tvl-depot/absl/hash/hash_test.cc
Abseil Team bf29470384 Export of internal Abseil changes.
--
bdce7e57e9e886eff1114d0266781b443f7ec639 by Derek Mauro <dmauro@google.com>:

Change {Get|Set}EnvironmentVariable to {Get|Set}EnvironmentVariableA for
compatibility with /DUNICODE.

PiperOrigin-RevId: 239229514

--
2276ed502326a044a84060d34eb19d499e3a3be2 by Derek Mauro <dmauro@google.com>:

Import of CCTZ from GitHub.

PiperOrigin-RevId: 239228622

--
a462efb970ff43b08a362ef2343fb75ac1295a50 by Derek Mauro <dmauro@google.com>:

Adding linking of CoreFoundation to CMakeLists in absl/time.
Import https://github.com/abseil/abseil-cpp/pull/280.

Fix #283

PiperOrigin-RevId: 239220785

--
fc23327b97f940c682aae1956cf7a1bf87f88c06 by Derek Mauro <dmauro@google.com>:

Add hermetic test script that uses Docker to build with a very recent
version of gcc (8.3.0 today) with libstdc++ and bazel.

PiperOrigin-RevId: 239220448

--
418c08a8f6a53e63b84e39473035774417ca3aa7 by Derek Mauro <dmauro@google.com>:

Disable part of the variant exeception safety test on move assignment
when using versions of libstd++ that contain a bug.
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87431#c7

PiperOrigin-RevId: 239062455

--
799722217aeda79679577843c91d5be62cbcbb42 by Matt Calabrese <calabrese@google.com>:

Add internal-only IsSwappable traits corresponding to std::is_swappable and std::is_nothrow_swappable, which are used with the swap implementations of optional and variant.

PiperOrigin-RevId: 239049448

--
aa46a036038a3de5c68ac5e5d3b4bf76f818d2ea by CJ Johnson <johnsoncj@google.com>:

Make InlinedVectorStorage constructor explicit

PiperOrigin-RevId: 239044361

--
17949715b3aa21c794701f69f2154e91b6acabc3 by CJ Johnson <johnsoncj@google.com>:

Add absl namesapce to internal/inlined_vector.h

PiperOrigin-RevId: 239030789

--
834628325953078cc08ed10d23bb8890e5bec897 by Derek Mauro <dmauro@google.com>:

Add test script that uses Docker to build Abseil with gcc-4.8,
libstdc++, and cmake.

PiperOrigin-RevId: 239028433

--
80fe24149ed73ed2ced995ad1e372fb060c60427 by CJ Johnson <johnsoncj@google.com>:

Factors data members of InlinedVector into an impl type called InlinedVectorStorage so that (in future changes) the contents of a vector can be grouped together with a single pointer.

PiperOrigin-RevId: 239021086

--
585331436d5d4d79f845e45dcf79d918a0dc6169 by Derek Mauro <dmauro@google.com>:

Add -Wno-missing-field-initializers to gcc compiler flags.
gcc-4.x has spurious missing field initializer warnings.
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=36750

PiperOrigin-RevId: 239017217

--
94602fe4e33ee3a552a7f2939c0f57a992f55075 by Abseil Team <absl-team@google.com>:

Formatting fixes.

PiperOrigin-RevId: 238983038

--
a1c1b63c08505574e0a8c491561840cecb2bb93e by Derek Mauro <dmauro@google.com>:

Add hermetic test script that uses Docker to build with a very recent
version of clang with libc++ and bazel.

PiperOrigin-RevId: 238669118

--
e525f8d20bc2f79a0d69336b902f63858f3bff9d by Derek Mauro <dmauro@google.com>:

Disable the test optionalTest.InPlaceTSFINAEBug until libc++ is updated.

PiperOrigin-RevId: 238661703

--
f99a2a0b5ec424a059678f7f226600f137b4c74e by Derek Mauro <dmauro@google.com>:

Correct the check for the FlatHashMap-Any test bug (list conditions
instead of platforms when possible)

PiperOrigin-RevId: 238653344

--
777928035dbcbf39f361eb7d10dc3696822f692f by Jon Cohen <cohenjon@google.com>:

Add install rules for Abseil CMake.

These are attempted to be limited to in-project installation.  This serves two purposes -- first it's morally the same as using Abseil in-source, except you don't have to rebuild us every time.  Second, the presence of an install rule makes life massively simpler for package manager maintainers.

Currently this doesn't install absl tests or testonly libraries.  This can be added in a follow-up patch.

Fixes #38, Fixes #80, Closes #182

PiperOrigin-RevId: 238645836

--
ded1c6ce697c191b7a6ff14572b3e6d183117b2c by Derek Mauro <dmauro@google.com>:

Add hermetic test script that uses Docker to build with a very recent
version of clang with libstdc++ and bazel.

PiperOrigin-RevId: 238517815
GitOrigin-RevId: bdce7e57e9e886eff1114d0266781b443f7ec639
Change-Id: I6f745869cb8ef63851891ccac05ae9a7dd241c4f
2019-03-19 14:19:10 -04:00

795 lines
26 KiB
C++

// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/hash/hash.h"
#include <array>
#include <bitset>
#include <cstring>
#include <deque>
#include <forward_list>
#include <functional>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <numeric>
#include <random>
#include <set>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <utility>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/container/flat_hash_set.h"
#include "absl/hash/hash_testing.h"
#include "absl/hash/internal/spy_hash_state.h"
#include "absl/meta/type_traits.h"
#include "absl/numeric/int128.h"
namespace {
using absl::Hash;
using absl::hash_internal::SpyHashState;
template <typename T>
class HashValueIntTest : public testing::Test {
};
TYPED_TEST_SUITE_P(HashValueIntTest);
template <typename T>
SpyHashState SpyHash(const T& value) {
return SpyHashState::combine(SpyHashState(), value);
}
// Helper trait to verify if T is hashable. We use absl::Hash's poison status to
// detect it.
template <typename T>
using is_hashable = std::is_default_constructible<absl::Hash<T>>;
TYPED_TEST_P(HashValueIntTest, BasicUsage) {
EXPECT_TRUE((is_hashable<TypeParam>::value));
TypeParam n = 42;
EXPECT_EQ(SpyHash(n), SpyHash(TypeParam{42}));
EXPECT_NE(SpyHash(n), SpyHash(TypeParam{0}));
EXPECT_NE(SpyHash(std::numeric_limits<TypeParam>::max()),
SpyHash(std::numeric_limits<TypeParam>::min()));
}
TYPED_TEST_P(HashValueIntTest, FastPath) {
// Test the fast-path to make sure the values are the same.
TypeParam n = 42;
EXPECT_EQ(absl::Hash<TypeParam>{}(n),
absl::Hash<std::tuple<TypeParam>>{}(std::tuple<TypeParam>(n)));
}
REGISTER_TYPED_TEST_CASE_P(HashValueIntTest, BasicUsage, FastPath);
using IntTypes = testing::Types<unsigned char, char, int, int32_t, int64_t, uint32_t,
uint64_t, size_t>;
INSTANTIATE_TYPED_TEST_CASE_P(My, HashValueIntTest, IntTypes);
enum LegacyEnum { kValue1, kValue2, kValue3 };
enum class EnumClass { kValue4, kValue5, kValue6 };
TEST(HashValueTest, EnumAndBool) {
EXPECT_TRUE((is_hashable<LegacyEnum>::value));
EXPECT_TRUE((is_hashable<EnumClass>::value));
EXPECT_TRUE((is_hashable<bool>::value));
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
LegacyEnum::kValue1, LegacyEnum::kValue2, LegacyEnum::kValue3)));
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
EnumClass::kValue4, EnumClass::kValue5, EnumClass::kValue6)));
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
std::make_tuple(true, false)));
}
TEST(HashValueTest, FloatingPoint) {
EXPECT_TRUE((is_hashable<float>::value));
EXPECT_TRUE((is_hashable<double>::value));
EXPECT_TRUE((is_hashable<long double>::value));
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
std::make_tuple(42.f, 0.f, -0.f, std::numeric_limits<float>::infinity(),
-std::numeric_limits<float>::infinity())));
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
std::make_tuple(42., 0., -0., std::numeric_limits<double>::infinity(),
-std::numeric_limits<double>::infinity())));
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
// Add some values with small exponent to test that NORMAL values also
// append their category.
.5L, 1.L, 2.L, 4.L, 42.L, 0.L, -0.L,
17 * static_cast<long double>(std::numeric_limits<double>::max()),
std::numeric_limits<long double>::infinity(),
-std::numeric_limits<long double>::infinity())));
}
TEST(HashValueTest, Pointer) {
EXPECT_TRUE((is_hashable<int*>::value));
int i;
int* ptr = &i;
int* n = nullptr;
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
std::make_tuple(&i, ptr, nullptr, ptr + 1, n)));
}
TEST(HashValueTest, PointerAlignment) {
// We want to make sure that pointer alignment will not cause bits to be
// stuck.
constexpr size_t kTotalSize = 1 << 20;
std::unique_ptr<char[]> data(new char[kTotalSize]);
constexpr size_t kLog2NumValues = 5;
constexpr size_t kNumValues = 1 << kLog2NumValues;
for (size_t align = 1; align < kTotalSize / kNumValues;
align < 8 ? align += 1 : align < 1024 ? align += 8 : align += 32) {
SCOPED_TRACE(align);
ASSERT_LE(align * kNumValues, kTotalSize);
size_t bits_or = 0;
size_t bits_and = ~size_t{};
for (size_t i = 0; i < kNumValues; ++i) {
size_t hash = absl::Hash<void*>()(data.get() + i * align);
bits_or |= hash;
bits_and &= hash;
}
// Limit the scope to the bits we would be using for Swisstable.
constexpr size_t kMask = (1 << (kLog2NumValues + 7)) - 1;
size_t stuck_bits = (~bits_or | bits_and) & kMask;
EXPECT_EQ(stuck_bits, 0) << "0x" << std::hex << stuck_bits;
}
}
TEST(HashValueTest, PairAndTuple) {
EXPECT_TRUE((is_hashable<std::pair<int, int>>::value));
EXPECT_TRUE((is_hashable<std::pair<const int&, const int&>>::value));
EXPECT_TRUE((is_hashable<std::tuple<int&, int&>>::value));
EXPECT_TRUE((is_hashable<std::tuple<int&&, int&&>>::value));
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
std::make_pair(0, 42), std::make_pair(0, 42), std::make_pair(42, 0),
std::make_pair(0, 0), std::make_pair(42, 42), std::make_pair(1, 42))));
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
std::make_tuple(std::make_tuple(0, 0, 0), std::make_tuple(0, 0, 42),
std::make_tuple(0, 23, 0), std::make_tuple(17, 0, 0),
std::make_tuple(42, 0, 0), std::make_tuple(3, 9, 9),
std::make_tuple(0, 0, -42))));
// Test that tuples of lvalue references work (so we need a few lvalues):
int a = 0, b = 1, c = 17, d = 23;
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
std::tie(a, a), std::tie(a, b), std::tie(b, c), std::tie(c, d))));
// Test that tuples of rvalue references work:
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
std::forward_as_tuple(0, 0, 0), std::forward_as_tuple(0, 0, 42),
std::forward_as_tuple(0, 23, 0), std::forward_as_tuple(17, 0, 0),
std::forward_as_tuple(42, 0, 0), std::forward_as_tuple(3, 9, 9),
std::forward_as_tuple(0, 0, -42))));
}
TEST(HashValueTest, CombineContiguousWorks) {
std::vector<std::tuple<int>> v1 = {std::make_tuple(1), std::make_tuple(3)};
std::vector<std::tuple<int>> v2 = {std::make_tuple(1), std::make_tuple(2)};
auto vh1 = SpyHash(v1);
auto vh2 = SpyHash(v2);
EXPECT_NE(vh1, vh2);
}
struct DummyDeleter {
template <typename T>
void operator() (T* ptr) {}
};
struct SmartPointerEq {
template <typename T, typename U>
bool operator()(const T& t, const U& u) const {
return GetPtr(t) == GetPtr(u);
}
template <typename T>
static auto GetPtr(const T& t) -> decltype(&*t) {
return t ? &*t : nullptr;
}
static std::nullptr_t GetPtr(std::nullptr_t) { return nullptr; }
};
TEST(HashValueTest, SmartPointers) {
EXPECT_TRUE((is_hashable<std::unique_ptr<int>>::value));
EXPECT_TRUE((is_hashable<std::unique_ptr<int, DummyDeleter>>::value));
EXPECT_TRUE((is_hashable<std::shared_ptr<int>>::value));
int i, j;
std::unique_ptr<int, DummyDeleter> unique1(&i);
std::unique_ptr<int, DummyDeleter> unique2(&i);
std::unique_ptr<int, DummyDeleter> unique_other(&j);
std::unique_ptr<int, DummyDeleter> unique_null;
std::shared_ptr<int> shared1(&i, DummyDeleter());
std::shared_ptr<int> shared2(&i, DummyDeleter());
std::shared_ptr<int> shared_other(&j, DummyDeleter());
std::shared_ptr<int> shared_null;
// Sanity check of the Eq function.
ASSERT_TRUE(SmartPointerEq{}(unique1, shared1));
ASSERT_FALSE(SmartPointerEq{}(unique1, shared_other));
ASSERT_TRUE(SmartPointerEq{}(unique_null, nullptr));
ASSERT_FALSE(SmartPointerEq{}(shared2, nullptr));
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
std::forward_as_tuple(&i, nullptr, //
unique1, unique2, unique_null, //
absl::make_unique<int>(), //
shared1, shared2, shared_null, //
std::make_shared<int>()),
SmartPointerEq{}));
}
TEST(HashValueTest, FunctionPointer) {
using Func = int (*)();
EXPECT_TRUE(is_hashable<Func>::value);
Func p1 = [] { return 2; }, p2 = [] { return 1; };
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
std::make_tuple(p1, p2, nullptr)));
}
struct WrapInTuple {
template <typename T>
std::tuple<int, T, size_t> operator()(const T& t) const {
return std::make_tuple(7, t, 0xdeadbeef);
}
};
TEST(HashValueTest, Strings) {
EXPECT_TRUE((is_hashable<std::string>::value));
const std::string small = "foo";
const std::string dup = "foofoo";
const std::string large = "large";
const std::string huge = std::string(5000, 'a');
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
std::string(), absl::string_view(),
std::string(""), absl::string_view(""),
std::string(small), absl::string_view(small),
std::string(dup), absl::string_view(dup),
std::string(large), absl::string_view(large),
std::string(huge), absl::string_view(huge))));
// Also check that nested types maintain the same hash.
const WrapInTuple t{};
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
//
t(std::string()), t(absl::string_view()),
t(std::string("")), t(absl::string_view("")),
t(std::string(small)), t(absl::string_view(small)),
t(std::string(dup)), t(absl::string_view(dup)),
t(std::string(large)), t(absl::string_view(large)),
t(std::string(huge)), t(absl::string_view(huge)))));
// Make sure that hashing a `const char*` does not use its std::string-value.
EXPECT_NE(SpyHash(static_cast<const char*>("ABC")),
SpyHash(absl::string_view("ABC")));
}
TEST(HashValueTest, StdArray) {
EXPECT_TRUE((is_hashable<std::array<int, 3>>::value));
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
std::make_tuple(std::array<int, 3>{}, std::array<int, 3>{{0, 23, 42}})));
}
TEST(HashValueTest, StdBitset) {
EXPECT_TRUE((is_hashable<std::bitset<257>>::value));
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
{std::bitset<2>("00"), std::bitset<2>("01"), std::bitset<2>("10"),
std::bitset<2>("11")}));
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
{std::bitset<5>("10101"), std::bitset<5>("10001"), std::bitset<5>()}));
constexpr int kNumBits = 256;
std::array<std::string, 6> bit_strings;
bit_strings.fill(std::string(kNumBits, '1'));
bit_strings[1][0] = '0';
bit_strings[2][1] = '0';
bit_strings[3][kNumBits / 3] = '0';
bit_strings[4][kNumBits - 2] = '0';
bit_strings[5][kNumBits - 1] = '0';
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
{std::bitset<kNumBits>(bit_strings[0].c_str()),
std::bitset<kNumBits>(bit_strings[1].c_str()),
std::bitset<kNumBits>(bit_strings[2].c_str()),
std::bitset<kNumBits>(bit_strings[3].c_str()),
std::bitset<kNumBits>(bit_strings[4].c_str()),
std::bitset<kNumBits>(bit_strings[5].c_str())}));
} // namespace
template <typename T>
class HashValueSequenceTest : public testing::Test {
};
TYPED_TEST_SUITE_P(HashValueSequenceTest);
TYPED_TEST_P(HashValueSequenceTest, BasicUsage) {
EXPECT_TRUE((is_hashable<TypeParam>::value));
using ValueType = typename TypeParam::value_type;
auto a = static_cast<ValueType>(0);
auto b = static_cast<ValueType>(23);
auto c = static_cast<ValueType>(42);
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
std::make_tuple(TypeParam(), TypeParam{}, TypeParam{a, b, c},
TypeParam{a, b}, TypeParam{b, c})));
}
REGISTER_TYPED_TEST_CASE_P(HashValueSequenceTest, BasicUsage);
using IntSequenceTypes =
testing::Types<std::deque<int>, std::forward_list<int>, std::list<int>,
std::vector<int>, std::vector<bool>, std::set<int>,
std::multiset<int>>;
INSTANTIATE_TYPED_TEST_CASE_P(My, HashValueSequenceTest, IntSequenceTypes);
// Private type that only supports AbslHashValue to make sure our chosen hash
// implentation is recursive within absl::Hash.
// It uses std::abs() on the value to provide different bitwise representations
// of the same logical value.
struct Private {
int i;
template <typename H>
friend H AbslHashValue(H h, Private p) {
return H::combine(std::move(h), std::abs(p.i));
}
friend bool operator==(Private a, Private b) {
return std::abs(a.i) == std::abs(b.i);
}
friend std::ostream& operator<<(std::ostream& o, Private p) {
return o << p.i;
}
};
TEST(HashValueTest, PrivateSanity) {
// Sanity check that Private is working as the tests below expect it to work.
EXPECT_TRUE(is_hashable<Private>::value);
EXPECT_NE(SpyHash(Private{0}), SpyHash(Private{1}));
EXPECT_EQ(SpyHash(Private{1}), SpyHash(Private{1}));
}
TEST(HashValueTest, Optional) {
EXPECT_TRUE(is_hashable<absl::optional<Private>>::value);
using O = absl::optional<Private>;
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
std::make_tuple(O{}, O{{1}}, O{{-1}}, O{{10}})));
}
TEST(HashValueTest, Variant) {
using V = absl::variant<Private, std::string>;
EXPECT_TRUE(is_hashable<V>::value);
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
V(Private{1}), V(Private{-1}), V(Private{2}), V("ABC"), V("BCD"))));
#if ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
struct S {};
EXPECT_FALSE(is_hashable<absl::variant<S>>::value);
#endif
}
TEST(HashValueTest, Maps) {
EXPECT_TRUE((is_hashable<std::map<int, std::string>>::value));
using M = std::map<int, std::string>;
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
M{}, M{{0, "foo"}}, M{{1, "foo"}}, M{{0, "bar"}}, M{{1, "bar"}},
M{{0, "foo"}, {42, "bar"}}, M{{1, "foo"}, {42, "bar"}},
M{{1, "foo"}, {43, "bar"}}, M{{1, "foo"}, {43, "baz"}})));
using MM = std::multimap<int, std::string>;
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple(
MM{}, MM{{0, "foo"}}, MM{{1, "foo"}}, MM{{0, "bar"}}, MM{{1, "bar"}},
MM{{0, "foo"}, {0, "bar"}}, MM{{0, "bar"}, {0, "foo"}},
MM{{0, "foo"}, {42, "bar"}}, MM{{1, "foo"}, {42, "bar"}},
MM{{1, "foo"}, {1, "foo"}, {43, "bar"}}, MM{{1, "foo"}, {43, "baz"}})));
}
template <typename T, typename = void>
struct IsHashCallble : std::false_type {};
template <typename T>
struct IsHashCallble<T, absl::void_t<decltype(std::declval<absl::Hash<T>>()(
std::declval<const T&>()))>> : std::true_type {};
template <typename T, typename = void>
struct IsAggregateInitializable : std::false_type {};
template <typename T>
struct IsAggregateInitializable<T, absl::void_t<decltype(T{})>>
: std::true_type {};
TEST(IsHashableTest, ValidHash) {
EXPECT_TRUE((is_hashable<int>::value));
EXPECT_TRUE(std::is_default_constructible<absl::Hash<int>>::value);
EXPECT_TRUE(std::is_copy_constructible<absl::Hash<int>>::value);
EXPECT_TRUE(std::is_move_constructible<absl::Hash<int>>::value);
EXPECT_TRUE(absl::is_copy_assignable<absl::Hash<int>>::value);
EXPECT_TRUE(absl::is_move_assignable<absl::Hash<int>>::value);
EXPECT_TRUE(IsHashCallble<int>::value);
EXPECT_TRUE(IsAggregateInitializable<absl::Hash<int>>::value);
}
#if ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
TEST(IsHashableTest, PoisonHash) {
struct X {};
EXPECT_FALSE((is_hashable<X>::value));
EXPECT_FALSE(std::is_default_constructible<absl::Hash<X>>::value);
EXPECT_FALSE(std::is_copy_constructible<absl::Hash<X>>::value);
EXPECT_FALSE(std::is_move_constructible<absl::Hash<X>>::value);
EXPECT_FALSE(absl::is_copy_assignable<absl::Hash<X>>::value);
EXPECT_FALSE(absl::is_move_assignable<absl::Hash<X>>::value);
EXPECT_FALSE(IsHashCallble<X>::value);
EXPECT_FALSE(IsAggregateInitializable<absl::Hash<X>>::value);
}
#endif // ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
// Hashable types
//
// These types exist simply to exercise various AbslHashValue behaviors, so
// they are named by what their AbslHashValue overload does.
struct NoOp {
template <typename HashCode>
friend HashCode AbslHashValue(HashCode h, NoOp n) {
return std::move(h);
}
};
struct EmptyCombine {
template <typename HashCode>
friend HashCode AbslHashValue(HashCode h, EmptyCombine e) {
return HashCode::combine(std::move(h));
}
};
template <typename Int>
struct CombineIterative {
template <typename HashCode>
friend HashCode AbslHashValue(HashCode h, CombineIterative c) {
for (int i = 0; i < 5; ++i) {
h = HashCode::combine(std::move(h), Int(i));
}
return h;
}
};
template <typename Int>
struct CombineVariadic {
template <typename HashCode>
friend HashCode AbslHashValue(HashCode h, CombineVariadic c) {
return HashCode::combine(std::move(h), Int(0), Int(1), Int(2), Int(3),
Int(4));
}
};
enum class InvokeTag {
kUniquelyRepresented,
kHashValue,
#if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
kLegacyHash,
#endif // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
kStdHash,
kNone
};
template <InvokeTag T>
using InvokeTagConstant = std::integral_constant<InvokeTag, T>;
template <InvokeTag... Tags>
struct MinTag;
template <InvokeTag a, InvokeTag b, InvokeTag... Tags>
struct MinTag<a, b, Tags...> : MinTag<(a < b ? a : b), Tags...> {};
template <InvokeTag a>
struct MinTag<a> : InvokeTagConstant<a> {};
template <InvokeTag... Tags>
struct CustomHashType {
size_t value;
};
template <InvokeTag allowed, InvokeTag... tags>
struct EnableIfContained
: std::enable_if<absl::disjunction<
std::integral_constant<bool, allowed == tags>...>::value> {};
template <
typename H, InvokeTag... Tags,
typename = typename EnableIfContained<InvokeTag::kHashValue, Tags...>::type>
H AbslHashValue(H state, CustomHashType<Tags...> t) {
static_assert(MinTag<Tags...>::value == InvokeTag::kHashValue, "");
return H::combine(std::move(state),
t.value + static_cast<int>(InvokeTag::kHashValue));
}
} // namespace
namespace absl {
namespace hash_internal {
template <InvokeTag... Tags>
struct is_uniquely_represented<
CustomHashType<Tags...>,
typename EnableIfContained<InvokeTag::kUniquelyRepresented, Tags...>::type>
: std::true_type {};
} // namespace hash_internal
} // namespace absl
#if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
namespace ABSL_INTERNAL_LEGACY_HASH_NAMESPACE {
template <InvokeTag... Tags>
struct hash<CustomHashType<Tags...>> {
template <InvokeTag... TagsIn, typename = typename EnableIfContained<
InvokeTag::kLegacyHash, TagsIn...>::type>
size_t operator()(CustomHashType<TagsIn...> t) const {
static_assert(MinTag<Tags...>::value == InvokeTag::kLegacyHash, "");
return t.value + static_cast<int>(InvokeTag::kLegacyHash);
}
};
} // namespace ABSL_INTERNAL_LEGACY_HASH_NAMESPACE
#endif // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
namespace std {
template <InvokeTag... Tags> // NOLINT
struct hash<CustomHashType<Tags...>> {
template <InvokeTag... TagsIn, typename = typename EnableIfContained<
InvokeTag::kStdHash, TagsIn...>::type>
size_t operator()(CustomHashType<TagsIn...> t) const {
static_assert(MinTag<Tags...>::value == InvokeTag::kStdHash, "");
return t.value + static_cast<int>(InvokeTag::kStdHash);
}
};
} // namespace std
namespace {
template <typename... T>
void TestCustomHashType(InvokeTagConstant<InvokeTag::kNone>, T...) {
using type = CustomHashType<T::value...>;
SCOPED_TRACE(testing::PrintToString(std::vector<InvokeTag>{T::value...}));
EXPECT_TRUE(is_hashable<type>());
EXPECT_TRUE(is_hashable<const type>());
EXPECT_TRUE(is_hashable<const type&>());
const size_t offset = static_cast<int>(std::min({T::value...}));
EXPECT_EQ(SpyHash(type{7}), SpyHash(size_t{7 + offset}));
}
void TestCustomHashType(InvokeTagConstant<InvokeTag::kNone>) {
#if ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
// is_hashable is false if we don't support any of the hooks.
using type = CustomHashType<>;
EXPECT_FALSE(is_hashable<type>());
EXPECT_FALSE(is_hashable<const type>());
EXPECT_FALSE(is_hashable<const type&>());
#endif // ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
}
template <InvokeTag Tag, typename... T>
void TestCustomHashType(InvokeTagConstant<Tag> tag, T... t) {
constexpr auto next = static_cast<InvokeTag>(static_cast<int>(Tag) + 1);
TestCustomHashType(InvokeTagConstant<next>(), tag, t...);
TestCustomHashType(InvokeTagConstant<next>(), t...);
}
TEST(HashTest, CustomHashType) {
TestCustomHashType(InvokeTagConstant<InvokeTag{}>());
}
TEST(HashTest, NoOpsAreEquivalent) {
EXPECT_EQ(Hash<NoOp>()({}), Hash<NoOp>()({}));
EXPECT_EQ(Hash<NoOp>()({}), Hash<EmptyCombine>()({}));
}
template <typename T>
class HashIntTest : public testing::Test {
};
TYPED_TEST_SUITE_P(HashIntTest);
TYPED_TEST_P(HashIntTest, BasicUsage) {
EXPECT_NE(Hash<NoOp>()({}), Hash<TypeParam>()(0));
EXPECT_NE(Hash<NoOp>()({}),
Hash<TypeParam>()(std::numeric_limits<TypeParam>::max()));
if (std::numeric_limits<TypeParam>::min() != 0) {
EXPECT_NE(Hash<NoOp>()({}),
Hash<TypeParam>()(std::numeric_limits<TypeParam>::min()));
}
EXPECT_EQ(Hash<CombineIterative<TypeParam>>()({}),
Hash<CombineVariadic<TypeParam>>()({}));
}
REGISTER_TYPED_TEST_CASE_P(HashIntTest, BasicUsage);
using IntTypes = testing::Types<unsigned char, char, int, int32_t, int64_t, uint32_t,
uint64_t, size_t>;
INSTANTIATE_TYPED_TEST_CASE_P(My, HashIntTest, IntTypes);
struct StructWithPadding {
char c;
int i;
template <typename H>
friend H AbslHashValue(H hash_state, const StructWithPadding& s) {
return H::combine(std::move(hash_state), s.c, s.i);
}
};
static_assert(sizeof(StructWithPadding) > sizeof(char) + sizeof(int),
"StructWithPadding doesn't have padding");
static_assert(std::is_standard_layout<StructWithPadding>::value, "");
// This check has to be disabled because libstdc++ doesn't support it.
// static_assert(std::is_trivially_constructible<StructWithPadding>::value, "");
template <typename T>
struct ArraySlice {
T* begin;
T* end;
template <typename H>
friend H AbslHashValue(H hash_state, const ArraySlice& slice) {
for (auto t = slice.begin; t != slice.end; ++t) {
hash_state = H::combine(std::move(hash_state), *t);
}
return hash_state;
}
};
TEST(HashTest, HashNonUniquelyRepresentedType) {
// Create equal StructWithPadding objects that are known to have non-equal
// padding bytes.
static const size_t kNumStructs = 10;
unsigned char buffer1[kNumStructs * sizeof(StructWithPadding)];
std::memset(buffer1, 0, sizeof(buffer1));
auto* s1 = reinterpret_cast<StructWithPadding*>(buffer1);
unsigned char buffer2[kNumStructs * sizeof(StructWithPadding)];
std::memset(buffer2, 255, sizeof(buffer2));
auto* s2 = reinterpret_cast<StructWithPadding*>(buffer2);
for (int i = 0; i < kNumStructs; ++i) {
SCOPED_TRACE(i);
s1[i].c = s2[i].c = '0' + i;
s1[i].i = s2[i].i = i;
ASSERT_FALSE(memcmp(buffer1 + i * sizeof(StructWithPadding),
buffer2 + i * sizeof(StructWithPadding),
sizeof(StructWithPadding)) == 0)
<< "Bug in test code: objects do not have unequal"
<< " object representations";
}
EXPECT_EQ(Hash<StructWithPadding>()(s1[0]), Hash<StructWithPadding>()(s2[0]));
EXPECT_EQ(Hash<ArraySlice<StructWithPadding>>()({s1, s1 + kNumStructs}),
Hash<ArraySlice<StructWithPadding>>()({s2, s2 + kNumStructs}));
}
TEST(HashTest, StandardHashContainerUsage) {
std::unordered_map<int, std::string, Hash<int>> map = {{0, "foo"},
{42, "bar"}};
EXPECT_NE(map.find(0), map.end());
EXPECT_EQ(map.find(1), map.end());
EXPECT_NE(map.find(0u), map.end());
}
struct ConvertibleFromNoOp {
ConvertibleFromNoOp(NoOp) {} // NOLINT(runtime/explicit)
template <typename H>
friend H AbslHashValue(H hash_state, ConvertibleFromNoOp) {
return H::combine(std::move(hash_state), 1);
}
};
TEST(HashTest, HeterogeneousCall) {
EXPECT_NE(Hash<ConvertibleFromNoOp>()(NoOp()),
Hash<NoOp>()(NoOp()));
}
TEST(IsUniquelyRepresentedTest, SanityTest) {
using absl::hash_internal::is_uniquely_represented;
EXPECT_TRUE(is_uniquely_represented<unsigned char>::value);
EXPECT_TRUE(is_uniquely_represented<int>::value);
EXPECT_FALSE(is_uniquely_represented<bool>::value);
EXPECT_FALSE(is_uniquely_represented<int*>::value);
}
struct IntAndString {
int i;
std::string s;
template <typename H>
friend H AbslHashValue(H hash_state, IntAndString int_and_string) {
return H::combine(std::move(hash_state), int_and_string.s,
int_and_string.i);
}
};
TEST(HashTest, SmallValueOn64ByteBoundary) {
Hash<IntAndString>()(IntAndString{0, std::string(63, '0')});
}
struct TypeErased {
size_t n;
template <typename H>
friend H AbslHashValue(H hash_state, const TypeErased& v) {
v.HashValue(absl::HashState::Create(&hash_state));
return hash_state;
}
void HashValue(absl::HashState state) const {
absl::HashState::combine(std::move(state), n);
}
};
TEST(HashTest, TypeErased) {
EXPECT_TRUE((is_hashable<TypeErased>::value));
EXPECT_TRUE((is_hashable<std::pair<TypeErased, int>>::value));
EXPECT_EQ(SpyHash(TypeErased{7}), SpyHash(size_t{7}));
EXPECT_NE(SpyHash(TypeErased{7}), SpyHash(size_t{13}));
EXPECT_EQ(SpyHash(std::make_pair(TypeErased{7}, 17)),
SpyHash(std::make_pair(size_t{7}, 17)));
}
struct ValueWithBoolConversion {
operator bool() const { return false; }
int i;
};
} // namespace
namespace std {
template <>
struct hash<ValueWithBoolConversion> {
size_t operator()(ValueWithBoolConversion v) { return v.i; }
};
} // namespace std
namespace {
TEST(HashTest, DoesNotUseImplicitConversionsToBool) {
EXPECT_NE(absl::Hash<ValueWithBoolConversion>()(ValueWithBoolConversion{0}),
absl::Hash<ValueWithBoolConversion>()(ValueWithBoolConversion{1}));
}
} // namespace