‘trusted-users’ is a list of users and groups that have elevated
rights, such as the ability to specify binary caches. It defaults to
‘root’. A typical value would be ‘@wheel’ to specify all users in the
wheel group.
‘allowed-users’ is a list of users and groups that are allowed to
connect to the daemon. It defaults to ‘*’. A typical value would be
‘@users’ to specify the ‘users’ group.
When running NixOps under Mac OS X, we need to be able to import store
paths built on Linux into the local Nix store. However, HFS+ is
usually case-insensitive, so if there are directories with file names
that differ only in case, then importing will fail.
The solution is to add a suffix ("~nix~case~hack~<integer>") to
colliding files. For instance, if we have a directory containing
xt_CONNMARK.h and xt_connmark.h, then the latter will be renamed to
"xt_connmark.h~nix~case~hack~1". If a store path is dumped as a NAR,
the suffixes are removed. Thus, importing and exporting via a
case-insensitive Nix store is round-tripping. So when NixOps calls
nix-copy-closure to copy the path to a Linux machine, you get the
original file names back.
Closes#119.
This makes things more efficient (we don't need to use an SSH master
connection, and we only start a single remote process) and gets rid of
locking issues (the remote nix-store process will keep inputs and
outputs locked as long as they're needed).
It also makes it more or less secure to connect directly to the root
account on the build machine, using a forced command
(e.g. ‘command="nix-store --serve --write"’). This bypasses the Nix
daemon and is therefore more efficient.
Also, don't call nix-store to import the output paths.
There is a long-standing race condition when copying a closure to a
remote machine, particularly affecting build-remote.pl: the client
first asks the remote machine which paths it already has, then copies
over the missing paths. If the garbage collector kicks in on the
remote machine between the first and second step, the already-present
paths may be deleted. The missing paths may then refer to deleted
paths, causing nix-copy-closure to fail. The client now performs both
steps using a single remote Nix call (using ‘nix-store --serve’),
locking all paths in the closure while querying.
I changed the --serve protocol a bit (getting rid of QueryCommand), so
this breaks the SSH substituter from older versions. But it was marked
experimental anyway.
Fixes#141.
This can be used to import a dynamic shared object and return an
arbitrary value, including new primops. This can be used both to test
new primops without having to recompile nix every time, and to build
specialized primops that probably don't belong upstream (e.g. a function
that calls out to gpg to decrypt a nixops secret as-needed).
The imported function should initialize the Value & as needed. A single
import can define multiple values by creating an attrset or list, of
course.
An example initialization function might look like:
extern "C" void initialize(nix::EvalState & state, nix::Value & v)
{
v.type = nix::tPrimOp;
v.primOp = NEW nix::PrimOp(myFun, 1, state.symbols.create("myFun"));
}
Then `builtins.importNative ./example.so "initialize"` will evaluate to
the primop defined in the myFun function.
- Use define-derived-mode to declare nix-mode
- Use autoloads to ensure nix-mode is usable (and enabled) without needing `require`
- Use set + make-local-variable instead of longer 2-step equivalent
When copying a large path causes the daemon to run out of memory, you
now get:
error: Nix daemon out of memory
instead of:
error: writing to file: Broken pipe