/variant.h"
namespace absl {
// -----------------------------------------------------------------------------
// absl::variant
// -----------------------------------------------------------------------------
//
// An 'absl::variant` type is a form of type-safe union. An `absl::variant` --
// except in exceptional cases -- always holds a value of one of its alternative
// types.
//
// Example:
//
// // Construct a variant that holds either an integer or a std::string and
// // assign it to a std::string.
// absl::variant<int, std::string> v = std::string("abc");
//
// // A default-contructed variant will hold a value-initialized value of
// // the first alternative type.
// auto a = absl::variant<int, std::string>(); // Holds an int of value '0'.
//
// // variants are assignable.
//
// // copy assignment
// auto v1 = absl::variant<int, std::string>("abc");
// auto v2 = absl::variant<int, std::string>(10);
// v2 = v1; // copy assign
//
// // move assignment
// auto v1 = absl::variant<int, std::string>("abc");
// v1 = absl::variant<int, std::string>(10);
//
// // assignment through type conversion
// a = 128; // variant contains int
// a = "128"; // variant contains std::string
//
// An `absl::variant` holding a value of one of its alternative types `T` holds
// an allocation of `T` directly within the variant itself. An `absl::variant`
// is not allowed to allocate additional storage, such as dynamic memory, to
// allocate the contained value. The contained value shall be allocated in a
// region of the variant storage suitably aligned for all alternative types.
template <typename... Ts>
class variant;
// swap()
//
// Swaps two `absl::variant` values. This function is equivalent to `v.swap(w)`
// where `v` and `w` are `absl::variant` types.
//
// Note that this function requires all alternative types to be both swappable
// and move-constructible, because any two variants may refer to either the same
// type (in which case, they will be swapped) or to two different types (in
// which case the values will need to be moved).
//
template <typename... Ts>
void swap(variant<Ts...>& v, variant<Ts...>& w) noexcept(noexcept(v.swap(w))) {
v.swap(w);
}
// variant_size
//
// Returns the number of alterative types available for a given `absl::variant`
// type as a compile-time constant expression. As this is a class template, it
// is not generally useful for accessing the number of alternative types of
// any given `absl::variant` instance.
//
// Example:
//
// auto a = absl::variant<int, std::string>;
// constexpr int num_types =
// absl::variant_size<absl::variant<int, std::string>>();
//
// // You can also use the member constant `value`.
// constexpr int num_types =
// absl::variant_size<absl::variant<int, std::string>>::value;
//
// // `absl::variant_size` is more valuable for use in generic code:
// template <typename Variant>
// constexpr bool IsVariantMultivalue() {
// return absl::variant_size<Variant>() > 1;
// }
//
// Note that the set of cv-qualified specializations of `variant_size` are
// provided to ensure that those specializations compile (especially when passed
// within template logic).
template <class T>
struct variant_size;
template <class... Ts>
struct variant_size<variant<Ts...>>
: std::integral_constant<std::size_t, sizeof...(Ts)> {};
// Specialization of `variant_size` for const qualified variants.
template <class T>
struct variant_size<const T> : variant_size<T>::type {};
// Specialization of `variant_size` for volatile qualified variants.
template <class T>
struct variant_size<volatile T> : variant_size<T>::type {};
// Specialization of `variant_size` for const volatile qualified variants.
template <class T>
struct variant_size<const volatile T> : variant_size<T>::type {};
// variant_alternative
//
// Returns the alternative type for a given `absl::variant` at the passed
// index value as a compile-time constant expression. As this is a class
// template resulting in a type, it is not useful for access of the run-time
// value of any given `absl::variant` variable.
//
// Example:
//
// // The type of the 0th alternative is "int".
// using alternative_type_0
// = absl::variant_alternative<0, absl::variant<int, std::string>>::type;
//
// static_assert(std::is_same<alternative_type_0, int>::value, "");
//
// // `absl::variant_alternative` is more valuable for use in generic code:
// template <typename Variant>
// constexpr bool IsFirstElementTrivial() {
// return std::is_trivial_v<variant_alternative<0, Variant>::type>;
// }
//
// Note that the set of cv-qualified specializations of `variant_alternative`
// are provided to ensure that those specializations compile (especially when
// passed within template logic).
template <std::size_t I, class T>
struct variant_alternative;
template <std::size_t I, class... Types>
struct variant_alternative<I, variant<Types...>> {
using type =
variant_internal::VariantAlternativeSfinaeT<I, variant<Types...>>;
};
// Specialization of `variant_alternative` for const qualified variants.
template <std::size_t I, class T>
struct variant_alternative<I, const T> {
using type = const typename variant_alternative<I, T>::type;
};
// Specialization of `variant_alternative` for volatile qualified variants.
template <std::size_t I, class T>
struct variant_alternative<I, volatile T> {
using type = volatile typename variant_alternative<I, T>::type;
};
// Specialization of `variant_alternative` for const volatile qualified
// variants.
template <std::size_t I, class T>
struct variant_alternative<I, const volatile T> {
using type = const volatile typename variant_alternative<I, T>::type;
};
// Template type alias for variant_alternative<I, T>::type.
//
// Example:
//
// using alternative_type_0
// = absl::variant_alternative_t<0, absl::variant<int, std::string>>;
// static_assert(std::is_same<alternative_type_0, int>::value, "");
template <std::size_t I, class T>
using variant_alternative_t = typename variant_alternative<I, T>::type;
// holds_alternative()
//
// Checks whether the given variant currently holds a given alternative type,
// returning `true` if so.
//
// Example:
//
// absl::variant<int, std::string> foo = 42;
// if (absl::holds_alternative<int>(foo)) {
// std::cout << "The variant holds an integer";
// }
template <class T, class... Types>
constexpr bool holds_alternative(const variant<Types...>& v) noexcept {
static_assert(
variant_internal::UnambiguousIndexOfImpl<variant<Types...>, T,
0>::value != sizeof...(Types),
"The type T must occur exactly once in Types...");
return v.index() ==
variant_internal::UnambiguousIndexOf<variant<Types...>, T>::value;
}
// get()
//
// Returns a reference to the value currently within a given variant, using
// either a unique alternative type amongst the variant's set of alternative
// types, or the variant's index value. Attempting to get a variant's value
// using a type that is not unique within the variant's set of alternative types
// is a compile-time error. If the index of the alternative being specified is
// different from the index of the alternative that is currently stored, throws
// `absl::bad_variant_access`.
//
// Example:
//
// auto a = absl::variant<int, std::string>;
//
// // Get the value by type (if unique).
// int i = absl::get<int>(a);
//
// auto b = absl::variant<int, int>;
//
// // Getting the value by a type that is not unique is ill-formed.
// int j = absl::get<int>(b); // Compile Error!
//
// // Getting value by index not ambiguous and allowed.
// int k = absl::get<1>(b);
// Overload for getting a variant's lvalue by type.
template <class T, class... Types>
constexpr T& get(variant<Types...>& v) { // NOLINT
return variant_internal::VariantCoreAccess::CheckedAccess<
variant_internal::IndexOf<T, Types...>::value>(v);
}
// Overload for getting a variant's rvalue by type.
// Note: `absl::move()` is required to allow use of constexpr in C++11.
template <class T, class... Types>
constexpr T&& get(variant<Types...>&& v) {
return variant_internal::VariantCoreAccess::CheckedAccess<
variant_internal::IndexOf<T, Types...>::value>(absl::move(v));
}
// Overload for getting a variant's const lvalue by type.
template <class T, class... Types>
constexpr const T& get(const variant<Types...>& v) {
return variant_internal::VariantCoreAccess::CheckedAccess<
variant_internal::IndexOf<T, Types...>::value>(v);
}
// Overload for getting a variant's const rvalue by type.
// Note: `absl::move()` is required to allow use of constexpr in C++11.
template <class T, class... Types>
constexpr const T&& get(const variant<Types...>&& v) {
return variant_internal::VariantCoreAccess::CheckedAccess<
variant_internal::IndexOf<T, Types...>::value>(absl::move(v));
}
// Overload for getting a variant's lvalue by index.
template <std::size_t I, class... Types>
constexpr variant_alternative_t<I, variant<Types...>>& get(
variant<Types...>& v) { // NOLINT
return variant_internal::VariantCoreAccess::CheckedAccess<I>(v);
}
// Overload for getting a variant's rvalue by index.
// Note: `absl::move()` is required to allow use of constexpr in C++11.
template <std::size_t I, class... Types>
constexpr variant_alternative_t<I, variant<Types...>>&& get(
variant<Types...>&& v) {
return variant_internal::VariantCoreAccess::CheckedAccess<I>(absl::move(v));
}
// Overload for getting a variant's const lvalue by index.
template <std::size_t I, class... Types>
constexpr const variant_alternative_t<I, variant<Types...>>& get(
const variant<Types...>& v) {
return variant_internal::VariantCoreAccess::CheckedAccess<I>(v);
}
// Overload for getting a variant's const rvalue by index.
// Note: `absl::move()` is required to allow use of constexpr in C++11.
template <std::size_t I, class... Types>
constexpr const variant_alternative_t<I, variant<Types...>>&& get(
const variant<Types...>&& v) {
return variant_internal::VariantCoreAccess::CheckedAccess<I>(absl::move(v));
}
// get_if()
//
// Returns a pointer to the value currently stored within a given variant, if
// present, using either a unique alternative type amongst the variant's set of
// alternative types, or the variant's index value. If such a value does not
// exist, returns `nullptr`.
//
// As with `get`, attempting to get a variant's value using a type that is not
// unique within the variant's set of alternative types is a compile-time error.
// Overload for getting a pointer to the value stored in the given variant by
// index.
template <std::size_t I, class... Types>
constexpr absl::add_pointer_t<variant_alternative_t<I, variant<Types...>>>
get_if(variant<Types...>* v) noexcept {
return (v != nullptr && v->index() == I)
? std::addressof(
variant_internal::VariantCoreAccess::Access<I>(*v))
: nullptr;
}
// Overload for getting a pointer to the const value stored in the given
// variant by index.
template <std::size_t I, class... Types>
constexpr absl::add_pointer_t<const variant_alternative_t<I, variant<Types...>>>
get_if(const variant<Types...>* v) noexcept {
return (v != nullptr && v->index() == I)
? std::addressof(
variant_internal::VariantCoreAccess::Access<I>(*v))
: nullptr;
}
// Overload for getting a pointer to the value stored in the given variant by
// type.
template <class T, class... Types>
constexpr absl::add_pointer_t<T> get_if(variant<Types...>* v) noexcept {
return absl::get_if<variant_internal::IndexOf<T, Types...>::value>(v);
}
// Overload for getting a pointer to the const value stored in the given variant
// by type.
template <class T, class... Types>
constexpr absl::add_pointer_t<const T> get_if(
const variant<Types...>* v) noexcept {
return absl::get_if<variant_internal::IndexOf<T, Types...>::value>(v);
}
// visit()
//
// Calls a provided functor on a given set of variants. `absl::visit()` is
// commonly used to conditionally inspect the state of a given variant (or set
// of variants).
//
// The functor must return the same type when called with any of the variants'
// alternatives.
//
// Example:
//
// // Define a visitor functor
// struct GetVariant {
// template<typename T>
// void operator()(const T& i) const {
// std::cout << "The variant's value is: " << i;
// }
// };
//
// // Declare our variant, and call `absl::visit()` on it.
// // Note that `GetVariant()` returns void in either case.
// absl::variant<int, std::string> foo = std::string("foo");
// GetVariant visitor;
// absl::visit(visitor, foo); // Prints `The variant's value is: foo'
template <typename Visitor, typename... Variants>
variant_internal::VisitResult<Visitor, Variants...> visit(Visitor&& vis,
Variants&&... vars) {
return variant_internal::
VisitIndices<variant_size<absl::decay_t<Variants> >::value...>::Run(
variant_internal::PerformVisitation<Visitor, Variants...>{
std::forward_as_tuple(absl::forward<Variants>(vars)...),
absl::forward<Visitor>(vis)},
vars.index()...);
}
// monostate
//
// The monostate class serves as a first alternative type for a variant for
// which the first variant type is otherwise not default-constructible.
struct monostate {};
// `absl::monostate` Relational Operators
constexpr bool operator<(monostate, monostate) noexcept { return false; }
constexpr bool operator>(monostate, monostate) noexcept { return false; }
constexpr bool operator<=(monostate, monostate) noexcept { return true; }
constexpr bool operator>=(monostate, monostate) noexcept { return true; }
constexpr bool operator==(monostate, monostate) noexcept { return true; }
constexpr bool operator!=(monostate, monostate) noexcept { return false; }
//------------------------------------------------------------------------------
// `absl::variant` Template Definition
//------------------------------------------------------------------------------
template <typename T0, typename... Tn>
class variant<T0, Tn...> : private variant_internal::VariantBase<T0, Tn...> {
static_assert(absl::conjunction<std::is_object<T0>,
std::is_object<Tn>...>::value,
"Attempted to instantiate a variant containing a non-object "
"type.");
// Intentionally not qualifing `negation` with `absl::` to work around a bug
// in MSVC 2015 with inline namespace and variadic template.
static_assert(absl::conjunction<negation<std::is_array<T0> >,
negation<std::is_array<Tn> >...>::value,
"Attempted to instantiate a variant containing an array type.");
static_assert(absl::conjunction<std::is_nothrow_destructible<T0>,
std::is_nothrow_destructible<Tn>...>::value,
"Attempted to instantiate a variant containing a non-nothrow "
"destructible type.");
friend struct variant_internal::VariantCoreAccess;
private:
using Base = variant_internal::VariantBase<T0, Tn...>;
public:
// Constructors
// Constructs a variant holding a default-initialized value of the first
// alternative type.
constexpr variant() /*noexcept(see 111above)*/ = default;
// Copy constructor, standard semantics
variant(const variant& other) = default;
// Move constructor, standard semantics
variant(variant&& other) /*noexcept(see above)*/ = default;
// Constructs a variant of an alternative type specified by overload
// resolution of the provided forwarding arguments through
// direct-initialization.
//
// Note: If the selected constructor is a constexpr constructor, this
// constructor shall be a constexpr constructor.
//
// NOTE: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0608r1.html
// has been voted passed the design phase in the C++ standard meeting in Mar
// 2018. It will be implemented and integrated into `absl::variant`.
template <
class T,
std::size_t I = std::enable_if<
variant_internal::IsNeitherSelfNorInPlace<variant,
absl::decay_t<T>>::value,
variant_internal::IndexOfConstructedType<variant, T>>::type::value,
class Tj = absl::variant_alternative_t<I, variant>,
absl::enable_if_t<std::is_constructible<Tj, T>::value>* =
nullptr>
constexpr variant(T&& t) noexcept(std::is_nothrow_constructible<Tj, T>::value)
: Base(variant_internal::EmplaceTag<I>(), absl::forward<T>(t)) {}
// Constructs a variant of an alternative type from the arguments through
// direct-initialization.
//
// Note: If the selected constructor is a constexpr constructor, this
// constructor shall be a constexpr constructor.
template <class T, class... Args,
typename std::enable_if<std::is_constructible<
variant_internal::UnambiguousTypeOfT<variant, T>,
Args...>::value>::type* = nullptr>
constexpr explicit variant(in_place_type_t<T>, Args&&... args)
: Base(variant_internal::EmplaceTag<
variant_internal::UnambiguousIndexOf<variant, T>::value>(),
absl::forward<Args>(args)...) {}
// Constructs a variant of an alternative type from an initializer list
// and other arguments through direct-initialization.
//
// Note: If the selected constructor is a constexpr constructor, this
// constructor shall be a constexpr constructor.
template <class T, class U, class... Args,
typename std::enable_if<std::is_constructible<
variant_internal::UnambiguousTypeOfT<variant, T>,
std::initializer_list<U>&, Args...>::value>::type* = nullptr>
constexpr explicit variant(in_place_type_t<T>, std::initializer_list<U> il,
Args&&... args)
: Base(variant_internal::EmplaceTag<
variant_internal::UnambiguousIndexOf<variant, T>::value>(),
il, absl::forward<Args>(args)...) {}
// Constructs a variant of an alternative type from a provided index,
// through value-initialization using the provided forwarded arguments.
template <std::size_t I, class... Args,
typename std::enable_if<std::is_constructible<
variant_internal::VariantAlternativeSfinaeT<I, variant>,
Args...>::value>::type* = nullptr>
constexpr explicit variant(in_place_index_t<I>, Args&&... args)
: Base(variant_internal::EmplaceTag<I>(), absl::forward<Args>(args)...) {}
// Constructs a variant of an alternative type from a provided index,
// through value-initialization of an initializer list and the provided
// forwarded arguments.
template <std::size_t I, class U, class... Args,
typename std::enable_if<std::is_constructible<
variant_internal::VariantAlternativeSfinaeT<I, variant>,
std::initializer_list<U>&, Args...>::value>::type* = nullptr>
constexpr explicit variant(in_place_index_t<I>, std::initializer_list<U> il,
Args&&... args)
: Base(variant_internal::EmplaceTag<I>(), il,
absl::forward<Args>(args)...) {}
// Destructors
// Destroys the variant's currently contained value, provided that
// `absl::valueless_by_exception()` is false.
~variant() = default;
// Assignment Operators
// Copy assignement operator
variant& operator=(const variant& other) = default;
// Move assignment operator
variant& operator=(variant&& other) /*noexcept(see above)*/ = default;
// Converting assignment operator
//
// NOTE: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0608r1.html
// has been voted passed the design phase in the C++ standard meeting in Mar
// 2018. It will be implemented and integrated into `absl::variant`.
template <
class T,
std::size_t I = std::enable_if<
!std::is_same<absl::decay_t<T>, variant>::value,
variant_internal::IndexOfConstructedType<variant, T>>::type::value,
class Tj = absl::variant_alternative_t<I, variant>,
typename std::enable_if<std::is_assignable<Tj&, T>::value &&
std::is_constructible<Tj, T>::value>::type* =
nullptr>
variant& operator=(T&& t) noexcept(
std::is_nothrow_assignable<Tj&, T>::value&&
std::is_nothrow_constructible<Tj, T>::value) {
variant_internal::VisitIndices<sizeof...(Tn) + 1>::Run(
variant_internal::VariantCoreAccess::MakeConversionAssignVisitor(
this, absl::forward<T>(t)),
index());
return *this;
}
// emplace() Functions
// Constructs a value of the given alternative type T within the variant.
//
// Example:
//
// absl::variant<std::vector<int>, int, std::string> v;
// v.emplace<int>(99);
// v.emplace<std::string>("abc");
template <
class T, class... Args,
typename std::enable_if<std::is_constructible<
absl::variant_alternative_t<
variant_internal::UnambiguousIndexOf<variant, T>::value, variant>,
Args...>::value>::type* = nullptr>
T& emplace(Args&&... args) {
return variant_internal::VariantCoreAccess::Replace<
variant_internal::UnambiguousIndexOf<variant, T>::value>(
this, absl::forward<Args>(args)...);
}
// Constructs a value of the given alternative type T within the variant using
// an initializer list.
//
// Example:
//
// absl::variant<std::vector<int>, int, std::string> v;
// v.emplace<std::vector<int>>({0, 1, 2});
template <
class T, class U, class... Args,
typename std::enable_if<std::is_constructible<
absl::variant_alternative_t<
variant_internal::UnambiguousIndexOf<variant, T>::value, variant>,
std::initializer_list<U>&, Args...>::value>::type* = nullptr>
T& emplace(std::initializer_list<U> il, Args&&... args) {
return variant_internal::VariantCoreAccess::Replace<
variant_internal::UnambiguousIndexOf<variant, T>::value>(
this, il, absl::forward<Args>(args)...);
}
// Destroys the current value of the variant (provided that
// `absl::valueless_by_exception()` is false, and constructs a new value at
// the given index.
//
// Example:
//
// absl::variant<std::vector<int>, int, int> v;
// v.emplace<1>(99);
// v.emplace<2>(98);
// v.emplace<int>(99); // Won't compile. 'int' isn't a unique type.
template <std::size_t I, class... Args,
typename std::enable_if<
std::is_constructible<absl::variant_alternative_t<I, variant>,
Args...>::value>::type* = nullptr>
absl::variant_alternative_t<I, variant>& emplace(Args&&... args) {
return variant_internal::VariantCoreAccess::Replace<I>(
this, absl::forward<Args>(args)...);
}
// Destroys the current value of the variant (provided that
// `absl::valueless_by_exception()` is false, and constructs a new value at
// the given index using an initializer list and the provided arguments.
//
// Example:
//
// absl::variant<std::vector<int>, int, int> v;
// v.emplace<0>({0, 1, 2});
template <std::size_t I, class U, class... Args,
typename std::enable_if<std::is_constructible<
absl::variant_alternative_t<I, variant>,
std::initializer_list<U>&, Args...>::value>::type* = nullptr>
absl::variant_alternative_t<I, variant>& emplace(std::initializer_list<U> il,
Args&&... args) {
return variant_internal::VariantCoreAccess::Replace<I>(
this, il, absl::forward<Args>(args)...);
}
// variant::valueless_by_exception()
//
// Returns false if and only if the variant currently holds a valid value.
constexpr bool valueless_by_exception() const noexcept {
return this->index_ == absl::variant_npos;
}
// variant::index()
//
// Returns the index value of the variant's currently selected alternative
// type.
constexpr std::size_t index() const noexcept { return this->index_; }
// variant::swap()
//
// Swaps the values of two variant objects.
//
// TODO(calabrese)
// `variant::swap()` and `swap()` rely on `std::is_(nothrow)_swappable()`
// which is introduced in C++17. So we assume `is_swappable()` is always
// true and `is_nothrow_swappable()` is same as `std::is_trivial()`.
void swap(variant& rhs) noexcept(
absl::conjunction<std::is_trivial<T0>, std::is_trivial<Tn>...>::value) {
return variant_internal::VisitIndices<sizeof...(Tn) + 1>::Run(
variant_internal::Swap<T0, Tn...>{this, &rhs}, rhs.index());
}
};
// We need a valid declaration of variant<> for SFINAE and overload resolution
// to work properly above, but we don't need a full declaration since this type
// will never be constructed. This declaration, though incomplete, suffices.
template <>
class variant<>;
//------------------------------------------------------------------------------
// Relational Operators
//------------------------------------------------------------------------------
//
// If neither operand is in the `variant::valueless_by_exception` state:
//
// * If the index of both variants is the same, the relational operator
// returns the result of the corresponding relational operator for the
// corresponding alternative type.
// * If the index of both variants is not the same, the relational operator
// returns the result of that operation applied to the value of the left
// operand's index and the value of the right operand's index.
// * If at least one operand is in the valueless_by_exception state:
// - A variant in the valueless_by_exception state is only considered equal
// to another variant in the valueless_by_exception state.
// - If exactly one operand is in the valueless_by_exception state, the
// variant in the valueless_by_exception state is less than the variant
// that is not in the valueless_by_exception state.
//
// Note: The value 1 is added to each index in the relational comparisons such
// that the index corresponding to the valueless_by_exception state wraps around
// to 0 (the lowest value for the index type), and the remaining indices stay in
// the same relative order.
// Equal-to operator
template <typename... Types>
constexpr variant_internal::RequireAllHaveEqualT<Types...> operator==(
const variant<Types...>& a, const variant<Types...>& b) {
return (a.index() == b.index()) &&
variant_internal::VisitIndices<sizeof...(Types)>::Run(
variant_internal::EqualsOp<Types...>{&a, &b}, a.index());
}
// Not equal operator
template <typename... Types>
constexpr variant_internal::RequireAllHaveNotEqualT<Types...> operator!=(
const variant<Types...>& a, const variant<Types...>& b) {
return (a.index() != b.index()) ||
variant_internal::VisitIndices<sizeof...(Types)>::Run(
variant_internal::NotEqualsOp<Types...>{&a, &b}, a.index());
}
// Less-than operator
template <typename... Types>
constexpr variant_internal::RequireAllHaveLessThanT<Types...> operator<(
const variant<Types...>& a, const variant<Types...>& b) {
return (a.index() != b.index())
? (a.index() + 1) < (b.index() + 1)
: variant_internal::VisitIndices<sizeof...(Types)>::Run(
variant_internal::LessThanOp<Types...>{&a, &b}, a.index());
}
// Greater-than operator
template <typename... Types>
constexpr variant_internal::RequireAllHaveGreaterThanT<Types...> operator>(
const variant<Types...>& a, const variant<Types...>& b) {
return (a.index() != b.index())
? (a.index() + 1) > (b.index() + 1)
: variant_internal::VisitIndices<sizeof...(Types)>::Run(
variant_internal::GreaterThanOp<Types...>{&a, &b},
a.index());
}
// Less-than or equal-to operator
template <typename... Types>
constexpr variant_internal::RequireAllHaveLessThanOrEqualT<Types...> operator<=(
const variant<Types...>& a, const variant<Types...>& b) {
return (a.index() != b.index())
? (a.index() + 1) < (b.index() + 1)
: variant_internal::VisitIndices<sizeof...(Types)>::Run(
variant_internal::LessThanOrEqualsOp<Types...>{&a, &b},
a.index());
}
// Greater-than or equal-to operator
template <typename... Types>
constexpr variant_internal::RequireAllHaveGreaterThanOrEqualT<Types...>
operator>=(const variant<Types...>& a, const variant<Types...>& b) {
return (a.index() != b.index())
? (a.index() + 1) > (b.index() + 1)
: variant_internal::VisitIndices<sizeof...(Types)>::Run(
variant_internal::GreaterThanOrEqualsOp<Types...>{&a, &b},
a.index());
}
} // namespace absl
namespace std {
// hash()
template <> // NOLINT
struct hash<absl::monostate> {
std::size_t operator()(absl::monostate) const { return 0; }
};
template <class... T> // NOLINT
struct hash<absl::variant<T...>>
: absl::variant_internal::VariantHashBase<absl::variant<T...>, void,
absl::remove_const_t<T>...> {};
} // namespace std
#endif // ABSL_HAVE_STD_VARIANT
namespace absl {
namespace variant_internal {
// Helper visitor for converting a variant<Ts...>` into another type (mostly
// variant) that can be constructed from any type.
template <typename To>
struct ConversionVisitor {
template <typename T>
To operator()(T&& v) const {
return To(std::forward<T>(v));
}
};
} // namespace variant_internal
// ConvertVariantTo()
//
// Helper functions to convert an `absl::variant` to a variant of another set of
// types, provided that the alternative type of the new variant type can be
// converted from any type in the source variant.
//
// Example:
//
// absl::variant<name1, name2, float> InternalReq(const Req&);
//
// // name1 and name2 are convertible to name
// absl::variant<name, float> ExternalReq(const Req& req) {
// return absl::ConvertVariantTo<absl::variant<name, float>>(
// InternalReq(req));
// }
template <typename To, typename Variant>
To ConvertVariantTo(Variant&& variant) {
return absl::visit(variant_internal::ConversionVisitor<To>{},
std::forward<Variant>(variant));
}
} // namespace absl
#endif // ABSL_TYPES_VARIANT_H_