aae8143cf9
-- f28b989d5161230c6561e923b458c797a96bcf90 by Greg Falcon <gfalcon@google.com>: Import of CCTZ from GitHub. PiperOrigin-RevId: 263586488 -- 8259484025b7de45358719fc6182a48cac8044c6 by Andy Soffer <asoffer@google.com>: Internal changes and combine namespaces into a single namespace. PiperOrigin-RevId: 263560576 -- 8d19f41661984a600d1f8bbfeb8a30fcb4dee7d6 by Mark Barolak <mbar@google.com>: Inside of absl::string_view::copy, use absl::string_view::traits_type::copy instead of std:copy to do the actual work. This both follows the C++ standard more closely and avoids avoid MSVC unchecked iterator warnings. PiperOrigin-RevId: 263430502 -- c06bf74236e12c7c1c97bfcbbc9d29bd65d6b36c by Andy Soffer <asoffer@google.com>: Remove force-inlining attributes. Benchmarking results indicate that they are creating meaningful performance differences. PiperOrigin-RevId: 263364896 -- ec4fa6eac958a9521456201b138784f55d3b17bc by Abseil Team <absl-team@google.com>: Make BM_Fill benchmarks more representative. PiperOrigin-RevId: 263349482 -- 4ae280b4eb31d9cb58e847eb670473340f7778c1 by Derek Mauro <dmauro@google.com>: Fix new -Wdeprecated-copy warning in gcc9 PiperOrigin-RevId: 263348118 -- d238a92f452a5c35686f9c71596fdd1fe62090a2 by Matt Calabrese <calabrese@google.com>: The std::is_trivially_xxx fail on versions of GCC up until 7.4 due to faulty underlying intrinsics, but our emulation succeeds. Update our traits to not compare against the standard library implementation in these versions. PiperOrigin-RevId: 263209457 GitOrigin-RevId: f28b989d5161230c6561e923b458c797a96bcf90 Change-Id: I4c41db5928ba71e243aeace4420e06d1a2df0b5b
650 lines
24 KiB
C++
650 lines
24 KiB
C++
// Copyright 2017 The Abseil Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
// HERMETIC NOTE: The randen_hwaes target must not introduce duplicate
|
|
// symbols from arbitrary system and other headers, since it may be built
|
|
// with different flags from other targets, using different levels of
|
|
// optimization, potentially introducing ODR violations.
|
|
|
|
#include "absl/random/internal/randen_hwaes.h"
|
|
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
|
|
#include "absl/base/attributes.h"
|
|
#include "absl/random/internal/platform.h"
|
|
|
|
// ABSL_RANDEN_HWAES_IMPL indicates whether this file will contain
|
|
// a hardware accelerated implementation of randen, or whether it
|
|
// will contain stubs that exit the process.
|
|
#if defined(ABSL_ARCH_X86_64) || defined(ABSL_ARCH_X86_32)
|
|
// The platform.h directives are sufficient to indicate whether
|
|
// we should build accelerated implementations for x86.
|
|
#if (ABSL_HAVE_ACCELERATED_AES || ABSL_RANDOM_INTERNAL_AES_DISPATCH)
|
|
#define ABSL_RANDEN_HWAES_IMPL 1
|
|
#endif
|
|
#elif defined(ABSL_ARCH_PPC)
|
|
// The platform.h directives are sufficient to indicate whether
|
|
// we should build accelerated implementations for PPC.
|
|
//
|
|
// NOTE: This has mostly been tested on 64-bit Power variants,
|
|
// and not embedded cpus such as powerpc32-8540
|
|
#if ABSL_HAVE_ACCELERATED_AES
|
|
#define ABSL_RANDEN_HWAES_IMPL 1
|
|
#endif
|
|
#elif defined(ABSL_ARCH_ARM) || defined(ABSL_ARCH_AARCH64)
|
|
// ARM is somewhat more complicated. We might support crypto natively...
|
|
#if ABSL_HAVE_ACCELERATED_AES || \
|
|
(defined(__ARM_NEON) && defined(__ARM_FEATURE_CRYPTO))
|
|
#define ABSL_RANDEN_HWAES_IMPL 1
|
|
|
|
#elif ABSL_RANDOM_INTERNAL_AES_DISPATCH && !defined(__APPLE__) && \
|
|
(defined(__GNUC__) && __GNUC__ > 4 || __GNUC__ == 4 && __GNUC_MINOR__ > 9)
|
|
// ...or, on GCC, we can use an ASM directive to
|
|
// instruct the assember to allow crypto instructions.
|
|
#define ABSL_RANDEN_HWAES_IMPL 1
|
|
#define ABSL_RANDEN_HWAES_IMPL_CRYPTO_DIRECTIVE 1
|
|
#endif
|
|
#else
|
|
// HWAES is unsupported by these architectures / platforms:
|
|
// __myriad2__
|
|
// __mips__
|
|
//
|
|
// Other architectures / platforms are unknown.
|
|
//
|
|
// See the Abseil documentation on supported macros at:
|
|
// https://abseil.io/docs/cpp/platforms/macros
|
|
#endif
|
|
|
|
#if !defined(ABSL_RANDEN_HWAES_IMPL)
|
|
// No accelerated implementation is supported.
|
|
// The RandenHwAes functions are stubs that print an error and exit.
|
|
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
|
|
namespace absl {
|
|
namespace random_internal {
|
|
|
|
// No accelerated implementation.
|
|
bool HasRandenHwAesImplementation() { return false; }
|
|
|
|
// NOLINTNEXTLINE
|
|
const void* RandenHwAes::GetKeys() {
|
|
// Attempted to dispatch to an unsupported dispatch target.
|
|
const int d = ABSL_RANDOM_INTERNAL_AES_DISPATCH;
|
|
fprintf(stderr, "AES Hardware detection failed (%d).\n", d);
|
|
exit(1);
|
|
return nullptr;
|
|
}
|
|
|
|
// NOLINTNEXTLINE
|
|
void RandenHwAes::Absorb(const void*, void*) {
|
|
// Attempted to dispatch to an unsupported dispatch target.
|
|
const int d = ABSL_RANDOM_INTERNAL_AES_DISPATCH;
|
|
fprintf(stderr, "AES Hardware detection failed (%d).\n", d);
|
|
exit(1);
|
|
}
|
|
|
|
// NOLINTNEXTLINE
|
|
void RandenHwAes::Generate(const void*, void*) {
|
|
// Attempted to dispatch to an unsupported dispatch target.
|
|
const int d = ABSL_RANDOM_INTERNAL_AES_DISPATCH;
|
|
fprintf(stderr, "AES Hardware detection failed (%d).\n", d);
|
|
exit(1);
|
|
}
|
|
|
|
} // namespace random_internal
|
|
} // namespace absl
|
|
|
|
#else // defined(ABSL_RANDEN_HWAES_IMPL)
|
|
//
|
|
// Accelerated implementations are supported.
|
|
// We need the per-architecture includes and defines.
|
|
//
|
|
|
|
#include "absl/random/internal/randen_traits.h"
|
|
|
|
// TARGET_CRYPTO defines a crypto attribute for each architecture.
|
|
//
|
|
// NOTE: Evaluate whether we should eliminate ABSL_TARGET_CRYPTO.
|
|
#if (defined(__clang__) || defined(__GNUC__))
|
|
#if defined(ABSL_ARCH_X86_64) || defined(ABSL_ARCH_X86_32)
|
|
#define ABSL_TARGET_CRYPTO __attribute__((target("aes")))
|
|
#elif defined(ABSL_ARCH_PPC)
|
|
#define ABSL_TARGET_CRYPTO __attribute__((target("crypto")))
|
|
#else
|
|
#define ABSL_TARGET_CRYPTO
|
|
#endif
|
|
#else
|
|
#define ABSL_TARGET_CRYPTO
|
|
#endif
|
|
|
|
#if defined(ABSL_ARCH_PPC)
|
|
// NOTE: Keep in mind that PPC can operate in little-endian or big-endian mode,
|
|
// however the PPC altivec vector registers (and thus the AES instructions)
|
|
// always operate in big-endian mode.
|
|
|
|
#include <altivec.h>
|
|
// <altivec.h> #defines vector __vector; in C++, this is bad form.
|
|
#undef vector
|
|
|
|
// Rely on the PowerPC AltiVec vector operations for accelerated AES
|
|
// instructions. GCC support of the PPC vector types is described in:
|
|
// https://gcc.gnu.org/onlinedocs/gcc-4.9.0/gcc/PowerPC-AltiVec_002fVSX-Built-in-Functions.html
|
|
//
|
|
// Already provides operator^=.
|
|
using Vector128 = __vector unsigned long long; // NOLINT(runtime/int)
|
|
|
|
namespace {
|
|
|
|
inline ABSL_TARGET_CRYPTO Vector128 ReverseBytes(const Vector128& v) {
|
|
// Reverses the bytes of the vector.
|
|
const __vector unsigned char perm = {15, 14, 13, 12, 11, 10, 9, 8,
|
|
7, 6, 5, 4, 3, 2, 1, 0};
|
|
return vec_perm(v, v, perm);
|
|
}
|
|
|
|
// WARNING: these load/store in native byte order. It is OK to load and then
|
|
// store an unchanged vector, but interpreting the bits as a number or input
|
|
// to AES will have undefined results.
|
|
inline ABSL_TARGET_CRYPTO Vector128
|
|
Vector128Load(const void* ABSL_RANDOM_INTERNAL_RESTRICT from) {
|
|
return vec_vsx_ld(0, reinterpret_cast<const Vector128*>(from));
|
|
}
|
|
|
|
inline ABSL_TARGET_CRYPTO void Vector128Store(
|
|
const Vector128& v, void* ABSL_RANDOM_INTERNAL_RESTRICT to) {
|
|
vec_vsx_st(v, 0, reinterpret_cast<Vector128*>(to));
|
|
}
|
|
|
|
// One round of AES. "round_key" is a public constant for breaking the
|
|
// symmetry of AES (ensures previously equal columns differ afterwards).
|
|
inline ABSL_TARGET_CRYPTO Vector128 AesRound(const Vector128& state,
|
|
const Vector128& round_key) {
|
|
return Vector128(__builtin_crypto_vcipher(state, round_key));
|
|
}
|
|
|
|
// Enables native loads in the round loop by pre-swapping.
|
|
inline ABSL_TARGET_CRYPTO void SwapEndian(
|
|
uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT state) {
|
|
using absl::random_internal::RandenTraits;
|
|
constexpr size_t kLanes = 2;
|
|
constexpr size_t kFeistelBlocks = RandenTraits::kFeistelBlocks;
|
|
|
|
for (uint32_t branch = 0; branch < kFeistelBlocks; ++branch) {
|
|
const Vector128 v = ReverseBytes(Vector128Load(state + kLanes * branch));
|
|
Vector128Store(v, state + kLanes * branch);
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
#elif defined(ABSL_ARCH_ARM) || defined(ABSL_ARCH_AARCH64)
|
|
|
|
// This asm directive will cause the file to be compiled with crypto extensions
|
|
// whether or not the cpu-architecture supports it.
|
|
#if ABSL_RANDEN_HWAES_IMPL_CRYPTO_DIRECTIVE
|
|
asm(".arch_extension crypto\n");
|
|
|
|
// Override missing defines.
|
|
#if !defined(__ARM_NEON)
|
|
#define __ARM_NEON 1
|
|
#endif
|
|
|
|
#if !defined(__ARM_FEATURE_CRYPTO)
|
|
#define __ARM_FEATURE_CRYPTO 1
|
|
#endif
|
|
|
|
#endif
|
|
|
|
// Rely on the ARM NEON+Crypto advanced simd types, defined in <arm_neon.h>.
|
|
// uint8x16_t is the user alias for underlying __simd128_uint8_t type.
|
|
// http://infocenter.arm.com/help/topic/com.arm.doc.ihi0073a/IHI0073A_arm_neon_intrinsics_ref.pdf
|
|
//
|
|
// <arm_neon> defines the following
|
|
//
|
|
// typedef __attribute__((neon_vector_type(16))) uint8_t uint8x16_t;
|
|
// typedef __attribute__((neon_vector_type(16))) int8_t int8x16_t;
|
|
// typedef __attribute__((neon_polyvector_type(16))) int8_t poly8x16_t;
|
|
//
|
|
// vld1q_v
|
|
// vst1q_v
|
|
// vaeseq_v
|
|
// vaesmcq_v
|
|
#include <arm_neon.h>
|
|
|
|
// Already provides operator^=.
|
|
using Vector128 = uint8x16_t;
|
|
|
|
namespace {
|
|
|
|
inline ABSL_TARGET_CRYPTO Vector128
|
|
Vector128Load(const void* ABSL_RANDOM_INTERNAL_RESTRICT from) {
|
|
return vld1q_u8(reinterpret_cast<const uint8_t*>(from));
|
|
}
|
|
|
|
inline ABSL_TARGET_CRYPTO void Vector128Store(
|
|
const Vector128& v, void* ABSL_RANDOM_INTERNAL_RESTRICT to) {
|
|
vst1q_u8(reinterpret_cast<uint8_t*>(to), v);
|
|
}
|
|
|
|
// One round of AES. "round_key" is a public constant for breaking the
|
|
// symmetry of AES (ensures previously equal columns differ afterwards).
|
|
inline ABSL_TARGET_CRYPTO Vector128 AesRound(const Vector128& state,
|
|
const Vector128& round_key) {
|
|
// It is important to always use the full round function - omitting the
|
|
// final MixColumns reduces security [https://eprint.iacr.org/2010/041.pdf]
|
|
// and does not help because we never decrypt.
|
|
//
|
|
// Note that ARM divides AES instructions differently than x86 / PPC,
|
|
// And we need to skip the first AddRoundKey step and add an extra
|
|
// AddRoundKey step to the end. Lucky for us this is just XOR.
|
|
return vaesmcq_u8(vaeseq_u8(state, uint8x16_t{})) ^ round_key;
|
|
}
|
|
|
|
inline ABSL_TARGET_CRYPTO void SwapEndian(
|
|
uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT) {}
|
|
|
|
} // namespace
|
|
|
|
#elif defined(ABSL_ARCH_X86_64) || defined(ABSL_ARCH_X86_32)
|
|
// On x86 we rely on the aesni instructions
|
|
#include <wmmintrin.h>
|
|
|
|
namespace {
|
|
|
|
// Vector128 class is only wrapper for __m128i, benchmark indicates that it's
|
|
// faster than using __m128i directly.
|
|
class Vector128 {
|
|
public:
|
|
// Convert from/to intrinsics.
|
|
inline explicit Vector128(const __m128i& Vector128) : data_(Vector128) {}
|
|
|
|
inline __m128i data() const { return data_; }
|
|
|
|
inline Vector128& operator^=(const Vector128& other) {
|
|
data_ = _mm_xor_si128(data_, other.data());
|
|
return *this;
|
|
}
|
|
|
|
private:
|
|
__m128i data_;
|
|
};
|
|
|
|
inline ABSL_TARGET_CRYPTO Vector128
|
|
Vector128Load(const void* ABSL_RANDOM_INTERNAL_RESTRICT from) {
|
|
return Vector128(_mm_load_si128(reinterpret_cast<const __m128i*>(from)));
|
|
}
|
|
|
|
inline ABSL_TARGET_CRYPTO void Vector128Store(
|
|
const Vector128& v, void* ABSL_RANDOM_INTERNAL_RESTRICT to) {
|
|
_mm_store_si128(reinterpret_cast<__m128i * ABSL_RANDOM_INTERNAL_RESTRICT>(to),
|
|
v.data());
|
|
}
|
|
|
|
// One round of AES. "round_key" is a public constant for breaking the
|
|
// symmetry of AES (ensures previously equal columns differ afterwards).
|
|
inline ABSL_TARGET_CRYPTO Vector128 AesRound(const Vector128& state,
|
|
const Vector128& round_key) {
|
|
// It is important to always use the full round function - omitting the
|
|
// final MixColumns reduces security [https://eprint.iacr.org/2010/041.pdf]
|
|
// and does not help because we never decrypt.
|
|
return Vector128(_mm_aesenc_si128(state.data(), round_key.data()));
|
|
}
|
|
|
|
inline ABSL_TARGET_CRYPTO void SwapEndian(
|
|
uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT) {}
|
|
|
|
} // namespace
|
|
|
|
#endif
|
|
|
|
namespace {
|
|
|
|
// u64x2 is a 128-bit, (2 x uint64_t lanes) struct used to store
|
|
// the randen_keys.
|
|
struct alignas(16) u64x2 {
|
|
constexpr u64x2(uint64_t hi, uint64_t lo)
|
|
#if defined(ABSL_ARCH_PPC)
|
|
// This has been tested with PPC running in little-endian mode;
|
|
// We byte-swap the u64x2 structure from little-endian to big-endian
|
|
// because altivec always runs in big-endian mode.
|
|
: v{__builtin_bswap64(hi), __builtin_bswap64(lo)} {
|
|
#else
|
|
: v{lo, hi} {
|
|
#endif
|
|
}
|
|
|
|
constexpr bool operator==(const u64x2& other) const {
|
|
return v[0] == other.v[0] && v[1] == other.v[1];
|
|
}
|
|
|
|
constexpr bool operator!=(const u64x2& other) const {
|
|
return !(*this == other);
|
|
}
|
|
|
|
uint64_t v[2];
|
|
}; // namespace
|
|
|
|
#ifdef __clang__
|
|
#pragma clang diagnostic push
|
|
#pragma clang diagnostic ignored "-Wunknown-pragmas"
|
|
#endif
|
|
|
|
// At this point, all of the platform-specific features have been defined /
|
|
// implemented.
|
|
//
|
|
// REQUIRES: using u64x2 = ...
|
|
// REQUIRES: using Vector128 = ...
|
|
// REQUIRES: Vector128 Vector128Load(void*) {...}
|
|
// REQUIRES: void Vector128Store(Vector128, void*) {...}
|
|
// REQUIRES: Vector128 AesRound(Vector128, Vector128) {...}
|
|
// REQUIRES: void SwapEndian(uint64_t*) {...}
|
|
//
|
|
// PROVIDES: absl::random_internal::RandenHwAes::Absorb
|
|
// PROVIDES: absl::random_internal::RandenHwAes::Generate
|
|
|
|
// RANDen = RANDom generator or beetroots in Swiss German.
|
|
// 'Strong' (well-distributed, unpredictable, backtracking-resistant) random
|
|
// generator, faster in some benchmarks than std::mt19937_64 and pcg64_c32.
|
|
//
|
|
// High-level summary:
|
|
// 1) Reverie (see "A Robust and Sponge-Like PRNG with Improved Efficiency") is
|
|
// a sponge-like random generator that requires a cryptographic permutation.
|
|
// It improves upon "Provably Robust Sponge-Based PRNGs and KDFs" by
|
|
// achieving backtracking resistance with only one Permute() per buffer.
|
|
//
|
|
// 2) "Simpira v2: A Family of Efficient Permutations Using the AES Round
|
|
// Function" constructs up to 1024-bit permutations using an improved
|
|
// Generalized Feistel network with 2-round AES-128 functions. This Feistel
|
|
// block shuffle achieves diffusion faster and is less vulnerable to
|
|
// sliced-biclique attacks than the Type-2 cyclic shuffle.
|
|
//
|
|
// 3) "Improving the Generalized Feistel" and "New criterion for diffusion
|
|
// property" extends the same kind of improved Feistel block shuffle to 16
|
|
// branches, which enables a 2048-bit permutation.
|
|
//
|
|
// We combine these three ideas and also change Simpira's subround keys from
|
|
// structured/low-entropy counters to digits of Pi.
|
|
|
|
// Randen constants.
|
|
using absl::random_internal::RandenTraits;
|
|
constexpr size_t kStateBytes = RandenTraits::kStateBytes;
|
|
constexpr size_t kCapacityBytes = RandenTraits::kCapacityBytes;
|
|
constexpr size_t kFeistelBlocks = RandenTraits::kFeistelBlocks;
|
|
constexpr size_t kFeistelRounds = RandenTraits::kFeistelRounds;
|
|
constexpr size_t kFeistelFunctions = RandenTraits::kFeistelFunctions;
|
|
|
|
// Independent keys (272 = 2.1 KiB) for the first AES subround of each function.
|
|
constexpr size_t kKeys = kFeistelRounds * kFeistelFunctions;
|
|
|
|
// INCLUDE keys.
|
|
#include "absl/random/internal/randen-keys.inc"
|
|
|
|
static_assert(kKeys == kRoundKeys, "kKeys and kRoundKeys must be equal");
|
|
static_assert(round_keys[kKeys - 1] != u64x2(0, 0),
|
|
"Too few round_keys initializers");
|
|
|
|
// Number of uint64_t lanes per 128-bit vector;
|
|
constexpr size_t kLanes = 2;
|
|
|
|
// Block shuffles applies a shuffle to the entire state between AES rounds.
|
|
// Improved odd-even shuffle from "New criterion for diffusion property".
|
|
inline ABSL_TARGET_CRYPTO void BlockShuffle(
|
|
uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT state) {
|
|
static_assert(kFeistelBlocks == 16, "Expecting 16 FeistelBlocks.");
|
|
|
|
constexpr size_t shuffle[kFeistelBlocks] = {7, 2, 13, 4, 11, 8, 3, 6,
|
|
15, 0, 9, 10, 1, 14, 5, 12};
|
|
|
|
// The fully unrolled loop without the memcpy improves the speed by about
|
|
// 30% over the equivalent loop.
|
|
const Vector128 v0 = Vector128Load(state + kLanes * shuffle[0]);
|
|
const Vector128 v1 = Vector128Load(state + kLanes * shuffle[1]);
|
|
const Vector128 v2 = Vector128Load(state + kLanes * shuffle[2]);
|
|
const Vector128 v3 = Vector128Load(state + kLanes * shuffle[3]);
|
|
const Vector128 v4 = Vector128Load(state + kLanes * shuffle[4]);
|
|
const Vector128 v5 = Vector128Load(state + kLanes * shuffle[5]);
|
|
const Vector128 v6 = Vector128Load(state + kLanes * shuffle[6]);
|
|
const Vector128 v7 = Vector128Load(state + kLanes * shuffle[7]);
|
|
const Vector128 w0 = Vector128Load(state + kLanes * shuffle[8]);
|
|
const Vector128 w1 = Vector128Load(state + kLanes * shuffle[9]);
|
|
const Vector128 w2 = Vector128Load(state + kLanes * shuffle[10]);
|
|
const Vector128 w3 = Vector128Load(state + kLanes * shuffle[11]);
|
|
const Vector128 w4 = Vector128Load(state + kLanes * shuffle[12]);
|
|
const Vector128 w5 = Vector128Load(state + kLanes * shuffle[13]);
|
|
const Vector128 w6 = Vector128Load(state + kLanes * shuffle[14]);
|
|
const Vector128 w7 = Vector128Load(state + kLanes * shuffle[15]);
|
|
|
|
Vector128Store(v0, state + kLanes * 0);
|
|
Vector128Store(v1, state + kLanes * 1);
|
|
Vector128Store(v2, state + kLanes * 2);
|
|
Vector128Store(v3, state + kLanes * 3);
|
|
Vector128Store(v4, state + kLanes * 4);
|
|
Vector128Store(v5, state + kLanes * 5);
|
|
Vector128Store(v6, state + kLanes * 6);
|
|
Vector128Store(v7, state + kLanes * 7);
|
|
Vector128Store(w0, state + kLanes * 8);
|
|
Vector128Store(w1, state + kLanes * 9);
|
|
Vector128Store(w2, state + kLanes * 10);
|
|
Vector128Store(w3, state + kLanes * 11);
|
|
Vector128Store(w4, state + kLanes * 12);
|
|
Vector128Store(w5, state + kLanes * 13);
|
|
Vector128Store(w6, state + kLanes * 14);
|
|
Vector128Store(w7, state + kLanes * 15);
|
|
}
|
|
|
|
// Feistel round function using two AES subrounds. Very similar to F()
|
|
// from Simpira v2, but with independent subround keys. Uses 17 AES rounds
|
|
// per 16 bytes (vs. 10 for AES-CTR). Computing eight round functions in
|
|
// parallel hides the 7-cycle AESNI latency on HSW. Note that the Feistel
|
|
// XORs are 'free' (included in the second AES instruction).
|
|
inline ABSL_TARGET_CRYPTO const u64x2* FeistelRound(
|
|
uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT state,
|
|
const u64x2* ABSL_RANDOM_INTERNAL_RESTRICT keys) {
|
|
static_assert(kFeistelBlocks == 16, "Expecting 16 FeistelBlocks.");
|
|
|
|
// MSVC does a horrible job at unrolling loops.
|
|
// So we unroll the loop by hand to improve the performance.
|
|
const Vector128 s0 = Vector128Load(state + kLanes * 0);
|
|
const Vector128 s1 = Vector128Load(state + kLanes * 1);
|
|
const Vector128 s2 = Vector128Load(state + kLanes * 2);
|
|
const Vector128 s3 = Vector128Load(state + kLanes * 3);
|
|
const Vector128 s4 = Vector128Load(state + kLanes * 4);
|
|
const Vector128 s5 = Vector128Load(state + kLanes * 5);
|
|
const Vector128 s6 = Vector128Load(state + kLanes * 6);
|
|
const Vector128 s7 = Vector128Load(state + kLanes * 7);
|
|
const Vector128 s8 = Vector128Load(state + kLanes * 8);
|
|
const Vector128 s9 = Vector128Load(state + kLanes * 9);
|
|
const Vector128 s10 = Vector128Load(state + kLanes * 10);
|
|
const Vector128 s11 = Vector128Load(state + kLanes * 11);
|
|
const Vector128 s12 = Vector128Load(state + kLanes * 12);
|
|
const Vector128 s13 = Vector128Load(state + kLanes * 13);
|
|
const Vector128 s14 = Vector128Load(state + kLanes * 14);
|
|
const Vector128 s15 = Vector128Load(state + kLanes * 15);
|
|
|
|
// Encode even blocks with keys.
|
|
const Vector128 e0 = AesRound(s0, Vector128Load(keys + 0));
|
|
const Vector128 e2 = AesRound(s2, Vector128Load(keys + 1));
|
|
const Vector128 e4 = AesRound(s4, Vector128Load(keys + 2));
|
|
const Vector128 e6 = AesRound(s6, Vector128Load(keys + 3));
|
|
const Vector128 e8 = AesRound(s8, Vector128Load(keys + 4));
|
|
const Vector128 e10 = AesRound(s10, Vector128Load(keys + 5));
|
|
const Vector128 e12 = AesRound(s12, Vector128Load(keys + 6));
|
|
const Vector128 e14 = AesRound(s14, Vector128Load(keys + 7));
|
|
|
|
// Encode odd blocks with even output from above.
|
|
const Vector128 o1 = AesRound(e0, s1);
|
|
const Vector128 o3 = AesRound(e2, s3);
|
|
const Vector128 o5 = AesRound(e4, s5);
|
|
const Vector128 o7 = AesRound(e6, s7);
|
|
const Vector128 o9 = AesRound(e8, s9);
|
|
const Vector128 o11 = AesRound(e10, s11);
|
|
const Vector128 o13 = AesRound(e12, s13);
|
|
const Vector128 o15 = AesRound(e14, s15);
|
|
|
|
// Store odd blocks. (These will be shuffled later).
|
|
Vector128Store(o1, state + kLanes * 1);
|
|
Vector128Store(o3, state + kLanes * 3);
|
|
Vector128Store(o5, state + kLanes * 5);
|
|
Vector128Store(o7, state + kLanes * 7);
|
|
Vector128Store(o9, state + kLanes * 9);
|
|
Vector128Store(o11, state + kLanes * 11);
|
|
Vector128Store(o13, state + kLanes * 13);
|
|
Vector128Store(o15, state + kLanes * 15);
|
|
|
|
return keys + 8;
|
|
}
|
|
|
|
// Cryptographic permutation based via type-2 Generalized Feistel Network.
|
|
// Indistinguishable from ideal by chosen-ciphertext adversaries using less than
|
|
// 2^64 queries if the round function is a PRF. This is similar to the b=8 case
|
|
// of Simpira v2, but more efficient than its generic construction for b=16.
|
|
inline ABSL_TARGET_CRYPTO void Permute(
|
|
const void* ABSL_RANDOM_INTERNAL_RESTRICT keys,
|
|
uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT state) {
|
|
const u64x2* ABSL_RANDOM_INTERNAL_RESTRICT keys128 =
|
|
static_cast<const u64x2*>(keys);
|
|
|
|
// (Successfully unrolled; the first iteration jumps into the second half)
|
|
#ifdef __clang__
|
|
#pragma clang loop unroll_count(2)
|
|
#endif
|
|
for (size_t round = 0; round < kFeistelRounds; ++round) {
|
|
keys128 = FeistelRound(state, keys128);
|
|
BlockShuffle(state);
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
namespace absl {
|
|
namespace random_internal {
|
|
|
|
bool HasRandenHwAesImplementation() { return true; }
|
|
|
|
const void* ABSL_TARGET_CRYPTO RandenHwAes::GetKeys() {
|
|
// Round keys for one AES per Feistel round and branch.
|
|
// The canonical implementation uses first digits of Pi.
|
|
return round_keys;
|
|
}
|
|
|
|
// NOLINTNEXTLINE
|
|
void ABSL_TARGET_CRYPTO RandenHwAes::Absorb(const void* seed_void,
|
|
void* state_void) {
|
|
uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT state =
|
|
reinterpret_cast<uint64_t*>(state_void);
|
|
const uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT seed =
|
|
reinterpret_cast<const uint64_t*>(seed_void);
|
|
|
|
constexpr size_t kCapacityBlocks = kCapacityBytes / sizeof(Vector128);
|
|
constexpr size_t kStateBlocks = kStateBytes / sizeof(Vector128);
|
|
|
|
static_assert(kCapacityBlocks * sizeof(Vector128) == kCapacityBytes,
|
|
"Not i*V");
|
|
static_assert(kCapacityBlocks == 1, "Unexpected Randen kCapacityBlocks");
|
|
static_assert(kStateBlocks == 16, "Unexpected Randen kStateBlocks");
|
|
|
|
Vector128 b1 = Vector128Load(state + kLanes * 1);
|
|
b1 ^= Vector128Load(seed + kLanes * 0);
|
|
Vector128Store(b1, state + kLanes * 1);
|
|
|
|
Vector128 b2 = Vector128Load(state + kLanes * 2);
|
|
b2 ^= Vector128Load(seed + kLanes * 1);
|
|
Vector128Store(b2, state + kLanes * 2);
|
|
|
|
Vector128 b3 = Vector128Load(state + kLanes * 3);
|
|
b3 ^= Vector128Load(seed + kLanes * 2);
|
|
Vector128Store(b3, state + kLanes * 3);
|
|
|
|
Vector128 b4 = Vector128Load(state + kLanes * 4);
|
|
b4 ^= Vector128Load(seed + kLanes * 3);
|
|
Vector128Store(b4, state + kLanes * 4);
|
|
|
|
Vector128 b5 = Vector128Load(state + kLanes * 5);
|
|
b5 ^= Vector128Load(seed + kLanes * 4);
|
|
Vector128Store(b5, state + kLanes * 5);
|
|
|
|
Vector128 b6 = Vector128Load(state + kLanes * 6);
|
|
b6 ^= Vector128Load(seed + kLanes * 5);
|
|
Vector128Store(b6, state + kLanes * 6);
|
|
|
|
Vector128 b7 = Vector128Load(state + kLanes * 7);
|
|
b7 ^= Vector128Load(seed + kLanes * 6);
|
|
Vector128Store(b7, state + kLanes * 7);
|
|
|
|
Vector128 b8 = Vector128Load(state + kLanes * 8);
|
|
b8 ^= Vector128Load(seed + kLanes * 7);
|
|
Vector128Store(b8, state + kLanes * 8);
|
|
|
|
Vector128 b9 = Vector128Load(state + kLanes * 9);
|
|
b9 ^= Vector128Load(seed + kLanes * 8);
|
|
Vector128Store(b9, state + kLanes * 9);
|
|
|
|
Vector128 b10 = Vector128Load(state + kLanes * 10);
|
|
b10 ^= Vector128Load(seed + kLanes * 9);
|
|
Vector128Store(b10, state + kLanes * 10);
|
|
|
|
Vector128 b11 = Vector128Load(state + kLanes * 11);
|
|
b11 ^= Vector128Load(seed + kLanes * 10);
|
|
Vector128Store(b11, state + kLanes * 11);
|
|
|
|
Vector128 b12 = Vector128Load(state + kLanes * 12);
|
|
b12 ^= Vector128Load(seed + kLanes * 11);
|
|
Vector128Store(b12, state + kLanes * 12);
|
|
|
|
Vector128 b13 = Vector128Load(state + kLanes * 13);
|
|
b13 ^= Vector128Load(seed + kLanes * 12);
|
|
Vector128Store(b13, state + kLanes * 13);
|
|
|
|
Vector128 b14 = Vector128Load(state + kLanes * 14);
|
|
b14 ^= Vector128Load(seed + kLanes * 13);
|
|
Vector128Store(b14, state + kLanes * 14);
|
|
|
|
Vector128 b15 = Vector128Load(state + kLanes * 15);
|
|
b15 ^= Vector128Load(seed + kLanes * 14);
|
|
Vector128Store(b15, state + kLanes * 15);
|
|
}
|
|
|
|
// NOLINTNEXTLINE
|
|
void ABSL_TARGET_CRYPTO RandenHwAes::Generate(const void* keys,
|
|
void* state_void) {
|
|
static_assert(kCapacityBytes == sizeof(Vector128), "Capacity mismatch");
|
|
|
|
uint64_t* ABSL_RANDOM_INTERNAL_RESTRICT state =
|
|
reinterpret_cast<uint64_t*>(state_void);
|
|
|
|
const Vector128 prev_inner = Vector128Load(state);
|
|
|
|
SwapEndian(state);
|
|
|
|
Permute(keys, state);
|
|
|
|
SwapEndian(state);
|
|
|
|
// Ensure backtracking resistance.
|
|
Vector128 inner = Vector128Load(state);
|
|
inner ^= prev_inner;
|
|
Vector128Store(inner, state);
|
|
}
|
|
|
|
#ifdef __clang__
|
|
#pragma clang diagnostic pop
|
|
#endif
|
|
|
|
} // namespace random_internal
|
|
} // namespace absl
|
|
|
|
#endif // (ABSL_RANDEN_HWAES_IMPL)
|