0e7afdcbd2
-- 62058c9c008e23c787f35c1a5fe05851046a71f1 by Abseil Team <absl-team@google.com>: Fix some strange usage of INSTANTIATE_TEST_SUITE_P PiperOrigin-RevId: 264185105 -- 4400d84027d86415a2f9b81996ff22e7fd7aa30f by Derek Mauro <dmauro@google.com>: Disable testing std::string_view from nullptr on GCC >= GCC9. PiperOrigin-RevId: 264150587 -- 656d5a742ba48d025589709fad33ddae4b02c620 by Matt Calabrese <calabrese@google.com>: Fix `absl::any_cast` such that it properly works with qualifications. PiperOrigin-RevId: 263843429 -- 6ec89214a4ef2170bf069623a56ffd22863b748d by Abseil Team <absl-team@google.com>: Use macros to enable inline constexpr variables in compare.h when the compiler supports the feature. PiperOrigin-RevId: 263790677 -- a5171e0897195a0367fc08abce9504f813d027ff by Derek Mauro <dmauro@google.com>: Add the Apache License to files that are missing it. PiperOrigin-RevId: 263774164 -- 19e09a7ce8a0aac0a7d534e1799e4d73b63a1bb5 by Abseil Team <absl-team@google.com>: Update iter.position when moving up the tree in rebalance_after_delete. This field isn't read after the first iteration in rebalance_after_delete, and I think it's not a correctness issue, but it is read in try_merge_or_rebalance and potentially affects rebalancing decisions so it can affect performance. There's also an extremely unlikely potential for undefined behavior due to signed integer overflow since this field is only ever incremented in try_merge_or_rebalance (and position is an int). Basically though, I just don't think it makes sense to have this invalid iterator floating around here. PiperOrigin-RevId: 263770305 GitOrigin-RevId: 62058c9c008e23c787f35c1a5fe05851046a71f1 Change-Id: I1e2fb7cbfac7507dddedd181414ee35a5778f8f5
573 lines
20 KiB
C++
573 lines
20 KiB
C++
// Copyright 2017 The Abseil Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "absl/random/gaussian_distribution.h"
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <cstddef>
|
|
#include <ios>
|
|
#include <iterator>
|
|
#include <random>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "gmock/gmock.h"
|
|
#include "gtest/gtest.h"
|
|
#include "absl/base/internal/raw_logging.h"
|
|
#include "absl/base/macros.h"
|
|
#include "absl/random/internal/chi_square.h"
|
|
#include "absl/random/internal/distribution_test_util.h"
|
|
#include "absl/random/internal/sequence_urbg.h"
|
|
#include "absl/random/random.h"
|
|
#include "absl/strings/str_cat.h"
|
|
#include "absl/strings/str_format.h"
|
|
#include "absl/strings/str_replace.h"
|
|
#include "absl/strings/strip.h"
|
|
|
|
namespace {
|
|
|
|
using absl::random_internal::kChiSquared;
|
|
|
|
template <typename RealType>
|
|
class GaussianDistributionInterfaceTest : public ::testing::Test {};
|
|
|
|
using RealTypes = ::testing::Types<float, double, long double>;
|
|
TYPED_TEST_CASE(GaussianDistributionInterfaceTest, RealTypes);
|
|
|
|
TYPED_TEST(GaussianDistributionInterfaceTest, SerializeTest) {
|
|
using param_type =
|
|
typename absl::gaussian_distribution<TypeParam>::param_type;
|
|
|
|
const TypeParam kParams[] = {
|
|
// Cases around 1.
|
|
1, //
|
|
std::nextafter(TypeParam(1), TypeParam(0)), // 1 - epsilon
|
|
std::nextafter(TypeParam(1), TypeParam(2)), // 1 + epsilon
|
|
// Arbitrary values.
|
|
TypeParam(1e-8), TypeParam(1e-4), TypeParam(2), TypeParam(1e4),
|
|
TypeParam(1e8), TypeParam(1e20), TypeParam(2.5),
|
|
// Boundary cases.
|
|
std::numeric_limits<TypeParam>::infinity(),
|
|
std::numeric_limits<TypeParam>::max(),
|
|
std::numeric_limits<TypeParam>::epsilon(),
|
|
std::nextafter(std::numeric_limits<TypeParam>::min(),
|
|
TypeParam(1)), // min + epsilon
|
|
std::numeric_limits<TypeParam>::min(), // smallest normal
|
|
// There are some errors dealing with denorms on apple platforms.
|
|
std::numeric_limits<TypeParam>::denorm_min(), // smallest denorm
|
|
std::numeric_limits<TypeParam>::min() / 2,
|
|
std::nextafter(std::numeric_limits<TypeParam>::min(),
|
|
TypeParam(0)), // denorm_max
|
|
};
|
|
|
|
constexpr int kCount = 1000;
|
|
absl::InsecureBitGen gen;
|
|
|
|
// Use a loop to generate the combinations of {+/-x, +/-y}, and assign x, y to
|
|
// all values in kParams,
|
|
for (const auto mod : {0, 1, 2, 3}) {
|
|
for (const auto x : kParams) {
|
|
if (!std::isfinite(x)) continue;
|
|
for (const auto y : kParams) {
|
|
const TypeParam mean = (mod & 0x1) ? -x : x;
|
|
const TypeParam stddev = (mod & 0x2) ? -y : y;
|
|
const param_type param(mean, stddev);
|
|
|
|
absl::gaussian_distribution<TypeParam> before(mean, stddev);
|
|
EXPECT_EQ(before.mean(), param.mean());
|
|
EXPECT_EQ(before.stddev(), param.stddev());
|
|
|
|
{
|
|
absl::gaussian_distribution<TypeParam> via_param(param);
|
|
EXPECT_EQ(via_param, before);
|
|
EXPECT_EQ(via_param.param(), before.param());
|
|
}
|
|
|
|
// Smoke test.
|
|
auto sample_min = before.max();
|
|
auto sample_max = before.min();
|
|
for (int i = 0; i < kCount; i++) {
|
|
auto sample = before(gen);
|
|
if (sample > sample_max) sample_max = sample;
|
|
if (sample < sample_min) sample_min = sample;
|
|
EXPECT_GE(sample, before.min()) << before;
|
|
EXPECT_LE(sample, before.max()) << before;
|
|
}
|
|
if (!std::is_same<TypeParam, long double>::value) {
|
|
ABSL_INTERNAL_LOG(
|
|
INFO, absl::StrFormat("Range{%f, %f}: %f, %f", mean, stddev,
|
|
sample_min, sample_max));
|
|
}
|
|
|
|
std::stringstream ss;
|
|
ss << before;
|
|
|
|
if (!std::isfinite(mean) || !std::isfinite(stddev)) {
|
|
// Streams do not parse inf/nan.
|
|
continue;
|
|
}
|
|
|
|
// Validate stream serialization.
|
|
absl::gaussian_distribution<TypeParam> after(-0.53f, 2.3456f);
|
|
|
|
EXPECT_NE(before.mean(), after.mean());
|
|
EXPECT_NE(before.stddev(), after.stddev());
|
|
EXPECT_NE(before.param(), after.param());
|
|
EXPECT_NE(before, after);
|
|
|
|
ss >> after;
|
|
|
|
#if defined(__powerpc64__) || defined(__PPC64__) || defined(__powerpc__) || \
|
|
defined(__ppc__) || defined(__PPC__)
|
|
if (std::is_same<TypeParam, long double>::value) {
|
|
// Roundtripping floating point values requires sufficient precision
|
|
// to reconstruct the exact value. It turns out that long double
|
|
// has some errors doing this on ppc, particularly for values
|
|
// near {1.0 +/- epsilon}.
|
|
if (mean <= std::numeric_limits<double>::max() &&
|
|
mean >= std::numeric_limits<double>::lowest()) {
|
|
EXPECT_EQ(static_cast<double>(before.mean()),
|
|
static_cast<double>(after.mean()))
|
|
<< ss.str();
|
|
}
|
|
if (stddev <= std::numeric_limits<double>::max() &&
|
|
stddev >= std::numeric_limits<double>::lowest()) {
|
|
EXPECT_EQ(static_cast<double>(before.stddev()),
|
|
static_cast<double>(after.stddev()))
|
|
<< ss.str();
|
|
}
|
|
continue;
|
|
}
|
|
#endif
|
|
|
|
EXPECT_EQ(before.mean(), after.mean());
|
|
EXPECT_EQ(before.stddev(), after.stddev()) //
|
|
<< ss.str() << " " //
|
|
<< (ss.good() ? "good " : "") //
|
|
<< (ss.bad() ? "bad " : "") //
|
|
<< (ss.eof() ? "eof " : "") //
|
|
<< (ss.fail() ? "fail " : "");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm
|
|
|
|
class GaussianModel {
|
|
public:
|
|
GaussianModel(double mean, double stddev) : mean_(mean), stddev_(stddev) {}
|
|
|
|
double mean() const { return mean_; }
|
|
double variance() const { return stddev() * stddev(); }
|
|
double stddev() const { return stddev_; }
|
|
double skew() const { return 0; }
|
|
double kurtosis() const { return 3.0; }
|
|
|
|
// The inverse CDF, or PercentPoint function.
|
|
double InverseCDF(double p) {
|
|
ABSL_ASSERT(p >= 0.0);
|
|
ABSL_ASSERT(p < 1.0);
|
|
return mean() + stddev() * -absl::random_internal::InverseNormalSurvival(p);
|
|
}
|
|
|
|
private:
|
|
const double mean_;
|
|
const double stddev_;
|
|
};
|
|
|
|
struct Param {
|
|
double mean;
|
|
double stddev;
|
|
double p_fail; // Z-Test probability of failure.
|
|
int trials; // Z-Test trials.
|
|
};
|
|
|
|
// GaussianDistributionTests implements a z-test for the gaussian
|
|
// distribution.
|
|
class GaussianDistributionTests : public testing::TestWithParam<Param>,
|
|
public GaussianModel {
|
|
public:
|
|
GaussianDistributionTests()
|
|
: GaussianModel(GetParam().mean, GetParam().stddev) {}
|
|
|
|
// SingleZTest provides a basic z-squared test of the mean vs. expected
|
|
// mean for data generated by the poisson distribution.
|
|
template <typename D>
|
|
bool SingleZTest(const double p, const size_t samples);
|
|
|
|
// SingleChiSquaredTest provides a basic chi-squared test of the normal
|
|
// distribution.
|
|
template <typename D>
|
|
double SingleChiSquaredTest();
|
|
|
|
absl::InsecureBitGen rng_;
|
|
};
|
|
|
|
template <typename D>
|
|
bool GaussianDistributionTests::SingleZTest(const double p,
|
|
const size_t samples) {
|
|
D dis(mean(), stddev());
|
|
|
|
std::vector<double> data;
|
|
data.reserve(samples);
|
|
for (size_t i = 0; i < samples; i++) {
|
|
const double x = dis(rng_);
|
|
data.push_back(x);
|
|
}
|
|
|
|
const double max_err = absl::random_internal::MaxErrorTolerance(p);
|
|
const auto m = absl::random_internal::ComputeDistributionMoments(data);
|
|
const double z = absl::random_internal::ZScore(mean(), m);
|
|
const bool pass = absl::random_internal::Near("z", z, 0.0, max_err);
|
|
|
|
// NOTE: Informational statistical test:
|
|
//
|
|
// Compute the Jarque-Bera test statistic given the excess skewness
|
|
// and kurtosis. The statistic is drawn from a chi-square(2) distribution.
|
|
// https://en.wikipedia.org/wiki/Jarque%E2%80%93Bera_test
|
|
//
|
|
// The null-hypothesis (normal distribution) is rejected when
|
|
// (p = 0.05 => jb > 5.99)
|
|
// (p = 0.01 => jb > 9.21)
|
|
// NOTE: JB has a large type-I error rate, so it will reject the
|
|
// null-hypothesis even when it is true more often than the z-test.
|
|
//
|
|
const double jb =
|
|
static_cast<double>(m.n) / 6.0 *
|
|
(std::pow(m.skewness, 2.0) + std::pow(m.kurtosis - 3.0, 2.0) / 4.0);
|
|
|
|
if (!pass || jb > 9.21) {
|
|
ABSL_INTERNAL_LOG(
|
|
INFO, absl::StrFormat("p=%f max_err=%f\n"
|
|
" mean=%f vs. %f\n"
|
|
" stddev=%f vs. %f\n"
|
|
" skewness=%f vs. %f\n"
|
|
" kurtosis=%f vs. %f\n"
|
|
" z=%f vs. 0\n"
|
|
" jb=%f vs. 9.21",
|
|
p, max_err, m.mean, mean(), std::sqrt(m.variance),
|
|
stddev(), m.skewness, skew(), m.kurtosis,
|
|
kurtosis(), z, jb));
|
|
}
|
|
return pass;
|
|
}
|
|
|
|
template <typename D>
|
|
double GaussianDistributionTests::SingleChiSquaredTest() {
|
|
const size_t kSamples = 10000;
|
|
const int kBuckets = 50;
|
|
|
|
// The InverseCDF is the percent point function of the
|
|
// distribution, and can be used to assign buckets
|
|
// roughly uniformly.
|
|
std::vector<double> cutoffs;
|
|
const double kInc = 1.0 / static_cast<double>(kBuckets);
|
|
for (double p = kInc; p < 1.0; p += kInc) {
|
|
cutoffs.push_back(InverseCDF(p));
|
|
}
|
|
if (cutoffs.back() != std::numeric_limits<double>::infinity()) {
|
|
cutoffs.push_back(std::numeric_limits<double>::infinity());
|
|
}
|
|
|
|
D dis(mean(), stddev());
|
|
|
|
std::vector<int32_t> counts(cutoffs.size(), 0);
|
|
for (int j = 0; j < kSamples; j++) {
|
|
const double x = dis(rng_);
|
|
auto it = std::upper_bound(cutoffs.begin(), cutoffs.end(), x);
|
|
counts[std::distance(cutoffs.begin(), it)]++;
|
|
}
|
|
|
|
// Null-hypothesis is that the distribution is a gaussian distribution
|
|
// with the provided mean and stddev (not estimated from the data).
|
|
const int dof = static_cast<int>(counts.size()) - 1;
|
|
|
|
// Our threshold for logging is 1-in-50.
|
|
const double threshold = absl::random_internal::ChiSquareValue(dof, 0.98);
|
|
|
|
const double expected =
|
|
static_cast<double>(kSamples) / static_cast<double>(counts.size());
|
|
|
|
double chi_square = absl::random_internal::ChiSquareWithExpected(
|
|
std::begin(counts), std::end(counts), expected);
|
|
double p = absl::random_internal::ChiSquarePValue(chi_square, dof);
|
|
|
|
// Log if the chi_square value is above the threshold.
|
|
if (chi_square > threshold) {
|
|
for (int i = 0; i < cutoffs.size(); i++) {
|
|
ABSL_INTERNAL_LOG(
|
|
INFO, absl::StrFormat("%d : (%f) = %d", i, cutoffs[i], counts[i]));
|
|
}
|
|
|
|
ABSL_INTERNAL_LOG(
|
|
INFO, absl::StrCat("mean=", mean(), " stddev=", stddev(), "\n", //
|
|
" expected ", expected, "\n", //
|
|
kChiSquared, " ", chi_square, " (", p, ")\n", //
|
|
kChiSquared, " @ 0.98 = ", threshold));
|
|
}
|
|
return p;
|
|
}
|
|
|
|
TEST_P(GaussianDistributionTests, ZTest) {
|
|
// TODO(absl-team): Run these tests against std::normal_distribution<double>
|
|
// to validate outcomes are similar.
|
|
const size_t kSamples = 10000;
|
|
const auto& param = GetParam();
|
|
const int expected_failures =
|
|
std::max(1, static_cast<int>(std::ceil(param.trials * param.p_fail)));
|
|
const double p = absl::random_internal::RequiredSuccessProbability(
|
|
param.p_fail, param.trials);
|
|
|
|
int failures = 0;
|
|
for (int i = 0; i < param.trials; i++) {
|
|
failures +=
|
|
SingleZTest<absl::gaussian_distribution<double>>(p, kSamples) ? 0 : 1;
|
|
}
|
|
EXPECT_LE(failures, expected_failures);
|
|
}
|
|
|
|
TEST_P(GaussianDistributionTests, ChiSquaredTest) {
|
|
const int kTrials = 20;
|
|
int failures = 0;
|
|
|
|
for (int i = 0; i < kTrials; i++) {
|
|
double p_value =
|
|
SingleChiSquaredTest<absl::gaussian_distribution<double>>();
|
|
if (p_value < 0.0025) { // 1/400
|
|
failures++;
|
|
}
|
|
}
|
|
// There is a 0.05% chance of producing at least one failure, so raise the
|
|
// failure threshold high enough to allow for a flake rate of less than one in
|
|
// 10,000.
|
|
EXPECT_LE(failures, 4);
|
|
}
|
|
|
|
std::vector<Param> GenParams() {
|
|
return {
|
|
// Mean around 0.
|
|
Param{0.0, 1.0, 0.01, 100},
|
|
Param{0.0, 1e2, 0.01, 100},
|
|
Param{0.0, 1e4, 0.01, 100},
|
|
Param{0.0, 1e8, 0.01, 100},
|
|
Param{0.0, 1e16, 0.01, 100},
|
|
Param{0.0, 1e-3, 0.01, 100},
|
|
Param{0.0, 1e-5, 0.01, 100},
|
|
Param{0.0, 1e-9, 0.01, 100},
|
|
Param{0.0, 1e-17, 0.01, 100},
|
|
|
|
// Mean around 1.
|
|
Param{1.0, 1.0, 0.01, 100},
|
|
Param{1.0, 1e2, 0.01, 100},
|
|
Param{1.0, 1e-2, 0.01, 100},
|
|
|
|
// Mean around 100 / -100
|
|
Param{1e2, 1.0, 0.01, 100},
|
|
Param{-1e2, 1.0, 0.01, 100},
|
|
Param{1e2, 1e6, 0.01, 100},
|
|
Param{-1e2, 1e6, 0.01, 100},
|
|
|
|
// More extreme
|
|
Param{1e4, 1e4, 0.01, 100},
|
|
Param{1e8, 1e4, 0.01, 100},
|
|
Param{1e12, 1e4, 0.01, 100},
|
|
};
|
|
}
|
|
|
|
std::string ParamName(const ::testing::TestParamInfo<Param>& info) {
|
|
const auto& p = info.param;
|
|
std::string name = absl::StrCat("mean_", absl::SixDigits(p.mean), "__stddev_",
|
|
absl::SixDigits(p.stddev));
|
|
return absl::StrReplaceAll(name, {{"+", "_"}, {"-", "_"}, {".", "_"}});
|
|
}
|
|
|
|
INSTANTIATE_TEST_SUITE_P(All, GaussianDistributionTests,
|
|
::testing::ValuesIn(GenParams()), ParamName);
|
|
|
|
// NOTE: absl::gaussian_distribution is not guaranteed to be stable.
|
|
TEST(GaussianDistributionTest, StabilityTest) {
|
|
// absl::gaussian_distribution stability relies on the underlying zignor
|
|
// data, absl::random_interna::RandU64ToDouble, std::exp, std::log, and
|
|
// std::abs.
|
|
absl::random_internal::sequence_urbg urbg(
|
|
{0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
|
|
0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
|
|
0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
|
|
0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
|
|
|
|
std::vector<int> output(11);
|
|
|
|
{
|
|
absl::gaussian_distribution<double> dist;
|
|
std::generate(std::begin(output), std::end(output),
|
|
[&] { return static_cast<int>(10000000.0 * dist(urbg)); });
|
|
|
|
EXPECT_EQ(13, urbg.invocations());
|
|
EXPECT_THAT(output, //
|
|
testing::ElementsAre(1494, 25518841, 9991550, 1351856,
|
|
-20373238, 3456682, 333530, -6804981,
|
|
-15279580, -16459654, 1494));
|
|
}
|
|
|
|
urbg.reset();
|
|
{
|
|
absl::gaussian_distribution<float> dist;
|
|
std::generate(std::begin(output), std::end(output),
|
|
[&] { return static_cast<int>(1000000.0f * dist(urbg)); });
|
|
|
|
EXPECT_EQ(13, urbg.invocations());
|
|
EXPECT_THAT(
|
|
output, //
|
|
testing::ElementsAre(149, 2551884, 999155, 135185, -2037323, 345668,
|
|
33353, -680498, -1527958, -1645965, 149));
|
|
}
|
|
}
|
|
|
|
// This is an implementation-specific test. If any part of the implementation
|
|
// changes, then it is likely that this test will change as well.
|
|
// Also, if dependencies of the distribution change, such as RandU64ToDouble,
|
|
// then this is also likely to change.
|
|
TEST(GaussianDistributionTest, AlgorithmBounds) {
|
|
absl::gaussian_distribution<double> dist;
|
|
|
|
// In ~95% of cases, a single value is used to generate the output.
|
|
// for all inputs where |x| < 0.750461021389 this should be the case.
|
|
//
|
|
// The exact constraints are based on the ziggurat tables, and any
|
|
// changes to the ziggurat tables may require adjusting these bounds.
|
|
//
|
|
// for i in range(0, len(X)-1):
|
|
// print i, X[i+1]/X[i], (X[i+1]/X[i] > 0.984375)
|
|
//
|
|
// 0.125 <= |values| <= 0.75
|
|
const uint64_t kValues[] = {
|
|
0x1000000000000100ull, 0x2000000000000100ull, 0x3000000000000100ull,
|
|
0x4000000000000100ull, 0x5000000000000100ull, 0x6000000000000100ull,
|
|
// negative values
|
|
0x9000000000000100ull, 0xa000000000000100ull, 0xb000000000000100ull,
|
|
0xc000000000000100ull, 0xd000000000000100ull, 0xe000000000000100ull};
|
|
|
|
// 0.875 <= |values| <= 0.984375
|
|
const uint64_t kExtraValues[] = {
|
|
0x7000000000000100ull, 0x7800000000000100ull, //
|
|
0x7c00000000000100ull, 0x7e00000000000100ull, //
|
|
// negative values
|
|
0xf000000000000100ull, 0xf800000000000100ull, //
|
|
0xfc00000000000100ull, 0xfe00000000000100ull};
|
|
|
|
auto make_box = [](uint64_t v, uint64_t box) {
|
|
return (v & 0xffffffffffffff80ull) | box;
|
|
};
|
|
|
|
// The box is the lower 7 bits of the value. When the box == 0, then
|
|
// the algorithm uses an escape hatch to select the result for large
|
|
// outputs.
|
|
for (uint64_t box = 0; box < 0x7f; box++) {
|
|
for (const uint64_t v : kValues) {
|
|
// Extra values are added to the sequence to attempt to avoid
|
|
// infinite loops from rejection sampling on bugs/errors.
|
|
absl::random_internal::sequence_urbg urbg(
|
|
{make_box(v, box), 0x0003eb76f6f7f755ull, 0x5FCEA50FDB2F953Bull});
|
|
|
|
auto a = dist(urbg);
|
|
EXPECT_EQ(1, urbg.invocations()) << box << " " << std::hex << v;
|
|
if (v & 0x8000000000000000ull) {
|
|
EXPECT_LT(a, 0.0) << box << " " << std::hex << v;
|
|
} else {
|
|
EXPECT_GT(a, 0.0) << box << " " << std::hex << v;
|
|
}
|
|
}
|
|
if (box > 10 && box < 100) {
|
|
// The center boxes use the fast algorithm for more
|
|
// than 98.4375% of values.
|
|
for (const uint64_t v : kExtraValues) {
|
|
absl::random_internal::sequence_urbg urbg(
|
|
{make_box(v, box), 0x0003eb76f6f7f755ull, 0x5FCEA50FDB2F953Bull});
|
|
|
|
auto a = dist(urbg);
|
|
EXPECT_EQ(1, urbg.invocations()) << box << " " << std::hex << v;
|
|
if (v & 0x8000000000000000ull) {
|
|
EXPECT_LT(a, 0.0) << box << " " << std::hex << v;
|
|
} else {
|
|
EXPECT_GT(a, 0.0) << box << " " << std::hex << v;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// When the box == 0, the fallback algorithm uses a ratio of uniforms,
|
|
// which consumes 2 additional values from the urbg.
|
|
// Fallback also requires that the initial value be > 0.9271586026096681.
|
|
auto make_fallback = [](uint64_t v) { return (v & 0xffffffffffffff80ull); };
|
|
|
|
double tail[2];
|
|
{
|
|
// 0.9375
|
|
absl::random_internal::sequence_urbg urbg(
|
|
{make_fallback(0x7800000000000000ull), 0x13CCA830EB61BD96ull,
|
|
0x00000076f6f7f755ull});
|
|
tail[0] = dist(urbg);
|
|
EXPECT_EQ(3, urbg.invocations());
|
|
EXPECT_GT(tail[0], 0);
|
|
}
|
|
{
|
|
// -0.9375
|
|
absl::random_internal::sequence_urbg urbg(
|
|
{make_fallback(0xf800000000000000ull), 0x13CCA830EB61BD96ull,
|
|
0x00000076f6f7f755ull});
|
|
tail[1] = dist(urbg);
|
|
EXPECT_EQ(3, urbg.invocations());
|
|
EXPECT_LT(tail[1], 0);
|
|
}
|
|
EXPECT_EQ(tail[0], -tail[1]);
|
|
EXPECT_EQ(418610, static_cast<int64_t>(tail[0] * 100000.0));
|
|
|
|
// When the box != 0, the fallback algorithm computes a wedge function.
|
|
// Depending on the box, the threshold for varies as high as
|
|
// 0.991522480228.
|
|
{
|
|
// 0.9921875, 0.875
|
|
absl::random_internal::sequence_urbg urbg(
|
|
{make_box(0x7f00000000000000ull, 120), 0xe000000000000001ull,
|
|
0x13CCA830EB61BD96ull});
|
|
tail[0] = dist(urbg);
|
|
EXPECT_EQ(2, urbg.invocations());
|
|
EXPECT_GT(tail[0], 0);
|
|
}
|
|
{
|
|
// -0.9921875, 0.875
|
|
absl::random_internal::sequence_urbg urbg(
|
|
{make_box(0xff00000000000000ull, 120), 0xe000000000000001ull,
|
|
0x13CCA830EB61BD96ull});
|
|
tail[1] = dist(urbg);
|
|
EXPECT_EQ(2, urbg.invocations());
|
|
EXPECT_LT(tail[1], 0);
|
|
}
|
|
EXPECT_EQ(tail[0], -tail[1]);
|
|
EXPECT_EQ(61948, static_cast<int64_t>(tail[0] * 100000.0));
|
|
|
|
// Fallback rejected, try again.
|
|
{
|
|
// -0.9921875, 0.0625
|
|
absl::random_internal::sequence_urbg urbg(
|
|
{make_box(0xff00000000000000ull, 120), 0x1000000000000001,
|
|
make_box(0x1000000000000100ull, 50), 0x13CCA830EB61BD96ull});
|
|
dist(urbg);
|
|
EXPECT_EQ(3, urbg.invocations());
|
|
}
|
|
}
|
|
|
|
} // namespace
|