Note that this will only work if the client has a very recent Nix
version (post 15e1b2c223), otherwise the
--option flag will just be ignored.
Fixes#50.
This handles the chroot and build hook cases, which are easy.
Supporting the non-chroot-build case will require more work (hash
rewriting!).
Issue #21.
This is required on systemd, which mounts filesystems as "shared"
subtrees. Changes to shared trees in a private mount namespace are
propagated to the outside world, which is bad.
Since SubstitutionGoal::finished() in build.cc computes the hash
anyway, we can prevent the inefficiency of computing the hash twice by
letting the substituter tell Nix about the expected hash, which can
then verify it.
Instead make a single call to querySubstitutablePathInfo() per
derivation output. This is faster and prevents having to implement
the "have" function in the binary cache substituter.
Getting substitute information using the binary cache substituter has
non-trivial latency overhead. A package or NixOS system configuration
can have hundreds of dependencies, and in the worst case (when the
local info cache is empty) we have to do a separate HTTP request for
each of these. If the ping time to the server is t, getting N info
files will take tN seconds; e.g., with a ping time of 0.1s to
nixos.org, sequentially downloading 1000 info files (a typical NixOS
config) will take at least 100 seconds.
To fix this problem, the binary cache substituter can now perform
requests in parallel. This required changing the substituter
interface to support a function querySubstitutablePathInfos() that
queries multiple paths at the same time, and rewriting queryMissing()
to take advantage of parallelism. (Due to local caching,
parallelising queryMissing() is sufficient for most use cases, since
it's almost always called before building a derivation and thus fills
the local info cache.)
For example, parallelism speeds up querying all 1056 paths in a
particular NixOS system configuration from 116s to 2.6s. It works so
well because the eccentricity of the top-level derivation in the
dependency graph is only 9. So we only need 10 round-trips (when
using an unlimited number of parallel connections) to get everything.
Currently we do a maximum of 150 parallel connections to the server.
Thus it's important that the binary cache server (e.g. nixos.org) has
a high connection limit. Alternatively we could use HTTP pipelining,
but WWW::Curl doesn't support it and libcurl has a hard-coded limit of
5 requests per pipeline.
In a private PID namespace, processes have PIDs that are separate from
the rest of the system. The initial child gets PID 1. Processes in
the chroot cannot see processes outside of the chroot. This improves
isolation between builds. However, processes on the outside can see
processes in the chroot and send signals to them (if they have
appropriate rights).
Since the builder gets PID 1, it serves as the reaper for zombies in
the chroot. This might turn out to be a problem. In that case we'll
need to have a small PID 1 process that sits in a loop calling wait().
In chroot builds, set the host name to "localhost" and the domain name
to "(none)" (the latter being the kernel's default). This improves
determinism a bit further.
P.S. I have to idea what UTS stands for.
This improves isolation a bit further, and it's just one extra flag in
the unshare() call.
P.S. It would be very cool to use CLONE_NEWPID (to put the builder in
a private PID namespace) as well, but that's slightly more risky since
having a builder start as PID 1 may cause problems.
On Linux it's possible to run a process in its own network namespace,
meaning that it gets its own set of network interfaces, disjunct from
the rest of the system. We use this to completely remove network
access to chroot builds, except that they get a private loopback
interface. This means that:
- Builders cannot connect to the outside network or to other processes
on the same machine, except processes within the same build.
- Vice versa, other processes cannot connect to processes in a chroot
build, and open ports/connections do not show up in "netstat".
- If two concurrent builders try to listen on the same port (e.g. as
part of a test), they no longer conflict with each other.
This was inspired by the "PrivateNetwork" flag in systemd.
There is a race condition when doing parallel builds with chroots and
the immutable bit enabled. One process may call makeImmutable()
before the other has called link(), in which case link() will fail
with EPERM. We could retry or wrap the operation in a lock, but since
this condition is rare and I'm lazy, we just use the existing copy
fallback.
Fixes#9.
Setting the UNAME26 personality causes "uname" to return "2.6.x",
regardless of the kernel version. This improves determinism in
a few misbehaved packages.
The variable ‘useChroot’ was not initialised properly. This caused
random failures if using the build hook. Seen on Mac OS X 10.7 with Clang.
Thanks to KolibriFX for finding this :-)
Chroots are initialised by hard-linking inputs from the Nix store to
the chroot. This doesn't work if the input has its immutable bit set,
because it's forbidden to create hard links to immutable files. So
temporarily clear the immutable bit when creating and destroying the
chroot.
Note that making regular files in the Nix store immutable isn't very
reliable, since the bit can easily become cleared: for instance, if we
run the garbage collector after running ‘nix-store --optimise’. So
maybe we should only make directories immutable.
This should also fix:
nix-instantiate: ./../boost/shared_ptr.hpp:254: T* boost::shared_ptr<T>::operator->() const [with T = nix::StoreAPI]: Assertion `px != 0' failed.
which was caused by hashDerivationModulo() calling the ‘store’
object (during store upgrades) before openStore() assigned it.